Performance Evaluation of Adaptive Scientific Applicasarsing TAU

Sameer Shendg Allen D. Malony*, Alan Morris®, Steven Parké&r J. Davison de St.
Germairt

2pPerformance Research Laboratory, Department of Computelndiormation Science,
University of Oregon, Eugene, OR 97403, USA

bScientific Computing and Imaging Institute,
University of Utah, Salt Lake City, UT 84112, USA

1. Introduction

Fueled by increasing processor speeds and high speedimbection networks, advances in
high performance computer architectures have allowed ¢reldpment of increasingly com-
plex large scale parallel systems. For computational fisisn programming these systems
efficiently is a challenging task. Understanding the peniance of their parallel applications is
equally daunting. To observe and comprehend the perforenaingarallel applications that run
on these systems, we need performance evaluation toolsahaap the performance abstrac-
tions to the user’'s mental models of application executior.instance, most parallel scientific
applications are iterative in nature. In the case CFD apfptios, they may also dynamically
adapt to changes in the simulation model. A performance aneasent and analysis system
that can differentiate the phases of each iteration andactexrize performance changes as the
application adapts will enable developers to better rgdarormance to their application be-
havior. In this paper, we present new performance measundaethniques to meet these needs.
In section 2, we describe our parallel performance systé, Bection 3 discusses how new
TAU profiling techniques can be applied to CFD applicationthwerative and adaptive char-
acteristics. In section 4, we present a case study featthenintah computational framework
and explain how adaptive computational fluid dynamics satoihs are observed using TAU.
Finally, we conclude with a discussion of how the TAU perfarme system can be broadly
applied to other CFD frameworks and present a few examplis o$age in this field.

2. TAU Performance System

Given the diversity of performance problems, evaluationhoés, and types of events and
metrics, the instrumentation and measurement mechanises®d to support performance ob-
servation must be flexible, to give maximum opportunity fonfiguring performance exper-
iments, and portable, to allow consistent cross-platfosrfggmance problem solving. The
TAU performance system [1,4], is composed of instrumeotatmeasurement, and analysis

*This research was supported by the U.S. Department of Enéxffjge of Science, under contracts DE-FGO03-
01ER25501 and DE-FG02-03ER25561, and University of UtahLdmNL DOE contract 2705056.

1

2 S. Shende

parts. It supports both profiling and tracing forms of meamants. TAU implements a flexible
instrumentation model that permits a user to insert perémee instrumentation hooks into the
application at several levels of program compilation anelcexion. The C, C++, and Fortran
languages are supported, as well as standard messagegp@sginMPI) and multi-threading

(e.g., Pthreads) libraries.

For instrumentation we recommend a dual instrumentatignageh. Source code is instru-
mented automatically using a source-to-source translaiol, tau _instrumentor, that acts as
a pre-processor prior to compilation. The MPI library istinmnented using TAU's wrapper
interposition library that intercepts calls to the MPI salind internally invokes the TAU tim-
ing calls before and after. TAU source instrumentor can talselective instrumentation file
that lists the name of routines or files that should be exduateincluded during instrumen-
tation. The instrumented source code is then compiled akedi with the TAU MPI wrapper
interposition library to produce an executable.

TAU provides a variety of measurement options that are ahageen TAU is installed. Each
configuration of TAU is represented in a set of measurembrdriies and a stub makefile to be
used in the user application makefile. Profiling and trachegtlae two performance evaluation
techniques that TAU supports. Profiling presents aggregfatestics of performance metrics
for different events and tracing captures performanceaiméion in timestamped event logs for
analysis. In tracing, we can observe along a global timelinen events take place in different
processes. Events tracked by both profiling and tracingideckentry and exit from routines,
interprocess message communication events, and othedefieed atomic events. Tracing has
the advantage of capturing temporal relationships betwegent records, but at the expense of
generating large trace files. The choice to profile tradesa$eof temporal information with
gains in profile data efficiency.

3. CFD Application Performance Mapping

Observing the behavior of an adaptive CFD application shasvseveral interesting aspects
of its execution. Such applications typically involve a damdecomposition of the simulation
model across processors and an interaction of executioseptes the simulation proceeds in
time. Each iteration may involve a repartitioning or adaptof the underlying computational
structure to better address numerical or load balance grepe For example, a mesh refine-
ment might be done at iteration boundaries and informatimutconvergence or divergence
of numerical algorithms is detailed. Also, domain specifiiormation such as the number of
cells refined at each stage gives a user valuable feedbatlegmdgress of the computation.

Performance evaluation tools must capture and presentgq@ication specific data and co-
relate this information to performance metrics to providesaful feedback to the user. Present-
ing performance information that relates to applicatioacsfic abstractions is a challenging
task. Typically, profilers present performance metricsimfiorm of a group of tables, one for
each MPI task. Each row in a table represents a given rouiaeh column specifies a metric
such as the exclusive or inclusive time spent in the givetimewr the number of calls exe-
cuted. This information is typically presented for all imadions of the routine. While such
information is useful in identifying the routines that cobtite most to the overall execution
time, it does not explain the performance of the routinek vaspect to key application phases.
To address this shortcoming, we provide several profilingstes in TAU.

Performance Evaluation of Adaptive Scientific Applicasarsing TAU 3

3.1. Static timers

These are commonly used in most profilers where all invooatad a routine are recorded.
The name and group registration takes place when the tincegaged (typically the first time a
routine is entered). A given timer is started and stoppeduttne entry and exit points. A user
defined timer can also measure the time spent in a group ehstaits. Timers may be nested
but they may not overlap. The performance data generatetypamally answer questions such
as:what isthetotal time spent in M PI_Send() across all invocations?

3.2. Dynamic timers

To record the execution of each invocation of a routine, TAbmes dynamic timers where
a unigue name may be constructed for a dynamic timer for dacition by embedding the
iteration count in it. It uses the start/stop calls aroureldbde to be examined, similar to static
timers. The performance data generated can typically anguestions such aswvhat is the
time spent in theroutine foo() initerations 24, 25, and 40?

3.3. Static phases

An application typically goes through several phases ixscution. To track the perfor-
mance of the application based on phases, TAU provideg statl dynamic phase profiling.
A profile based on phases highlights the context in which &ineus called. An application
has a default phase within which other routines and phasesarked. A phase based profile
shows the time spent in a routine when it was in a given phaeeif & set of instrumented
routines are called directly or indirectly by a phase, wesd ghe time spent in each of those
routines under the given phase. Since phases may be nesteding may belong to only one
phase. When more than one phase is active for a given rottiejosest ancestor phase of a
routine along its callstack is its phase for that invocatidhe performance data generated can
answer questions such asghat is the total time spent in M PI_Send() when it was invoked in
all invocations of the /0 (IO => M PI_Send()) phase?

3.4. Dynamic phases

Dynamic phases borrow from dynamic timers and static phtmseseate performance data
for all routines that are invoked in a given invocation of agé. If we instrument a routine as a
dynamic phase, creating a unique name for each of its inkmtsatby embedding the invocation
count in the name), we can examine the time spent in all resitamd child phases invoked di-
rectly or indirectly from the given phase. The performanatadjenerated can typically answer
questions such asvhat isthe total time spent in M P1_Send() when it was invoked directly or
indirectly in iteration 24? Dynamic phases are useful for tracking per-iteration pesfibr an
adaptive computation where iterations may differ in th&gaition times.

3.5. Callpaths

In phase-based profiles, we see the relationship betwedéneswand parent phases. Phase
profiles do not show the calling structure between differentines as is represented in a call-
graph. To do so, TAU provides callpath profiling capabititighere the time spent in a routine
along an edge of a callgraph is captured. Callpath profilesgmt the full flat profiles of rou-
tines (or nodes in the callgraph), as well as routines alocejlpath. A callpath is represented
syntactically as a list of routines separated by a delimbe maximum depth of a callpath is
controlled by an environment variable.

4 S. Shende

X callGraph nc.t,0,0,0 - uintahphase/amorristhome/ |B|E||7|
File Options Windows Help
RERREERN L]

Figure 1. Callgraph view of the TAU’s parallel profile of Uatt Computational Framework

3.6. User-defined Events

Besides timers and phases that measure the time spent betywa# of start and stop calls in
the code, TAU also provides support for user-defined atorgots. After an event is registered
with a name, it may be triggered with a value at a given pointhie source code. At the
application level, we can use user-defined events to tragkpthgress of the simulation by
keeping track of application specific parameters that exgleogram dynamics, for example,
the number of iterations required for convergence of a s@tveach time step, or the number
of cells in each iteration of an adaptive mesh refinementicgupdn.

4. Case Study: Uintah

We have applied TAU’s profiling capabilities to evaluate peeformance of the Uintah com-
putational framework (UCF) [2]. The case study simulatea@ped metal cylinder filled with
high-energy material and suspended above a pool of hydrosduel burning with an open
flame. Energy from the flame is transported through the metaider to the high-energy
material, causing it to undergo complex chemical changesid S8eformations, deterioration
and cracking occur in both the cylinder and the high-energyennal as pressure within the
cylinder builds, eventually leading to rupture and detamat To implement this simulation, a
CFD component that simulates hydrocarbon combustion aaxdam,t transport is coupled with
a component that uses the material point method (MPM) to lsiteihe mechanics of solid
deformation and energy transport within the cylinder.

The TAU profiling strategy for Uintah is to observe the pemi@ance of the framework at
the level of patches, the unit of domain partitioning. Thus,instrument UCF with dynamic
phases where the phase name contains the patch identifgarreFi shows the performance

Performance Evaluation of Adaptive Scientific Applicasarsing TAU 5

data obtained from the simulation as displayed by Paraludhis profile, we can distinguish
the time taken by a computation “task’ (such as MPM::IntéafeParticlesToGrid) when it was
executed within a given patch. It shows the callgraph of simsulation where the width of
each node is mapped to the inclusive time spent in that reulihe color of the box shows the
exclusive time spent in that routine (blue represents a lost,ced a high cost). As seen in this
ParaProf figure, we can partition the time spent in differeatines based on the calling phase.
The full paper will show other parallel profile displays theghlight features of TAU’s phase
based profiling.

Besides the Uintah computational framework, TAU has beelieg successfully to sev-
eral frameworks that are used for computational fluid dymansimulations. These include
VTF from Caltech, MFIX from NETL, ESMF coupled flow applicati from UCAR, NASA
and other institutions, SAMRAI from LLNL, Miranda from LLNLGrACE from Rutgers Uni-
versity, SAGE from SAIC, and Flash2 from University of Clgca Though the nature of in-
strumentation and the performance data presented from Ti#dsgiin each framework, our full
paper will show examples of how TAU is applied in these frams. Our work in performance
evaluation of adaptive scientific computations can be bycaaplied to other CFD codes. Thus,
CFD frameworks can benefit from the integration of portal@égrmance profiling and tracing
support using TAU.

5. Conclusions

When studying the performance of scientific applicatiospeegially on large-scale parallel
systems, there is a strong preference among developerswogpérformance information with
respect to their “mental” model of the application, formeahfi the structural, logical, and nu-
merical models used in the program. If the developer canerglarformance data measured
during execution to what they know about the applicationievedfective program optimization
may be achieved. In this paper, we present portable perfozenavaluation techniques in the
context of the TAU performance system and its applicatiotméoUintah computational frame-
work. We illustrate how phase based profiling may be effetyivsed to bridge the semantic
gap in comprehending the performance of parallel scierggijgications using techniques that
map program performance to higher level abstractions.

REFERENCES

1. A.D. Malony and S. Shende and R. Bell and K. Li and L. Li andTikebon, “Advances
in the TAU Performance System,” Chapter, “Performance ysialand Grid Computing,”
(Eds. V. Getoy, et. al.), Kluwer, Norwell, MA, pp. 129-144)03.

2. J.D. de St. Germain and J. McCorquodale and S.G. Parke€ &dJohnson, “Uintah: A
Massively Parallel Problem Solving Environment,” NinthHE International Symposium
on High Performance and Distributed Computing, IEEE, pp-433 2000.

3. R.Bell and A. D. Malony and S. Shende, “A Portable, Extelesiand Scalable Tool for
Parallel Performance Profile Analysis,” Proc. EUROPAR 2068ference, LNCS 2790,
Springer, pp. 17-26, 2003.

4. TAU Portable Profiling. URL: http://www.cs.uoregon.éasearch/paracomp/tau, 2005.

