

Abstract

 Flexibility and portability are important concerns
for productive empirical performance evaluation. We claim
that these features are best supported by robust instrumen-
tation and measurement strategies, and their integration.
Using the TAU performance system as an exemplar perfor-
mance toolkit, a case study in performance evaluation is
considered. Our goal is both to highlight flexibility and
portability requirements and to consider how instrumenta-
tion and measurement techniques can address them. The
main contribution of the paper is methodological, in its
advocation of a guiding principle for tool development and
enhancement. Recent advancements in the TAU system are
described from this perspective.

1 Introduction

The evolution of computer systems and of the
applications that run on them

−

 towards more sophis-
ticated modes of operation, higher levels of abstrac-
tion, and larger scale of execution

−

 challenge the
state of technology for empirical performance evalua-
tion. The increasing complexity of parallel and dis-
tributed systems, coupled with emerging portable
parallel programming methods, demands that empiri-
cal performance tools provide robust performance
observation capabilities at all levels of a system,
while mapping low-level behavior to high-level per-
formance abstractions in a uniform manner. In this
paper, we take aim at the first part of these dual goals

−

 robust

performance observation

−

 and focus specif-
ically on strategies for flexible and portable perfor-
mance instrumentation and measurement.

Performance observation requirements will be
determined by the characteristics of the performance
problem being addressed and the evaluation method-
ology being applied. In general, one can view these
requirements with respect to three instrumentation
and measurement axes:

•

Where

 in the program are performance measure-
ments made (granularity and location) and where is
performance instrumentation possible (program
and system visibility).

•

When

 is performance instrumentation done
(source-level, compile-time, link-time, runtime)
and when are performance measurements enabled.
•

How

 are performance measurements defined and
how are instrumentation alternatives chosen.

Fundamental to this

where/when/how

 perspective is
the concept of performance

events

 and their associ-
ated performance semantics. Performance events can
be common (low-level) events with simple perfor-
mance semantics, such as routine entry and exit
events, message communication events, or threading
events, or most abstract (higher-level) events that
have more complex semantics, requiring more
sophisticated performance observation techniques.
Associated with performance events are application-
level metrics, such as routine execution time, message
size, and synchronization counts, as well as system-
specific performance data that might be obtained
from hardware performance monitors or OS services.

Given the diversity of performance problems,
evaluation methods, and types of events and metrics,
the instrumentation and measurement mechanisms
needed to support performance observation must be

flexible

, to give maximum opportunity for configur-
ing performance experiments to meet where/when/
how objectives, and

portable

, to allow consistent
cross-platform performance problem solving. In gen-
eral, flexibility in empirical performance evaluation
implies freedom in experiment design, and choices in
selection and control of experiment mechanisms.

Using tools that otherwise limit the type and structure
of performance methods will restrict evaluation
scope.

 Portability, on the other hand, looks for com-
mon abstractions in performance methods and how
these can be supported by reusable and consistent
techniques across different computing environments
(software and hardware).

Lack of portable perfor-
mance evaluation environments force users to adopt
different techniques on different systems, even for

Instrumentation and Measurement Strategies for
Flexible and Portable Empirical Performance Evaluation

Sameer Shende, Allen D. Malony, Robert Ansell-Bell
Department of Computer and Information Science

University of Oregon

common performance analysis.

2 Strategies

Flexibility and portability are fundamental
concerns in the development of a robust parallel
performance system [4][8].

We contend that flexi-
bility and portability can best be addressed in the
instrumentation and measurement strategies used
by an empirical performance system

. Moreover, it
is in the integration and combination of strategies
that the full power of a flexible, portable perfor-
mance toolkit can be delivered. For instrumenta-
tion, these strategies include:

•

Source instrumentation.

 Most commonly
used, it best allows language- and program-
level semantics to be associated with perfor-
mance measurements [7][15].

• Compiler instrumentation.

Standard routine
profiling is common, but more sophisticated
techniques handle code transformations and
optimizations [14].
•

Object code instrumentation.

 This typically
takes the form of pre-instrumented libraries and
supports link-time selection of standard mea-
surement functions [15].
•

Executable code (dynamic) instrumentation.

To address concerns of re-compilation and re-

linking, the disabling of optimizations, and
runtime control, this modifies program binary
code during execution [3][11].

Similarly, there are several performance measure-
ment strategies of importance:

•

Statistical profiles of software actions.

 Timing
and counting profiles of program events can be
captured via sampled or direct methods.
•

Statistical profiles of hardware/OS actions.

Performance data of hardware operation can be
captured in association with program actions,
or separately with system performance data.
•

Program event tracing.

Capturing traces of
program events portrays the temporal dynamics
of software and hardware performance.

Clearly, these strategies are well-known, and each
has its advantages and disadvantages. Individu-
ally, any one of these strategies is limited in its
application.

To completely address flexibility and
portability concerns, while maintaining robust
evaluation coverage, an integration of instrumen-
tation and measurement methods is also desired.

3 The TAU Performance System

 Flexibility and portability have been guiding
themes in the development of the TAU perfor-

Figure 1: The TAU Performance Framework Architecture

mance system [9][15]. TAU is based on an inte-
grated framework architecture (see Figure 1) for
performance instrumentation, measurement, and
analysis of parallel, multi-threaded programs.
TAU targets a general complex system computa-
tion model, while allowing flexible customization
for system-specific needs. Multiple instrumenta-
tion and measurement strategies are supported by
TAU. Instrumentation support is available at all
points in the

source-compile-link-execute

 path, as
shown by the dark boxes in the figure. Automated
source instrumentation tools are provided [7] and
the DyninstAPI [3] is used for dynamic instru-
mentation. The integration of instrumentation and
measurement in TAU is achieved in the definition
of a common measurement API that each instru-
mentation mechanism targets. Alternative choices
of timing data are available and hardware perfor-
mance data is accessible through the Performance
Counter Library (PCL) [1] and Performance API
(PAPI) [2] packages. Flexibility is enhanced in
the measurement system through event grouping
and statistics configuration. The measurement
library also supports the mapping of low-level
execution measurements to high-level execution
entities (e.g., data parallel statements) so that per-
formance data can be properly assigned. TAU
supports both profiling and tracing of software
and hardware actions. Profiling and tracing can be
performed at the granularity of threads. Post-exe-
cution analysis tools are available for parallel per-
formance profile and trace visualization (e.g., the
Vampir tool [12] from Pallas GmbH is commonly
used for trace visualization).

4 Performance Case Study

Limitations on flexibility and portability in an
empirical performance system will directly con-
strain the performance evaluation processes that
can be applied using the system. To identify these
limitations when they exist, one might look for
evaluation scenarios where process constraints
arise, and then try to understand their cause. Our
proposition is that instrumentation and measure-
ment strategies, plus their integration and compo-
sition in a performance system, will be prime
determinants of its flexibility and portability, as
defined earlier. In the case study that follows, we
attempt to study these aspects of the TAU perfor-
mance system by considering a sequence of pro-

cess steps for one performance evaluation
example, emphasizing where instrumentation and
measurement strategies (and their limitations)
influence evaluation. Our goal in the study is not
to compare TAU to other systems, but rather to
highlight the benefits that follow from a compre-
hensive and integrative set of techniques. As such,
we report here our experiences and lessons
learned (

a posteriori

) in developing support for
these strategies in TAU, as shortcomings in mech-
anisms and techniques were encountered.

4.1 Evaluation Process and SIMPLE

The process of empirical performance evalua-
tion can be viewed practically as a sequence of

performance experiments

 each describing a set of

experiment trials

 which state necessary instru-
mentation and measurement requirements to
gather performance data for experiment objec-
tives. In this manner, performance behavior is
analyzed from trial results to aid in and guide per-
formance problem solving. Certainly, the program
whose performance is being studied significantly
affects the process of evaluation, in regards to the
sequence of experiments composed and con-
ducted, as well as the characteristics of the trial
requirements. Since our focus here is on instru-
mentation and measurement strategies, for sake of
simplicity, we choose for evaluation the parallel
SIMPLE benchmark, a hydrodynamics and heat
conduction simulation program [6]. The SIMPLE
benchmark is written in C and uses MPI [10] for
message communication.

4.2 Source-Level Instrumentation

A common starting point for evaluation
involves the collection of timing measurements
for significant routines. Choice of instrumentation
technique affects how trials for this experiment
are conducted, but we will begin source-level
instrumentation for all SIMPLE routines using the
TAU measurement library for profiling. Figure 2
shows the timing profile for SIMPLE’s routines
for a four-process execution. The left window
shows the breakdown of inclusive times for each
routines for each MPI process, and the right win-
dow displays bargraphs for process 2.

While source instrumentation obviously
requires re-compilation of the program every time
instrumentation is changed, its advantage comes

from being able to place instrumentation at any
point in the program (as long as source code is
available) and to incorporate source-level pro-
gram knowledge for more sophisticated purposes
(e.g., using routine calling parameters to condi-
tional instrumentation). Source-level instrumenta-
tion in TAU is macro-based, making it also
possible to control instrumentation during compi-
lation. While source instrumentation may be com-
piled to more efficient code, it can easily disable
program optimizations, and certain code optimi-
zations, if not properly tracked, may lead to erro-
neous performance reporting [14].

A convenient mechanism to instrument librar-
ies without source access is to use a

wrapper
interposition library

. If the library designer pro-
vides alternative entry points for some or all rou-
tines, a new library that reimplements the standard
API can be interposed to instrument routine entry
and exit events, calling the associated routine in
between. MPI’s profiling interface [10] operates
in this manner, and we have used it to instrument
the native MPI library with TAU (see Figure 2).
Note, in addition to intercepting calls to library
routines, this strategy can also expose routine
arguments, allowing instrumentation to track the
size of messages, identify message tags, or invoke
other native library routines (e.g., to track the
sender and the size of a received message within a
wild-card receive call).

Source-level instrumentation typically makes
calls to a measurement API (e.g., the TAU API)
whose library is linked to the program. This aids

greatly in portability as the API becomes a com-
mon definition for measurement across platforms.
Flexibility is also enhanced by the ability to link
differently configured libraries. For instance, it is
possible to switch between profiling and tracing
in TAU during program compilation, keeping the
source instrumentation exactly the same, just by
selecting the appropriate measurement library
versions. Figure 3 shows the trace of MPI events
and message communication in the SIMPLE exe-
cution. Views from the Vampir visualization tool
are used.

TAU also provides for hardware measure-
ments in this manner, constructing a measurement
library with hardware counter capabilities from
PCL [1] or PAPI [2], depending on the system
platform. Figure 2 also shows the profiling of
floating point operations for all SIMPLE routines.

4.3 Dynamic Instrumentation

It is clear that a source instrumentation strat-
egy, coupled with configurable measurement
strategies, can be quite powerful. However, there
are several limitations of source-level instrumen-
tation that can impact flexibility. The overhead of
recompilation is undesirable in cases of large pro-
grams, and only source-accessible events are can-
didates for instrumentation. This can be a problem
for system routines and proprietary libraries (ones
not exposing their interfaces for wrapper interpo-
sition). Execution code instrumentation (a.k.a.,

dynamic instrumentation

 or

runtime code-patch-
ing

) offers an effective means of instrumenting an

Figure 2: Source-Instrumented Performance Views of SIMPLE Execution

Execution time profile for
MPI routines during SIM-
PLE execution and break-
down for Process 2

Floating point profile
for SIMPLE routines

Execution time profile
for SIMPLE routines
 and process 2

application when requirements for performance
observation restrict source instrumentation.
Dynamic instrumentation also can be used in the
presence of compiler optimization and instrumen-
tation inserted can be removed during execution.
However, dynamic instrumentation is not a pana-
cea, since it is restricted to certain processor archi-
tectures, requires some sophistication to use with
alternative measurement mechanisms, and will
incur additional runtime overhead.

4.3.1 Using DyninstAPI in TAU

TAU package does not implement dynami-
cally instrumentation internally. Rather, like the
integration of PAPI and PCL technology, the
external DyninstAPI technology is utilized. Dyn-
instAPI [3] is a dynamic instrumentation package
that allows a tool to insert code snippets into a
running program using a portable C++ class
library. For DyninstAPI to be useful with a mea-
surement strategy, calls to a measurement library
(or the measurement code itself) must be correctly
constructed in the code snippets. Our approach for
TAU uses the DyninstAPI to construct calls to the
TAU measurement library and then insert these
calls into the executable code. We do this prior to
execution by a

mutator

 program (

tau_run)

. The
mutator loads a TAU dynamic shared object (the
compiled TAU measurement library) in the
address space of the

mutatee

 (the application pro-
gram). It parses the executable image for symbol
table information and generates the list of mod-
ules and routines within the modules that are
appropriate for instrumentation; TAU routines
and Dyninst modules are excluded from consider-
ation. Using the list of routines and their names,
unique identifiers are assigned to each routine.
The list of routines is then passed as an argument
to a TAU initialization routine that is executed

once by the mutatee (as a one time code). This ini-
tialization routine creates a function mapping
table to aid in efficient performance measurement.
Code snippets are then inserted at entry and exit
transition points in each routine. To allow selec-
tive instrumentation, a list of to-be-instrumented
routine names could be provided to the mutator.

 Following the above dynamic instrumenta-
tion approach, it is possible to derive a TAU pro-
file measurement of execution time for all
SIMPLE routines. This is shown in Figure 4.
Gathering hardware counts is also possible. While
profiling returns summary statistics, it cannot
reveal the dynamic calltree of a process. To do
this, we need to examine event traces. This is pos-
sible with source instrumentation and it is also
possible with dynamic instrumentation by loading
a differently configured TAU measurement
library. Figure 4 shows Vampir callgraph views
for a SIMPLE trace produced from dynamic
instrumentation. Thus, because the TAU dynamic
instrumentation strategy, like source instrumenta-
tion, targets the TAU measurement, it is indepen-
dent of the type of measurements that are
performed. This gives us flexibility in choosing
either tracing and/or profiling. Preconfigured ver-
sions of the TAU library that support a variety of
measurement choices can be chosen as a com-
mand line argument to

tau_run

.

4.3.2 Issues with MPI

The above scheme works well with sequential
programs that are spawned by TAU after inserting
instrumentation. To get the correct performance
data used in Figure 4, we had to solve a more
challenging problem with MPI. MPI programs
execute in a SPMD fashion by spawning multiple
copies of the executable across one or more com-
pute nodes in a network using the program

Figure 3: Trace of SIMPLE using MPI wrapper-based source instrumentation.

mpirun

. If we want to dynamically instrument a
MPI program, when should we do it? There are
three possible choices:

1. use one mutator to instrument the original
executable image before spawning,
2. use an online mutator to instrument the
spawned executable images after they have
started execution, or
3. spawn a mutator with each spawned execut-
able image.

The first approach is effectively a binary
rewriting approach. While Dyninst does not cur-
rently support binary rewriting, the PAT tool for
the Cray T3E [5] does provide this capability and
has been used to analyze MPI programs. The sec-
ond approach is being promoted by

Paradyn

 [11]
and

DPCL

 (Dynamic Probe Class Library) [13].
These systems provide the capability of modify-
ing instrumentation at runtime using a client-
server architecture. There will be additional over-
head to perform instrumentation in this way, but
the flexibility of runtime instrumentation control
may be significant.

Like

Dynaprof

[18], we chose the third
approach because our interest is in dynamic
instrumentation prior to execution. This allows
multiple instrumentors to simultaneously instru-
ment each executable image prior to its execution.
The mutator spawns the mutatee after inserting
TAU annotations and waits for the child process
to terminate.This is accomplished by passing a
shell script to the

mpirun

 process. The shell script
then executes the

tau_run

 and specifies:
• the TAU dynamic shared library to use for
measurement,

• the location of the application (mutatee)
image, and
• any command line arguments that should be
passed to the mutatee.

While this is sufficient to dynamically instru-
ment a MPI program, how does the TAU mea-
surement library know that the executable image
is a MPI program? To generate performance data
for such a parallel application and to distinguish it
from sequential applications, TAU searches for
MPI bindings in the executable image. If these are
found, it instruments the

MPI_Comm_rank

 rou-
tine to find out the global rank of the process
involved in the computation. It passes this infor-
mation to TAU which uses it to store performance
data for each MPI process.

5 Conclusions and Future Work

Parallel performance problem solving
depends on robust systems for empirical perfor-
mance evaluation. Flexbility and portability in
empirical methods and processes are influenced
primarily by the strategies available for instru-
mentation and measurement, and how effectively
they are integrated and composed. In this brief
paper, we have described how the TAU perfor-
mance system works with different instrumenta-
tion and measurement strategies to address
diverse requirements for performance observa-
tion. Our study suggest that the flexbility and
portability of the TAU system is indeed improved
by the integration of these strategies, and special
performance observation problems can be solved
from innovative composition of their features.

There are several empirical performance eval-
uation problems that are still challenging. For

Figure 4: Performance Views from Dynamic Instrumentation of SIMPLE

Execution time pro-
file of SIMPLE rou-
tines and process 2
statistics

Vampir event trace and
callgraph views from SIM-
PLE execution, dynamically
instrumented for tracing

instance, TAU currently supports several thread
packages, including pthreads, OpenMP, Java, and
Windows threads for source and virtual machine
level instrumentation. Extending this support for
threads at the binary instrumentation level
requires higher-level knowledge of the type of
thread system used and thread specific events,
such as thread creation and thread termination.
The Dyninst project is planning to provide thread
support and TAU will be able to utilize this for
more refined threads measurements.

Another area where there is an opportunity for
improvement is in the combination of software
and hardware monitoring. TAU currently restricts
performance experiments to measure a single per-
formance metric: execution time or hardware
counter. However, PAPI [2], for example, pro-
vides support for accessing multiple counter val-
ues. Our next step is to give the TAU user the
ability to record more than one metric for a per-
formance event. This would allow TAU to corre-
late different metrics for a performance
experiment. The challenge to doing so is not
merely in being able to record different perfor-
mance data, but in presenting the performance
data in a coherent manner. The Vampir [12] trace
visualizer is being extended to allow events to be
shown with multiple performance values in time-
line displays. This would permit hardware perfor-
mance counter information to be super-imposed
on the existing global timeline and would high-
light the magnitude, spatial and temporal loca-
tions (when and where), and concentration of
performance features.

6 References

[1] R. Berrendorf, H. Ziegler, “PCL - The Per-
formance Counter Library: A Common Interface
to Access Hardware Performance Counters on
Microprocessors,” TR FZJ-ZAM-IB-9816, Fors-
chungszentrum Juelich (Germany), Oct. 1998.
See

 http://www.fz-juelich.de/zam/PCL/

.
[2] S. Browne, et al., “A Portable Programming
Interface for Performance Evaluation on Modern
Processors,” Int’l. Jour. of High Performance
Computing, 14(3):189-204, Fall 2000.
[3] B. Buck and J. Hollingsworth, “An API for
Runtime Code Patching,” Jour. of High Perfor-
mance Computing Applications, 14(4):317

−

329,
Winter 2000.

[4] L. DeRose et al., “Performance Issues in
Parallel Processing Systems,” Performance Evalu-
ation: Origins and Directions, G. Haring et al.
(Eds.), Springer Verlag, Sept. 1999.
[5] J. Galarowicz, and B. Mohr, “Analyzing
Message Passing Programs on the Cray T3E with
PAT and VAMPIR,” TR IB-9809, ZAM Fors-
chungszentrum Juelich (Germany), May 1998.
[6] C. Lin and L. Snyder, “A portable imple-
mentation of SIMPLE,” Int’l. Jour. of Parallel
Programming, 20(5):363-401, 1991.
[7] K. Lindlan et al. “A Tool Framework for
Static and Dynamic Analysis of Object-Oriented
Software with Templates,” SC’2000, Nov. 2000.
[8] A. Malony, “Tools for Parallel Computing:
A Performance Evaluation Perspective,” Hand-
book on Parallel & Distributed Processing, J.
Bazewicz et al. (Eds.), Springer, pp. 342

−

363,
2000.
[9] A. Malony and S. Shende, “Performance
Technology for Complex Parallel and Distributed
Systems,” Proc. DAPSYS 2000, G. Kotsis and P.
Kacsuk (Eds.), pp. 37

−

46, 2000.
[10] Message Passing Interface Forum, “MPI: A
Message Passing Interface Standard,” Int’l. Jour.
of Supercomputer Applications, Vol. 8, 1994.
[11] B. Miller et al., “The Paradyn Parallel Per-
formance Measurement Tools,” IEEE Computer,
28(11):37

−

46, Nov. 1995.
[12] Pallas, “VAMPIR - Visualization and Analy-
sis of MPI Resources,” 1998.
[13] PTOOLS, “Dynamic Probe Class Library,”
2000. See

http://www.ptools.org/projects/dpcl

.
[14] S. Shende, Ph.D. Thesis, University of Ore-
gon, August 2001.
[15] S. Shende et al., “Portable Profiling and
Tracing for Parallel, Scientific Applications Using
C++,” Proc. SPDT ‘98, pp. 134

−

145, Aug. 1998.
[16] S. Shende and A. Malony, “Integration and
Application of the TAU Performance System in
Parallel Java Environments,” ACM Java Grande /
ISCOPE 2001, June 2001.
[17] University of Oregon, “TAU.” See

 http://
www.cs.uoregon.edu/research/paracomp/tau/

.
[18] University of Tennessee, “Dynaprof.” See

http://www.cs.utk.edu/~mucci/dynaprof/

.

