
PERFORMANCE TECHNOLOGY FOR COMPLEX PARALLEL AND

DISTRIBUTED SYSTEMS

ALLEN D. MALONY∗ AND SAMEER SHENDE

Abstract. The ability of performance technology to keep pace with the growing complexity
of parallel and distributed systems will depend on robust performance frameworks that can at once
provide system-specific performance capabilities and support high-level performance problem solving.
The TAU system is offered as an example framework that meets these requirements. With a flexible,
modular instrumentation and measurement system, and an open performance data and analysis
environment, TAU can target a range of complex performance scenarios. Examples are given showing
the diversity of TAU application.

Key words. performance tools, complex systems, instrumentation, measurement, analysis

1. Introduction. Modern parallel and distributed computing systems present
both a complex execution environment and a complex software environment that tar-
get a broad set of applications with a range of requirements and goals, including high-
performance, scalability, heterogeneous resource access, component interoperability,
and responsive interaction. The execution environment complexity is being fueled
by advances in processor technology, shared memory integration, clustering architec-
tures, and high-speed inter-machine communication. At the same time, sophisticated
software systems are being developed to manage the execution complexity in a way
that makes available the potential power of parallel and distributed platforms to the
different application needs.

Fundamental to the development and use of parallel and distributed systems is
the ability to observe, analyze, and understand their performance at different levels
of system implementation, with different performance data and detail, for different
application types, and across alternative system and software environments [7]. How-
ever, the growing complexity of parallel and distributed systems challenge the ability
of performance technologists to produce tools and methods that are at once robust
and ubiquitous. On the one hand, the sophistication of the computing environment
demands a tight integration of performance observation (instrumentation and mea-
surement) technology optimized to capture the requisite information about the system
under performance access, accuracy, and granularity constraints. Different systems
will require different observation capabilities and technology implementations spe-
cific to system features. Otherwise restricting technology to only a few performance
observation modes severely limits performance problem solving in these complex en-
vironments.

On the other hand, application development environments present programming
abstractions that hide the complexity of the underlying computing system, and are
mapped onto layered, hierarchical runtime software optimized for different system
platforms. While providing application portability, a programming paradigm also
defines an implicit model of performance that is made explicit in a particular system
context. System-specific performance data must be mapped to abstract, high-level
views appropriate to the performance model. The difficult problem is to provide such
a performance abstraction uniformly across the different computing systems where
the programming paradigm may be applied. This requires not only a rich set of

∗Department of Computer and Information Science, University of Oregon, Eugene, OR, USA,
{malony,sameer}@cs.uoregon.edu.

1

2 A.D. MALONY AND S. SHENDE

Fig. 2.1. Execution model supported by the TAU Performance System

observation capabilities that can provide consistent relevant performance information,
but a high degree of flexibility in how tools are configured and integrated to access
and analyze this information. Without this ability, common performance problem
solving methodologies and tools that support them will not be available.

In this paper, we propose an approach to performance technology development for
complex parallel and distributed systems. This approach is based on a general complex
systems computation model and a modular performance observation and analysis
framework. The computation model, discussed in §2, defines a hierarchical execution
architecture reflecting dominant features of modern systems and the layers of software
available. The TAU performance framework is presented in §3 as an example of a
flexible, configurable, and extensible performance tool system for instrumentation,
measurement, and analysis. TAU’s ability to address complex system performance
requirements is demonstrated in §4 using examples drawn from MPI, multi-threading,
mixed-mode parallelism, and combined task/data parallelism performance studies.
We conclude the paper with an outlook towards open performance technology as a
plan for developing next-generation performance tools.

2. A General Computation Model. To address the dual goals of performance
technology for complex systems – robust performance capabilities and widely avail-
able performance problem solving methodologies – we need to contend with problems
of system diversity while providing flexibility in tool composition, configuration, and
integration. One approach to address these issues is to focus attention on a sub-class
of computation models and performance problems as a way to restrict the perfor-
mance technology requirements. The obvious consequence of this approach is limited
tool coverage. Instead, our idea is to define an abstract computation model that
captures general architecture and software execution features and can be mapped
straightforwardly to existing complex system types. For this model, we can target
performance capabilities and create a tool framework that can adapt and be optimized
for particular complex system cases.

Our choice of general computation model must reflect real computing environ-
ments. The computational model we target was initially proposed by the HPC++

3

consortium [4] and is illustrated in Figure 2.1. Two combined views of the model are
shown: a physical (hardware) view and an abstract software view. In the model, a
node is defined as a physically distinct machine with one or more processors sharing
a physical memory system (i.e., a shared memory multiprocessor (SMP)). A node
may link to other nodes via a protocol-based interconnect, ranging from proprietary
networks, as found in traditional MPPs, to local- or global-area networks. Nodes
and their interconnection infrastructure provide a hardware execution environment
for parallel software computation. A context is a distinct virtual address space within
a node providing shared memory support for parallel software execution. Multiple
contexts may exist on a single node. Multiple threads of execution, both user and
system level, may exist within a context; threads within a context share the same
virtual address space. Threads in different contexts on the same node can interact
via inter-process communication (IPC) facilities, while threads in contexts on differ-
ent nodes communicate using message passing libraries (e.g., MPI) or network IPC.
Shared-memory implementations of message passing can also be used for fast intra-
node context communication. The bold arrows in the figure reflect scheduling of
contexts and threads on the physical node resources.

3. The TAU Performance System Framework. The computation model
above is general enough to apply to many high-performance architectures as well
as to different parallel programming paradigms. Particular instances of the model
and how it is programmed defines requirements for performance tool technology. For
any performance problem, a performance framework to address the problem should
incorporate:

• an instrumentation model defining how and when performance information is
made available;

• a performance measurement model defining what performance information is
captured and in what form;

• an execution model that relates measured events with each other;
• a data analysis model specifying how data is to be processed;
• a presentation model for performance viewing; and
• an integration model describing how performance tool components are con-
figured and integrated.

The performance framework and the models therein must be realized by tools imple-
mented in the particular computational environment where the performance problem
solving will be done. We have developed the TAU performance framework as an
integrated toolkit for performance instrumentation, measurement, and analysis for
parallel, multithreaded programs that attempts to target the general complex system
computation model while allowing flexible customization for system-specific needs.

The TAU performance framework [16] is shown in Figure 3.1. It is composed of
instrumentation, measurement, and analysis and visualization phases. TAU imple-
ments a flexible instrumentation model that allows the user to insert performance
instrumentation calling the TAU measurement API at several levels of program com-
pilation and execution stages. The instrumentation identifies code segments, provides
mapping abstractions, and supports multi-threaded and message passing parallel ex-
ecution models. Instrumentation can be inserted manually, or automatically with
a source-to-source translation tool, such as implemented by the Program Database
Toolkit (PDT) [22] program analysis facility. When the instrumented application is
compiled and executed, profiles or event traces are produced. TAU can use wrapper
libraries to perform instrumentation when source code is unavailable for instrumen-

4 A.D. MALONY AND S. SHENDE

Fig. 3.1. Architecture of TAU Performance System

tation. TAU uses existing wrapper capabilities when possible, such as in the case
of MPI’s profiling interface. Instrumentation can also be inserted at runtime, prior
to execution, using the dynamic instrumentation system DyninstAPI [3, 11] or at
the virtual machine level, using language supplied interfaces such as the Java Virtual
Machine Profiler interface [19, 20].

The instrumentation model interfaces with the measurement model. TAU’s mea-
surement model is sub-divided into a high-level performance model, that determines
how events are processed, and a low-level measurement model, that determines what
system attributes are measured. The measurement captures data for functions, meth-
ods, basic blocks, and statement execution. Profiling and tracing are the two mea-
surement choices that TAU allows. The measurement API lets measurement groups
be defined for organizing and controlling instrumentation. The measurement library
also supports the mapping of low-level execution measurements to high-level execu-
tion entities (e.g., data parallel statements) so that performance data can be properly
assigned. Performance experiments can be composed from different measurement
modules, including ones that can measure the wall-clock time, the CPU time, or pro-
cessor specific activity using non-intrusive hardware performance monitors available
on most modern processors; TAU can access both Performance Counter Library [14]
and Performance API [23] portable hardware counter interfaces. Based on the com-
position of modules, an experiment could easily be configured to measure the profile
that shows the inclusive and exclusive counts of secondary data cache misses asso-
ciated with basic blocks such as routines, or a group of statements. By providing a

5

flexible measurement infrastructure, a user can experiment with different attributes
of the system and iteratively refine the performance characterization of a parallel
application.

The TAU data analysis and presentation models are open. Although TAU comes
with both text-based and graphical tools to visualize the performance data collected
[21], it provides bridges to other third-party tools (e.g., Vampir [12]) for more sophis-
ticated analysis and visualization. The performance data format is documented and
TAU provides tools that illustrate how this data can be converted to other formats
[21].

An important component of the performance model presented in a tool is how its
integration model provides composition and integration of its different components.
The modules must provide well-defined interfaces that are easy to extend. The nature
and extent of cooperation between modules that may be vertically and horizontally
integrated in the distinct layers defines the degree of flexibility of the measurement
system. The integration support in TAU has enabled the performance system to be
ported to a diverse set of machine platforms, languages, runtime systems, thread and
communication libraries, and application frameworks. It has also allowed TAU to
incorporate performance technology of other groups, leveraging functionality to give
TAU added capabilities (e.g., using the DyninstAPI [11] for dynamic instrumentation)
or access to performance events that can be merged with TAU’s mechanisms (e.g.,
using PAPI [23] to get to hardware performance data and high-resolution timing
data). The configuration of available TAU capabilities is the final integration aspect
to emphasize. Applied performance investigation depends on creating experiments
that capture the type and amount of performance data needed for analysis during
performance problem solving. The TAU performance system offers configuration and
selection throughout, and this will continue to be important in its evolution and future
application.

3.1. TAU Status. The success of the TAU performance system thus far has
been primarily due to the benefits of targeting the TAU performance technology to
the general computation model and integrating the technology within the framework
architecture. TAU functionality is governed, therefore, primarily by how performance
observation requirements are addressed at an abstract computation level, allowing
system-dependent implementation to be concerned with how efficiently the observa-
tion of abstract performance events is supported for a specific platform. The outcome
has been broad availability of TAU technology across:

• system platforms - including IBM, Sun, SGI, Compaq, HP, Intel/Compaq
Linux clusters, IA-32, IA-64, Cray T3E, Windows;

• languages - C, C++ [16], Fortran 77/90, Java [17];
• thread packages - Pthreads, OpenMP, Windows, Java, SMARTS [24];
• communications libraries - MPI [8], PVM, Tulip [2];
• compilers - KAI, PGI, IBM, Sun, SGI, Compaq, HP, Cray, Fujitsu, Mi-
crosoft, GNU; and

• application libraries and frameworks - SMARTS [24], POOMA [15],
PETE [10], A++/P++ [13].

In addition, TAU has been able to integrate effectively technology from other
projects: DyninstAPI [3], PCL [14], PAPI [23], Vampir [12], and PDT [22]. The suc-
cesses of TAU also represent its opportunity for enhancement. TAU’s architecture will
likely need extending, especially to better support dynamic performance measurement

6 A.D. MALONY AND S. SHENDE

and adaptive performance control. Plus, the general computational model may need
further sophistication. Nevertheless, we believe the TAU system as a whole captures
general observational and analysis techniques and components that are foundational
in general performance technology evolution.

4. Performance Scenarios. When one considers the robustness and availabil-
ity goals for any performance technology it should necessarily be done with respect to
the performance observation and analysis requirements of the performance problems
being addressed. In general, one can view these requirements with respect to three
performance axes:

• Where do we want to observe performance and where is it possible to do so
(in the program, in the system software, and in the hardware)?1

• When do we want to generate or access performance data, and when is it
possible or necessary to do so?

• How do we choose performance observation alternative based on what per-
formance data needed?

Fundamental to this where/when/how perspective is the concept of performance events
and their associated performance semantics. Performance events can be common (low-
level) events with simple performance semantics, such as routine entry and exit events,
message communication events, or threading events, or most abstract (higher-level)
events that have more complex semantics, requiring more sophisticated performance
observation techniques. Associated with performance events are application-level
metrics, such as routine execution time, message size, and synchronization counts,
as well as system-specific performance data that might be obtained from hardware
performance monitors or OS services. Given the diversity of performance problems,
evaluation methods, and types of events and metrics, the instrumentation and mea-
surement mechanisms needed to support performance observation should be flexi-
ble, to give maximum opportunity for configuring performance experiments to meet
where/when/how objectives, and portable, to allow consistent cross-platform perfor-
mance problem solving.

Our claim is that TAU provides both a robust and a widely applicable perfor-
mance technology framework for complex parallel and distributed systems. This sec-
tion presents selected performance scenarios that demonstrate that TAU can offer
effective technology across complex systems types. Underlying our discussion are the
general issues raised above. The main point to highlight is TAU’s ability to support
different high-level performance problem solving requirements via system specific in-
strumentation, measurement, and analysis.

4.1. SPMD Parallelism and Message Passing. Parallel programming on
distributed memory computer systems is commonly of a SPMD style supported by
portable message passing libraries. While the SPMD model provides a “single pro-
gram” view towards application-level performance events, inter-node performance in-
teractions are captured by message communication events. Application instrumenta-
tion in this case is facilitated by TAU’s macro-based soure-level instrumentation and
compile-time measurement configuration. However, instrumentation at the source
level is not possible without access to the source code. A convenient mechanism to
get around this problem with libraries (e.g., a message communication library) is in

1The where axis can be regarded as relating to issues of spatial visibility, while the when axis
involves issues of temporal visibility.

7

Fig. 4.1. TAU profile browser displays for NAS Parallel Benchmark LU running on 4
processors

the use of a wrapper interposition library. Here, the library designer provides alterna-
tive entry points for some or all routines, allowing a new library to be interposed that
reimplements the standard API with routine entry and exit instrumentation, calling
the native routine in between.

Requiring that such profiling hooks be provided in a standardized library before
an implementation is considered ”compliant” forms the basis of an excellent model
for developing portable performance profiling tools for the library. Parallel SPMD
programs are commonly implemented using a message passing library for inter-node
communication, such as MPI. The MPI Profiling Interface [8] provides a convenient
mechanism to profile message communication. This interface allows a tool developer
to interface with MPI calls without modifying the application source code, and in
a portable manner that does not require a vendor to supply the proprietary source
code of the library implementation. A performance tool can provide an interposition
library layer that intercepts calls to the native MPI library by defining routines with
the same name (e.g., MPI Send). These routines can then call the name-shifted native
library routines provided by the MPI profiling interface (e.g., PMPI Send). Wrapped
around the call is performance instrumentation. The exposure of routine arguments
allows the tool developer to also track the size of messages, identify message tags or
invoke other native library routines, for example, to track the sender and the size of
a received message, within a wild-card receive call.

TAU uses the MPI profiling interface for performance profiling and tracing of mes-
sage communication events; several other tools also use the interface for tracing (e.g.,
Upshot [1] and Vampir [12]). Below is the interposition wrapper for the MPI send
routine with TAU entry and exit instrumentation:

8 A.D. MALONY AND S. SHENDE

int MPI_Send(buf, count, datatype, dest, tag, comm)

void * buf; int count; MPI_Datatype datatype;

int dest; int tag; MPI_Comm comm;

{

int retval, typesize;

TAU_PROFILE_TIMER(tautimer, ‘‘MPI_Send()’’, ‘‘ ‘‘,

TAU_MESSAGE);

TAU_PROFILE_START(tautimer);

if (dest != MPI_PROC_NULL) {

PMPI_Type_size(datatype, &typesize);

TAU_TRACE_SENDMSG(tag, dest, typesize*count);

}

retval = PMPI_Send(buf, count, datatype, dest, tag, comm);

TAU_PROFILE_STOP(tautimer);

return returnVal;

}

Notice the TAU instrumentation for the start and stop events surrounding the call to
PMPI Send.

Figure 4.1 shows the profile of the NAS Parallel Benchmark LU suite written in
Fortran using TAU’s MPI profiling wrapper. The TAU graphical profile display tool,
Racy, shows the execution of four processes and the timing of MPI events on each
process. (Here, a “process” maps to a single node with one context and one thread of
execution.) Notice the integration of communication events with routine performance
information. Routine profiles can be shown for each process (e.g., process 1 ≡ n,c,t
1,0,0) and the performance of individual routines (e.g., MPI Recv) can be listed for
all processes.

Because the MPI wrapper instrumentation targets TAU’s measurement API, it is
possible to configure the measurement system to capture various types of performance
data, including system and hardware data, as well as switch between profiling and
tracing. In addition, TAU’s performance grouping capabilities allows MPI event to be
presented with respect to high-level categories such as send and receive types. These
performance configurations can done without change to the source- and wrapper-level
instrumentation.

4.2. Multi-Threaded Systems and Java. Multi-threaded systems and appli-
cations present a more complex environment for performance tools due to the different
forms and levels of threading and the greater need for efficient instrumentation. How
to determine thread identity, how to store per-thread performance data, and how to
provide synchronized and consistent update and access to the data are some of the
questions that must be addressed. TAU provides modules that interface with system-
specific thread libraries and member functions for thread registration, thread identi-
fication, and mutual exclusion for locking and unlocking runtime performance data
structures. This allows the measurement system to work with different thread pack-
ages (e.g., pthreads, Windows threads, and Java threads), as well as special-purpose
thread libraries (e.g., SMARTS [24] and Tulip [2]) while maintaining a common mea-
surement model. Because TAU targets a general threading model, it can extend its
common thread layer to provide well-defined core functionality for each new thread
system.

We chose the Java language to demonstrate TAU’s application in multi-threaded
systems since it utilizes both user-level and system-level threads and involves the

9

Fig. 4.2. TAU instrumentation for Java source, virtual machine, and mpiJava packa ges

additional complexity of virtual machine execution. Performance instrumentation
and measurement of multi-threaded interpreted programs such as Java pose several
difficulties. Because Java programs are compiled to a platform independent byte-code
that is interpreted by a Java Virtual Machine (JVM), a performance system must
interface to the JVM to capture performance events, but still make measurements
as efficiently as possible. This may be difficult to do portably in the presence of
just-in-time (JIT) compilation and runtime adaptive optimizations, as realized by
state-of-the-art JVM implementations, such as realized in the Sun Hot-Spot Virtual
Machine[25]. Furthermore, it can become difficult to associate virtual machine state
with actual system state to record performance measurements accurately.

Conveniently, Java 2 (JDK1.2+) incorporates the Java Virtual Machine Profiler
Interface (JVMPI) [19, 20] which we have used for our work in TAU [17]. JVMPI
provides profiling hooks into the virtual machine and allows a profiler agent to in-
strument the Java application without any changes to the source code, bytecode, or
the executable code of the JVM. JVMPI provides a wide range of events that it can
notify to the agent, including method entry and exit, memory allocation, garbage
collection, and thread start and stop; see the Java 2 reference for more information.
When the profiler agent is loaded in memory, it registers the events of interest and
the address of a callback routine to the virtual machine using JVMPI. When an event
takes place, the virtual machine thread generating the event calls the profiler agent
callback routine with a data structure that contains event specific information. The
profiling agent can then use JVMPI to get more detailed information regarding the
state of the system and where the event occurred.

Figure 4.2 describes how JVMPI is used by TAU for performance measurement.2

2The figure shows both how JVMPI is used by TAU for performance measurement of Java events,
as well as how performance measurement of native libraries (e.g., the MPI library) is integrated in

10 A.D. MALONY AND S. SHENDE

The TAU measurement library is compiled into a dynamic shared object which is
loaded in the address space of the virtual machine. An initialization routine specifies
a mapping of events that are of interest to the performance system and registers a
TAU interface that will be called when the events occur. It stores the identity of the
virtual machine and requests the JVM to notify it when a thread starts or terminates,
a class is loaded in memory, a method entry or exit takes place, or the JVM shuts
down. When a class is loaded, TAU examines the list of methods in the class and
creates an association of the name of the method and its signature, as embedded
in the TAU object, with the method identifier obtained, using the TAU Mapping
API (see the TAU User’s Guide [21]). When an event is triggered, event specific
information is passed to the TAU interface routine by the virtual machine. When a
method entry takes place, TAU performs measurements and correlates these to the
TAU object corresponding to the method identifier that it receives from JVMPI. TAU
identifies the thread in which the event takes place and uses the Java thread interface
to maintain per-thread performance data. TAU classifies all method names and their
signatures into higher level profile group names, such as for different Java packages
(/lang, /io, /awt, etc.).

To deal with Java’s multi-threaded environment, TAU uses a common thread
layer for operations such as getting the thread identifier, locking and unlocking the
performance database, getting the number of concurrent threads, etc. This thread
layer is then used by the multiple instrumentation layers. When a thread is created,
TAU registers it with its thread module and assigns an integer identifier to it. It
stores this in a thread-local data structure using the JVMPI thread API described
above. It invokes routines from this API to implement mutual exclusion to maintain
consistency of performance data. It is important for the profiling agent to use the
same thread interface as the virtual machine that executes the multi-threaded Java
applications. This allows TAU to lock and unlock performance data in the same
way as application level Java threads do with shared global application data. TAU
maintains a per-thread performance data structure that is updated when a method
entry or exit takes place. Since this is maintained on a per thread basis, it does
not require mutual exclusion with other threads and is a low-overhead scalable data
structure. When a thread exits, TAU stores the performance data associated with
the thread to stable storage. When it receives a JVM shutdown event, it flushes the
performance data for all running threads to the disk.

To demonstrate the efficacy of TAU’s use of JVMPI for Java, we downloaded a
collaborative client-server scientific visualization system, Scivis [5], written entirely
in Java. With no modification to the Java source code, we ran the Scivis server
with TAU performance measurements enabled, generating the per-thread execution
profile shown in Figure 4.3 for different methods across different Java packages. A
total of twenty-four threads executed in this run of Scivis. Notice that some of the
threads (0-3) are performing system functions for the JVM while others (4, 5, and
9) are performing user tasks. As before, it is a simple matter of loading a different
measurement library to capture a performance trace instead of statistical profiles.

4.3. Mixed-Mode Parallelism. Increasingly, scalable parallel systems are be-
ing designed as clusters of shared memory multi-processors (SMPs). These systems
support what is referred to as “mixed-model parallelism” where multi-threaded shared

a Java execution environment by TAU. This is discussed in more detail in [17] and demonstrated in
§4.3.2.

11

Fig. 4.3. TAU profiles the multi-threaded Java visualization application using JVMPI

memory programming is used within the SMP and message passing (MPI or some
other inter-process communication package) is used for communication between SMP
nodes. A key problem for performance tools in mixed-mode environments is the need
to maintain multiple performance views (shared memory and message communica-
tion) and relationships between views. Performance instrumentation specific to both
models can be combined from their individual implementations, but there must be
a transposition (i.e., mapping) of each model’s performance information into a joint
composite observation. Not only is access needed to events in the thread runtime
systems and communication layers, but it is necessary at times to associate the oc-
currence of these events to one another.

4.3.1. OpenMP and MPI. Because TAU supports a general parallel compu-
tation model, it can configure the measurement system to capture both thread and
communication performance information. We have demonstrated the ability to form
an integrated performance measurement for applications that use OpenMP for shared
memory parallel programming and MPI for cross-node message-based parallelism.
Figure 4.4 shows a performance trace of a ocean circulation application based on a
2D Stommel model using Jacobi iteration on a 5-point stencil. Notice the integrated
identification of OpenMP and MPI events. Also, we can see parallel thread execution
(“Process i” in the figure) interposed between regions of message communication con-
ducted by the main threads (“Process 0” in the figure). The Vampir timeline display

12 A.D. MALONY AND S. SHENDE

Fig. 4.4. Mixed-mode OpenMP / MPI execution trace of ocean circulation application

at the bottom shows that the main thread on Node 0 spends the majority of its time
in communication.

To observe hardware performance for the parallel OpenMP sections of the com-
putation, we can switch the TAU measurement system without change to the instru-
mentation. Figure 4.5 shows the performance profile of floating-point instructions. In
comparing the main thread (labeled n,c,t 0,0,0) with thread 1 (labeled n,c,t 0,0,1),
we can see that the floating-point operations are the same for the OpenMP Parallel
for region and the do jacobi routines, but the main thread calculates do force alone
as well as performs all communication.

4.3.2. Java and MPI. We have also demonstrated TAU’s use for mixed-mode
parallelism with multi-threaded Java programs using the mpiJava [9] package. While
mpiJava relies on the existence of native MPI libraries, its API is implemented as a
Java wrapper package that uses C bindings for MPI routines. The integrated instru-
mentation for this scenario is portrayed in Figure 4.2. However, instrumentation of
multi-threaded MPI programs poses some challenges for tracking inter-thread message
communication events, especially in the case where threads are managed by a virtual
machine. MPI is unaware of threads (Java threads or otherwise) and communicates
solely on the basis of rank information. Each process (i.e., context) that participates
in synchronization operations has a rank. However, all threads within the process

13

Fig. 4.5. Mixed-mode OpenMP / MPI execution profile of ocean circulation application
with floating-point counts

share the same rank. For a message send operation, we can track the sender’s thread
by querying the underlying thread system and we can track the receiver’s thread like-
wise. For the JVM, this requires TAU to call into JVMPI across the Java Native
Interface (JNI) boundary.

Unfortunately, there still exists a problem with MPI communication between
threads in that the sender doesn’t know the receiver’s thread id and vice versa. To
accurately represent a message on a global timeline, we need to determine the precise
node and thread on both sides of the communication, either from information in the
trace file or from semantic analysis of the trace file. To avoid additional messages
to exchange this information at runtime or to supplement messages with thread ids,
matching sends and receives is best reserved to the post-mortem trace conversion
phase. Trace conversion takes place after individual traces from each thread are
merged. The merged trace is a time ordered sequence of events (such as sends, receives,
routine transitions, etc.). Each event record has a timestamp, location information
(node, thread) as well as event specific data (such as message size, and tags). When
a send is encountered, we search for a corresponding receive operation by traversing
towards the end of the trace file and matching the receiver’s rank, message tag and
message length. When a match is found, the receiver’s thread id is obtained and a
trace record containing the sender and receiver’s node, thread ids, message length,
and a message tag can be generated. The matching works in a similar fashion when
we encounter a receive record, except that we traverse the trace file in the opposite
direction, looking for the corresponding send event.

In Figure 4.6 we see a performance trace of a mixed-mode Java/mpiJava appli-

14 A.D. MALONY AND S. SHENDE

Fig. 4.6. Mixed-mode Java / MPI execution profile of a game of life application

cation simulating the game of Life. A total of twenty-eight threads are executing
across four nodes. The integrated events are seen as before, as well as the grouping
of events. Our thread message matching algorithm was applied to correctly visualize
the message pairing.

4.4. Hybrid Parallelism. More sophisticated forms of mixed-mode parallelism
are possible when software layers are built to hide the intricacies of efficient communi-
cation or data distribution, presenting a compiler backend or an application program-
mer with a set of well-defined, portable interfaces for general parallel programming.
In some cases, these layers involve a mixing of languages, libraries, runtime software,
and application components to create a “hybrid” parallel development environment
that enables higher-level or hierarchical parallel programming abstractions to be used.
This poses a challenge to performance tools to not only work with the different parts
involved, but also to map performance data to the parallel execution abstractions and
user-level performance views.

We’ve used TAU to investigate task and data parallel execution in the Opus/HPF
programming system [6]. Figure 4.7 shows a Vampir display of TAU traces generated
from an application written using HPF for data parallelism and Opus for task par-
allelism. The HPF compiler produces Fortran 90 data parallel modules which can
execute on multiple processes. The processes interoperate using the Opus runtime
system built on MPI and pthreads. In systems of this type, it is important to be able
to see the influence of different software levels. TAU is able to capture performance
data at different parts of the Opus/HPF system exposing the bottlenecks within and

15

Fig. 4.7. Vampir displays for TAU traces of an Opus/HPF application using MPI and
pthread

between levels.

5. Conclusions. To be at once robust and ubiquitous, TAU attempts to solve
performance technology problems at levels where performance analysis system solu-
tions can be configured and integrated to target specific performance problem solving
needs. TAU has been developed based on the principle that performance technology
should be open, easy to extend, and able to leverage external functionality. The com-
plex system case studies presented here is but a small sample of the range of TAU’s
potential application [21].

In rapidly evolving parallel and distributed systems, performance technology can
ill-afford to stand still. A performance technologist always operates under a set of
constraints as well as under a set of expectations. While performance evaluation of
a system is directly affected by what constraints the system imposes on performance
instrumentation and measurement capabilities, the desire for performance problem
solving tools that are common and portable, now and into the future, suggests that
performance tools hardened and customized for a particular system platform will be
short-lived, with limited utility. Similarly, performance tools designed for constrained
parallel execution models will likely have little use to more general parallel and dis-

16 A.D. MALONY AND S. SHENDE

tributed computing paradigms. Unless performance technology evolves with system
technology, a chasm will remain between the users expectations and the capabilities
that performance tools provide. The challenge for the TAU system in the future
is to maintain a highly configurable tool architecture while not arbitrarily enforcing
constraining technology boundaries.

Acknowledgments. This work was supported in part by a U.S. Department of
Energy DOE 2000 / ACTS grant (No. DEFC 0398 ER 259986), a DOE ASCI Level
3 grant (No. 03588-001-99 4R), and an NSF National Young Investigator award.

REFERENCES

[1] Argonne National Laboratory, “The Upshot program visualization system,” URL: http://www-
fp.mcs.anl.gov/̃lusk/upshot/.

[2] P. Beckman and D. Gannon, “Tulip: A Portable Run-Time System for Object Parallel Sys-
tems,” Tenth International Parallel Processing Symposium, August 1996.

[3] B. Buck and J. Hollingsworth, “An API for Runtime Code Patching,” Journal of High Perfor-
mance Computing Applications, Vol. 14, No. 4, pp. 317–329, Winter 2000.

[4] HPC++ Working Group, “HPC++ White Papers,” Technical Report TR 95633, Center for
Research on Parallel Computation, 1995.

[5] B. Ki and S. Klasky, “Scivis,” ACM Workshop on Java for High-Performance Network Com-
puting, February 1998.

[6] E. Laure, P. Mehrotra, H. Zima, “Opus: Heterogeneous Computing With Data Parallel Tasks,”
Parallel Processing Letters, Vol. 9, No. 2, pp. 275–289, June 1999.

[7] A. Malony, “Tools for Parallel Computing: A Performance Evaluation Perspective,” in J.
Blazewicz, K. Ecker, B. Plateau, D. Trystram (Eds.), Handbook on Parallel and Dis-
tributed Processing, Springer, pp. 342–363, 2000.

[8] Message Passing Interface Forum, “MPI: A Message Passing Interface Standard,” International
Journal of Supercomputer Applications, Special issue on MPI, 1994.

[9] M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim, “mpiJava: An Object-Oriented Java
Interface to MPI,” International Workshop on Java for Parallel and Distributed Computing,
IPPS/SPDP 1999, April 1999.

[10] S. Haney, J. Crotinger, S. Karmesin, and S. Smith, “PETE, the Portable Expression Template
Engine,” Los Alamos National Laboratory, Technical Report, LA-UR-99-777, published in
Dr. Dobbs Journal, October 1999.

[11] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K. Kunchitha-
padam, and T. Newhall. “The Paradyn Parallel Performance Measurement Tools,” IEEE
Computer, Vol. 28, No. 11, pp. 37–46, November 1995.

[12] Pallas, “VAMPIR - Visualization and Analysis of MPI Resources,” 2000. URL:
http://www.pallas.de/pages/vampir.htm.

[13] R. Parsons and D. Quinlan, “A++/P++ Array Classes for Architecture Independent Finite
Difference Computations,” OONSKI, pp. 408-418, 1994.

[14] Research Center Juelich GmbH, “PCL - The Performance Counter Library,” URL:
http://www.fz-juelich.de/zam/PCL/.

[15] J. Reynders et al., “POOMA: A Framework for Scientific Simulation on Parallel Architectures,”
in G.V. Wilson and P. Lu (Eds.), Parallel Programming using C++, pp. 553-594, MIT
Press, 1996.

[16] S. Shende, A. Malony, J. Cuny, K. Lindlan, P. Beckman, and S. Karmesin, “Portable Profiling
and Tracing for Parallel Scientific Applications using C++,” Proc. of the SIGMETRICS
Symposium on Parallel and Distributed Tools, pp. 134–145, ACM, August 1998.

[17] S. Shende and A. Malony, “Integration and Application of the TAU Performance System in
Parallel Java Environments,” Joint ACM Java Grande - ISCOPE 2001 Conference, to
appear, June 2001.

[18] SUN Microsystems Inc., “Java Native Interface (JNI),” URL:
http://java.sun.com/products/jdk/1.3/docs/guide/ jni/index.html.

[19] Sun Microsystems Inc., “Java Virtual Machine Profiler Interface (JVMPI),” URL:
http://java.sun.com/products/jdk/1.3/docs/guide/jvmpi/jvmpi.html.

[20] D. Viswanathan and S. Liang, “Java Virtual Machine Profiler Interface,” IBM Systems Journal,
Vol. 39, No. 1, pp. 82–95, 2000.

17

[21] University of Oregon, “TAU User’s Guide,” URL:
http://www.cs.uoregon.edu/research/paracomp/tau/.

[22] K. Lindlan, J. Cuny, A. Malony, S. Shende, B. Mohr, R. Rivenburgh, and
C. Rasmussen, “A Tool Framework for Static and Dynamic Analysis of
Object-Oriented Software with Templates,” Supercomputing 92000. See URL:
http://www.cs.uoregon.edu/research/paracomp/pdtoolkit.

[23] University of Tennessee, “PerfAPI - Performance Data Standard and API,” URL:
http://icl.cs.utk.edu/projects/papi/.

[24] S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger, A. Malony, S. Shende, R. Oldehoeft,
and S. Smith, “SMARTS: Exploiting Temporal Locality and Parallelism through Vertical
Execution,” Los Alamos National Laboratory, Technical Report LA-UR-99-16, 1999.

[25] Sun Microsystems Inc. “The JAVA HotSpot Performance Engine Architecture,” Sun Microsys-
tems White Paper, April 1999. http://java.sun.com/products/hotspot/whitepaper.html

