Frogram Llatabase 100

Overview

Many tasks in an integrated programming environment
require access to program information for their
implementation. Program Database Toolkit (PDT) is a
framework for analyzing source code written in several
programming languages and for making rich program
knowledge accessible to developers of static and dynamic
analysis tools. PDT implements a standard program
representation, the program database (PDB), that can be
accessed in a uniform way through a class library
supporting common PDB operations. Software tools can use
this library to accomplish tasks such as

= documentation of program components;

= creation of graphic program browsers that show class
hierarchies, function call graphs, and template
instantiations;

< insertion of instrumentation for performance profiling
and tracing; and

= generation of interface details for calling library routines
or building interlanguage bindings.

Figure 1 (on reverse side) shows the PDT framework and the
tools that have been developed to use it. These are discussed
more fully below.

PDT Intermediate Language Analysis

PDT utilizes state-of-the-art front-end parsers from the
Edison Design Group and Mutek. Currently, PDT supports
the C and C++ languages. Support for FORTRAN 77 and
FORTRAN 90 is in development; support for Java will be
added during the coming year.

Each language front end produces its results in an
“intermediate language” (IL) tree form. Although the IL
program trees are similar, they are distinguished by the
language constructs. Our IL Analyzers input the IL, walk the
IL tree, and filter and reorganize the information about the
parsed program into a more structured, standard format, the
PDB.

The level of conversion provided by PDT is determined by
the amount and detail of program information required by
tools. Currently, the PDB contains all information on
functions and classes, including template instantiations, and
also contains information on templates and macros. The
routine section lists source identification, parent class and
access, signature, characteristics, and functions called in
each routine. The class section specifies source information,

characteristics, direct parent classes, member function 1Ds,
and information on other members. The template and macro
sections report source information, type, and text of each
entity. As the needs of the tools increase, so will the
sophistication of the IL conversion and the PDB.

PDB Query and Management

A tool called DUCTAPE (C++ program Database Utilities
and Conversion Tools APplication Environment) implements
a C++ library that enables applications to access PDB files.
With DUCTAPE, tools can read,
merge, write, and, most
importantly, query the PDB for
specific program information.
The structured form of the PDB
is reflected in the DUCTAPE
application programming
interface, allowing easy access
to all high-level source data,
such as functions, classes,
templates, source files,
namespaces, and macros.

Our Intermediate
Language (IL) Analyzers
input the IL, walk the
IL tree, and filter and
reorganize the informa-
tion about the parsed
program into a more
structured, standard
format, the program
database (PDB).

PDT Application

As shown in the figure, PDT has been applied in a variety of
contexts, mainly targeting the requirements of the Advanced
Computational Testing and Simulation (ACTS) toolkit and
Accelerated Strategic Computing Initiative (ASCI) app-
lication developers. PDT is able to handle large, “industrial
strength” source code including the POOMA (Parallel
Object-Oriented Methods and Applications) framework.

Four tools for static analysis and documentation generation
have been developed using PDT:

«PDBconv converts PDB files to a human readable ASCII
form;

= PDBmerge merges PDB files from separate compilations;

= PDBtree prints file inclusion, class hierarchy, and call
graph trees in ASCII form; and

< PDBhtml “htmlizes” the program information.

Other tools are being implemented to provide graphical
user interfaces for interactive PDB query and for graphical
displays of program structure.



PDT can also be applied for source-to-source program
translation. For example, TAU (Tuning and Analysis Utilities)
uses PDT to instrument C++ programs for profiling and
tracing. It traverses the PDB list of functions and templates,
and inserts the TAU profiling macros in the source. The
programs are then recompiled and linked with the TAU
library to generate profile data files during execution. The
TAU instrumentor has been used to instrument the entire
POOMA C++ framework. Because PDT supports common
program abstractions, the TAU instrumentor can be easily
modified to work with other languages.

The power of PDT to represent and access program
information can be seen in its use by the SILOON (Scripting
Interface Languages for Object-Oriented Numerics) project
to automate the generation of "glue" code that enables C++
library routines to be called remotely from routines written
in scripting languages. The PDT tool ensures that interfaces
are used correctly and that interlanguage data
representation differences are properly accounted for.

PDT Availability

The first version of PDT for C and C++ has been released
and is included on Los Alamos National Laboratory’s 1999
Advanced Computing Laboratory Software CD. The release
includes the IL Analyzers as well as DUCTAPE’s library and
source code analysis tools. The TAU instrumentor is also
available on the CD.

€L osAlamos

NATIONAL LABORATORY

advanced computing laboratory

LALP 99-123 November 1999

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is
operated by the University of California for the United States Department of Energy
under contract W-7405-ENG-36.

Figure 1. Program Database Toolkit architecture (PDT).

Program
Documentation

Call Graph
Class Heirarchy

Applicati
Cgﬂ:unl:::t Glue

Performance
Instrumentation

are
DUCTAPE (C++
program Database
Utilities and Conversion
Tools APplication
Environment)
implements a C++
library that enables
applications to access
PDB files.

FORTRAN 77 and 90
support is in development,
and support for Java is
expected within the next
year.

Acknowledgements

The PDT project is a joint collaboration between the
University of Oregon, the Advanced Computing Laboratory
at Los Alamos National Laboratory, and Research Centre
Juelich in Germany. The IL Analyzers were written by
Kathleen Lindlan at the University of Oregon. DUCTAPE
was developed by Bernd Mohr at the Research Centre Juelich.

More information about PDT...
web: www.acl.lanl.gov/pdtoolkit/

Get PDT and other
Advanced Computing Laboratory Software...
web: www.acl.lanl.gov/software/
cd: 1999 Advanced Computing Laboratory Software

More information about IL Analyzers...
contact: Kathleen Lindlan, University of Oregon
e-mail: klindlan@cs.uoregon.edu

More information about DUCTAPE...
contact: Bernd Mohr, Research Centre Juelich
e-mail: B.Mohr@fz-juelich.de

This work supported by the US Department of Energy.




