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ABSTRACT

To understand the complex interactions of the many factors contributing to
supercomputer performance, supercomputer designers and users must have access to an
integrated performance analysis system capable of measuring, analyzing, modeling, and
predicting performance across a hierarchy of details and goals. The performance
analysis system being developed for the CEDAR multiprocessor supercomputer
embodies these characteristics and is discussed in this paper.

1. INTRODUCTION

Over the last ten to fifteen years there has been an amazing increase in the availability and
affordability of computing power. Initially, improvements in hardware were largely responsible for
performance enhancement; first, by simiply increasing the speed of standard component designs and
later by allowing the cost-efficient implementation of novel architectural concepts.  This
advancement in hardware technology spurred fhe commercial development of software techniques,
which had resided in academia for many years, thereby establishing improvements in software as a
legitimate, albeit subservient, component in the march towards high-performance. Recently, the
domination of hardware factors in improving computer performance' has been reduced due to a
decrease in semiconductor-based performance enhancements (which had been delivering an order of
magnitude increase every seven years). This has allowed software improvements (both system and
application software) to assume equal status with hardware. As a result, new high-performance

general purpose systems, especially supercomputers such as CEDAR [1], must rely on the synergism
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of a complex combination of techniques from the areas of architecture, hardware, systems software

(compilers and operating systems) and applications software for furtherperformance gains.

Regrettably, during the early period of explosive growth in computing power, complacency arose
concerning the development of performance analysis systems from which the supercomputing
community is only now beginning to recover. In particular, commercially available supercomputers
suffered a dearth of tools for users interested in determining the most effective way of exploiting the
high-performance processing capabilities of the machines. The major reason for this was, of course,
economic. There was little or no commercial incentive for manufacturers to include such tools; the
market consisted of buyers (mostly government laboratories and large corporate research centers)
that were willing to pay large sums of money for the computing power and to shoulder the burden of
not only designing and tuning new algorithms for their applications, but also, in some cases,

designing and implementing their own operating systems.

This is not to say that performance evaluation and analysis was not pursued at all during this
period. Much technically useful work on performance analysis systems was done; e.g. the C.mmp
[2] and Cm* projects [3], and the Erlangén general purpose array [4]. Unfortimately, the
institutions conducting this research lacked the economic wherewithal to proceed beyond the
' b}éliminary implerhentation stages. Without interest from industry, a successful transfer of

technology was impossible.

Manufacturers and users of commercial supercomputers, during this time, were chiefly interested
in performance evaluation (not analysis) for the purposes of comparing different machines in order
to make marketing and purchasing decisions. Naturally, such work centered on choosing fair and
appropriate metrics and developing benchmarking methodologies. Such work is important for
determining the most efficient use of monetary resources, certainly a worthwhile cause, but it
contains little technical merit with respect to systems design and application code tuning. For these
latter purposes it is not important to ask, “Who won?”’; but “How did they win?”’ (the architecture,
system software and application code techniques used); and “Why did they win?” (an in-depth
analysis of the interaction of the algorithm, architecture and system software that demonstrates why
the techniques used were successful). The pursuit of answers to the last two questions is greatly
facilitated by the inclusion of an integrated performance analysis and evaluation system as early as
possible in the design stage of the supercomputer. Indeed, as supercomputers grow more complex it
will be increasingly difficult to retrofit any system capable of yielding significant performance

information.
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So with the advent of complex computing systems which combine advances in architecture,
hardware, systems software and applications algorithms and software to achieve high performance
has come a renewed interest in the development of performance analysis capabilities to aid in
improving the dismal ratio of the performance achieved by ordinary users to the potential
performance of the system. A recent step toward improving the performance analysis and
evaluation situation in supercomputing is the approach proposed by Kuck and Sameh [5]. They
discuss the use of a hierarchy of codes, from kernels to full applications, to experimentally
characterize the workload and performance of supercomputers. They also recommend the
establishment of a public database which would contain: results of benchmarks obtained for the
various combinations of codes and machines; detailed information on the techniques used to obtain
the reported performance; and, most importantly,  analyses concerning  the
algorithm/architecture/ hardware/ software interaction. The creation of such a database can build
on the benchmarking effort, which has so preoccupied the supercomputing community recently, and
‘serve as a vehicle by which a supercomputing benchmarking discipline can develop. Due to the
inclusion of the detailed discussion of the techniques used and the analysis of the interaction of the
four components of the system, it will provide a public forum for information which will stimulate

the development of more sophisticated performance analysis systems for supercomputers.

The degree of success that such efforts achieve depénds largely upon the availability of powerful
performance analysis tools. The approach to performance analysis on the CEDAR system is
presented in this paper. Discussions of the performance analysis strategy used as well as the

measurement tools and future plans are included.

2. CEDAR DESCRIPTION

The CEDAR system being developed at the Center for Supercomputing Research and
Development at the University of Tllinois is a parallel supercomputer that combines advances in
vector processing, multiprocessor parallel architectures, hierarchical memory systems, high-speed
interconnection networks, restructuring compiler technology, and scientific applications algorithm
design. The following sections describe the CEDAR architecture and hardware, the software

components, and the applications development.

2.1 CEDAR Architecture and Hardware

The overall hierarchical architecture of the CEDAR system is shown in Figure 1. At the lowest
level of the hierarchy are the Computational Elements (CE’s) which are pipelined vector processors.

The next level of the hierarchy comprises several clusters of CE’s. Each cluster is a set of CE’s and
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a local cluster me;mory. The highest level of the CEDAR architecture is formed by coupling several

clusters together via a global shared memory.

At present, a single CEDAR cluster is a slightly modified ALLIANT FX/8. The ALLIANT
FX/8 architecture combines vector and parallel capabilities with a two-level memory structure
(cache and main memory). Each CE (up to eight are possible) is a register-oriented CRAY-1-like
vector processor. The instruction set supported is that of the Motorola 68020 enhanced with a set

of high-level vector instructions.

A separate concurrency control bus shared by the eight CE’s facilitates rapid synchronization.
Special instructions which use this bus allow the eight CE’s to perform self-scheduling of parallel
loops by dynamically assigning loop iterations to available processors at run time and provide a fast

mechanism for enforcing data dependencies between loop iterations.

The eight CE’s share a cache and cluster memory in order to provide fast access to local data and
reduce traffic to the global memory. A crossbar switch is used as a cluster interconnection network
which affords each CE access to the cache and to ports to the global interconnection network (one
port for each CE in the cluster). At the interface between a CE and its global network port, there is
a data prefetching facility, so array data (;an be prefetched from the global memory into a data
buffer.

The global interconnection network consists of two unidirectional interconnection networks. One
connects processors to the shared global memory. The other connects the global memory back to
the processors. The networks are packet-switching omega networks. They are pipelined and use
wide data paths for packet transmission. Buffers are provided in each switching element to increase

network bandwidth.

The globally shared memory comprises multiple memory modules. Data are interleaved across
memory modules to allow high memory bandwidth. The global memory is used to store globally
shared data and instructions. There is no hardware-managed cache between a processor and the
global memory. Instead, data can either be demand paged into cluster memory from the global
memory by operating system, or moved into cluster memory via a move instruction in a user’s
program. A synchronization processor is present in each memory module which implements a set of
synchronization operations providing efficient low level synchronization capabilities between
processors in different clusters and a method of enforcing data dependences. The indivisibility of

~ these synchronization operations is maintained in each synchronization processor.
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Figure 1. The CEDAR Architecture

2.2 CEDAR Software Components

The CEDAR system supports three levels of parallelism: vector, loop, and task parallelism. Task
parallelism is large grain parallelism that allows parts of a program to execute asynchronously across
CEDAR clusters. Medium grain parallelism is present when the cluster processors cooperate in the
execution of a DO loop. The finest level, vector parallelism, allows multiple elements of an array to
be worked on using a single instruction. To exploit the parallel processing capabilities of the
CEDAR architecture, a multitasking operating system, parallel languages, and restructuring

compilers are being developed.

The CEDAR operating system, Xylem, is a modification of Alliant’s ConcentrixT™ operating
system extended for multitasking and virtual memory management of the CEDAR memory
hierarchy [6]. A Xylem process consists of one or more cluster-tasks. Each chister-task executes on
a single CEDAR cluster. Multiple cluster-tasks execute asynchronously across the CEDAR system.

Xylem provides system calls for starting and stopping tasks, and waiting for tasks to finish. System
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calls are also provided for coarse-grained inter-task synchronization. In addition to multitasking,

Xylem supports multiprogramming whereby multiple processes can be executing simultaneously.

The Xylem virtual memory system provides convenient access to the CEDAR physical memory
hierarchy [7]. Each cluster-task of a Xylem process has its own virtual address space made up of
fixed size pages. Each page has attributes that indicate dccessibility (shared or private) and locality
(global or cluster). Xylem implements run-time mechanisms for dynamic memory allocation,
memory attribute manipulation, and caching of global memory data in cluster memory with
incoherency detection. The Xylem assembler, xas, supporté the definition of virtual memory
sections, the assignment of attributes to sections, and the placement of data in sections {8]. The
mechanisms implemented by Xylem will be used primarily by libraries and compilers, providing

convenient and appropriate interfaces and services for user programs.

2.2.1 Languages

Fortran is the focus of language and compiler development for CEDAR because of its dominance
in scientific programming. However, other languages such as C, Lisp, and Prolog are also being
pursued. All CEDAR languages are being designed and implemented to exploit the hierarchical

structure of CEDAR and the mult.ita-ski'ng capabilities of the Xylem operating system.

CEDAR Fortran is derived from Alliant FX/Fortran with extensions for memory allocation,
concurrency control, multitasking, and synchronization [9]. New data type specification statements
reflect the Xylem memory access and locality structure. Vector concurrency is available through
array section notation, conditional vector statements, and vector reduction functions. DOALL and
DOACROSS constructs specify parallel execution of loop iterations on processors within a single
cluster task or spread across multiple ‘cluster tasks. Multitasking routines provide an interface
between CEDAR Fortan and Xylem for task creation and control. A set of synchronization
functions allows access to the CEDAR hardware synchronization primitives.  Cray-style
synchronization operations are also provided. Multitasking and synchronization routines are

implemented as part of a CEDAR Fortran run-time library.

2.2.2 Compilers

Development of automatic language restructuring tools is a major component of CEDAR’s
software design as a result of the work on the Parafrase restructurer [10] [11]. Compiler
optimizations for vectorization, parallelization, and memory allocation are being developed for the
CEDAR machine. The restructuring and compilation strategy is depicted in the organization of the

CEDAR Fortran compiler shown in Figure 2. The parallel language program together with
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restructurer directives are input to a source-to-source restructurer which produces a new source
program that can be compiled and executed. The restructuring process is iterative, allowing the user
to select additional or different optimizations if desired. The final restructured source program is

passed through a CEDAR language pre-processor to a back-end compiler.

2.3 Applications

The driving force of supercomputing performance is, of course, various applications in
engineering and science. The goal of the CEDAR system is to provide high performance over a
wide range of applications, in contrast to the high peaks and low valleys delivered by traditional

vector machines.

A number of application areas have been selected for consideration: lattice gauge computations
(QCD), quantum chemistry, weather simulation, computational fluid dynamics, adjustment of
geodetic networks, inverse problems, structural mechanics, electronic device simulation, and circuit
simulation. These range from purely research topics in physics through physical simulations of great
practical interest to various engineering design problems. From these applications, a number of
basic algorithms have been extracted: sparse linear system solvers, algorithms for linear least squares
(direct and iterative), nonlinear algebraic system solvers, sparse eigenvalue problem solvers
(standard and generalized), FFT, rapid elliptic problem solvers, multigrid schemes, stiff O.D.E.
solvers, Monte-Carlo schemes, and integral transforms. These basic algorithms are typically 100 to
1000 lines of Fortran code each and form the computationally intensive kernels of the applications

mentioned above.

The present effort on the CEDAR project with respect to applications comprises two parallel but
intimately related tasks. The first is the analysis of the behavior of the basic algorithms and the
implementation of CEDAR versions via CEDAR-specific high-performance kernels. These
algorithms and kernels form libraries which are used as building blocks for new applications codes.
An example of this type of activity is the analysis of the BLAS3 primitives and their use in block
algorithms for dense linear algebra algorithms [12] [13]. The second task investigates specific
application codes to identify the computationally intensive constituent algorithms, their interaction
and the data/computation flow of the code and then transforms the code appropriately to achieve
high-performance. These transformations can range from the replacement of the old versions of the
computationally intensive kernels with CEDAR library versions (possibly implementing a new
kernel if it does not already appear in the library), to complete redesign of the data structure and

computational flow of the code, or even to the development of the a new approach to solving the
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Figure 2. The Cedar Fortran Compiler

problem. These two tasks require a large range of performance analysis capabilities and the

CEDAR performance analysis system must accommodate these needs.

3. CEDAR PERFORMANCE ANALYSIS STRATEGY

The primary goal of CEDAR’s design and construction is to demonstrate that supercomputers of
the future can deliver high performance across a wide range of applications and be accessible to
ordinary users [14]. The CEDAR performance analysis strategy to aid in achieving this goal
comprises three main tasks: establish a general methodology for performance investigation on the
CEDAR system; design and build integrated performance measurement and analysis tools;
effectively combine the methodology with the tools to form a cohesive performance analysis system
integrable with other code development tools such as debuggers, restructuring compilers, and
applications expert systems, into a complete supercomputing programming environment. Each of

these tasks are considered in turn in this section.

3.1 Methodology

Achieving CEDAR’s goal by effectively balancing the influence of its architecture, hardware,
software, and applications critically depends on identifying the key performance parameters of the
system, measuring and analyzing their interactions, synthesizing observed behavior into performance
models, and applying performance hypotheses to predict the effects of new designs. Although the
architecture, hardware, software, and applications designers sometimes have conflicting
performance priorities (for example, throughput versus response-time), a comprehensive
performance analysis methodology establishes a framework for reconciling these differences in order
to approach the ultimate performance goals of the CEDAR system. The general approach adopted

for CEDAR is organized into four strongly coupled areas: experimentation, analysis, modeling and
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prediction. The subtleties of the definitions of each of these areas and the interaction between them

varies with the point in the design cycle under consideration.

The experimentation phase essentially comprises two tasks. The first is to verify or refute
assertions made in the latest prediction phase with respect to the model and/or system components
under consideration. The second is to gather information indicating which system parameters are
the dominant influences on the performance metric being used. The completion of these tasks
provides the analysis phase with information upon which recommendations for changes to the
applications code, architecture or system software can be based. It also provides information which
indicates how the model of the complex system being used needs to be updated to include more
significant parameters and eliminate those which are .increasing the complexity of the investigation
unnecessarily. The forms of experimentation, which depend on the type of model used, and its

subphases are discussed below in relation to the tools required for this phase.

The analysis phase is the investigative part of the methodology which attempts to understand and
qualify the results of the latest experimentation phase. It is here that the determination is made as to
whether or not the assertions concerning the model and system performance as well as the other
decisions mentioned in the experimentation phase description are accurate. The analysis activity is
intimately related to the data reduction and presentation subphase of experimentation (see below).
Indeed, when designing tools for the two activities it becomes clear that their division is sometimes
an artificial conceptual convenience. A highly-interactive analysis environment is crucial. In fact,
expert system technology could be exploited by guiding analysis efforts from a knowledge base
composed of basic notions of good and bad performance behavior. The analysis phase is also
responsible for the assimilation of relevant performance information from the activities of the other
design groups; for example, at some point the applications group must take into account any changes

that have occurred in the architecture or new hardware performance capabilities.

The modeling and prediction phases are so closely related that they will be discussed in tandem.
At each iteration of these phases, a model or combination of models is postulated with a set of
performance metrics and a set of assertions about the various levels of performance expected and
the way in which these levels differ from the set of the previous iteration. (Presumably this
difference will be an improvement in the sense that the new assertions are closer to the global

performance goals than those of the previous iteration.)

This activity varies considerably in form and purpose over the design process of a system.
Initially, when the paper design of the major components of the system is underway, this activity

tends to consist of models which are inputs to performance simulators such as Parafrase and the
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CEDAR Performance Prediction Package (see below) and assertions, which, although qualitative in
nature, are much more detailed than those that will appear later in the design cycle. As components
are designed in detail and are implemented in hardware the models progress to input for extremely
detailed behavior simulators, e.g. circuit simulation packages, and finally to the most exact model of

all, the piece of hardware itself. The prediction phase assertions grow correspondingly detailed.

When the major components are implemented in hardware and the hands-on application code
development begins, the form the activity changes again. The models and the predictive assertions
assume a dual nature each consisting of a component relating to the extant hardware implementation
and a component relating to a simplified qualitative model whose purpose is not to provide the
detailed behavior information of the simulations of the earlier portion of the design cycle, but to
serve as a simplified conceptual model upon which algorithm and kernel integration can be based.
As a result, the corresponding experimentation phase takes on this dual aspect. Each experiment
consists of performance benchmarks on the implemented version of the system (a process much
more detailed and system-specific than the normal machine comparison benchmarking activity) and
evaluation of the qualitative model over a sufficiently fine mesh in the design space. (Automated
experimentation tools do much to guarantee that the sampling mesh is dense enough by relieving the
incredible tedium that usually accompanies such an activity.) The analysis phase then decides how
accurate the model is and under what conditions it can serve as an element in a performance

characteristic database.

The development of such qualitative models based on empirical observation is a crucial
component of the CEDAR performance analysis strategy for developing high-performance
application codes. Such models are usually based on some set of simplifying assumptions specific to
the kernel, algorithm, architecture and the interaction thereof. Examples of such modeling efforts
are contained in [13], [15] and [16]. A collection of these models of algorithm and kernel
performance along with similar models for the performance of certain key components of the system
form a performance encyclopedia of building blocks. This information can be used to facilitate
speculation concerning the benefits of altering the implementation of an algorithm or application
code thereby saving valuable time by pruning nonproductive avenues of investigation from the set of

alternatives.

3.2 Performance Analysis Tools

In the past, designers have developed performance analysis tools primarily on an as-needed basis
resulting in a random collection of incomplete, inconsistent tools instead of an integrated

performance analysis package. The complex interaction of the components of new supercomputing
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systems renders such a collection of limited value. The design of performance analysis tools must be
carefully considered to provide the foundation of an effective performance analysis system. In this
section, the characteristics and structure required of tools in the CEDAR performance analysis
system as well as the tradeoffs in their implementation are discussed. Later sections will describe
the tools presently in the CEDAR performance analysis system which attempt to satisfy these

requirements.

The most important characteristic of the CEDAR performance toolset is that it is integrated.
Essentially, this means that the toolset is a basic component in the design of the CEDAR system, it
contains tools that interact in a coordinated fashion, and it provides a framework for the addition of
future tools. An equally important characteristic is adaptability. Not only must the toolset be able
to accommodate the different viewpoints of the major design groups (hardware, software, and
applications), but it must be able to adjust to the requirements of any particular performance
analysis investigation. This implies that the tools cover a hierarchy of performance analysis issues
ranging from low-level details (e.g., cycle-by-cycle processor activity) - to system-level questions
(e.g., the performance of cluster task scheduling). For many performance analysis investigations,.
passivity of the tools is a critical requirement to insure accuracy. Because the performance analysis
sophistication of the users can also vary, the performance tools should also strive to be
highly-interactive, user-friendly, and able to present performance information in various levels of
detail. Finally, the performance analysis system should be designed in such a way as to anticipate its

inclusion in a general supercomputing programming environment.

The automation of modeling, prediction, and analysis tools requires that the knowledge of
supercomputer designers be captured in an expert system framework. This has yet to happened,
however steps can be taken in this direction by collecting and merging systems of various types
present in the design, development, and use of a supercomputer. Such an effort is underway on the

CEDAR project.

Most performance analysis tools are concerned with the experimentation phase of the
methodology. Conceptually, there exist two types of experimentation tools: simulative and
empirical. Throughout the system development process, there is a need to be able to work with the
design in the abstract. Simulative tools are those that model and simulate the architecture,
hardware, software, and applications at various levels of logical and operational detail without
requiring measurement of actual system components. Such tools are common for circuit and
board-level simulation of hardware designs, and general-purpose modeling and simulation packages

also exist.
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For the CEDAR system, a large spectrum of simulative tools are required, from very high-level
architectural and software modeling tools, crucial early in the system’s lifecycle, to detailed
simulators more closely reflecting the evolving characteristics of various component designs, to
low-level emulations of actual operation. The use of such tools is not relegated to certain periods of
the design cycle but continue to be used and refined throughout the system’s development. For
example, the Parafrase vectorizing/parallelizing compiler developed at the University of Illinois, was
an early architecture and software design tool for the CEDAR system. It continues to be important
in studying source code restructuring for parallelism and is currently being adapted to serve as a
performance optimization component of the CEDAR compilation process. = Similarly, various
simulators, including the CEDAR Performance Prediction Package (CPPP) [17], assisted in the
investigation of tradeoffs in the CEDAR architecture during initial processor, interconnection
network, and memory design; and recently its powerful trace generation facility has been used in

cache simulations and task scheduling studies.

The most common notion of performance analysis tools, those that involve experiments with -
actual components of the system, are referred to here as empirical experimentation tools. Generally,
empirical experimentation involves three components: specification, instrumentation/data
collection, and data reduction/presentation. The specification phase defines the events and/or
performance characteristics which are to be investigated in the experiment, possibly in an abstract
fashion. The performance-directed events defined in the specification must be realized by
instrumentation tools that monitor system operation and collect performance data associated with
event occurrence and duration. Implicit in this process is the translation of event definition into the
appropriate combination of monitoring points and actions in order that information concerning the
specified events can be recovered in the data reduction and presentation phase. For instance, if a
user desires the computational rate of a kernel in floating point operations per second, this abstract
performance metric must be translated in the instrumentation phase into floating point operation
counts and elapsed kernel execution time measurement. The value of the metric is recovered in the
data reduction and presentation phase. Since events manifest themselves in various ways, the
instrumentation and data collection tools must be flexible and extensible so as not to restrict the
specification. Critical to the empirical experimentation process is the development of tools for
rendering the collected performance information in meaningful ways. This involves both reduction
and presentation of the monitored data with respect to the higher-level event description contained
in the specification. Clearly, user interaction is critical in the empirical experimentation process in

order to guide performance characterization and optimization efforts.

As in all aspects of supercomputer design, there are tradeoffs to be made in the implementation of

performance analysis tools. For example, the degree to which desired characteristics can be satisfied
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for most of the tools depends heavily upon the cost one is willing to absorb. Similarly, a tradeoff
typically exists between the passivity of a data collection/event detection tool and its accuracy.
Perhaps the most important tradeoff, however, is integration versus complexity. The higher the
degree of integration, the more complex the design and implementation of performance analysis

tools becomes.

3.3 Application of the CEDAR Performance Analysis System

Methodology and tools are intimately related in the performance analysis strategy. Postulating
some grand methodology in the absence of tools is useless if the objective is to optimize the
performance of real codes on a real system. Likewise, using tools without some methodology leaves
‘the success or failure of the valuable performance optimization activity to little more than pure
chance. The interaction of the two, howe.ver, can lead to an efficient solution of the performance
optimization problem. This section presents an overview of the application of the CEDAR
performance analysis system to the two basic activities of the applications group outlined in the

previous section.

The hierarchical nature of the CEDAR architecture tends to cause codes to be designed in a
similar modular hierarchical fashion. The hierarchical nature of both complements that of the tools.

These relationships result in similarly structured application performance analysis activities.

Recall that the first basic task of the applications group activity involved a bottom-up approach to
application code implementation. In this approach, an encyclopedia of performance information is
formed comprising qualitative models from low-level architecture/computation interaction such as:
single-CE computational behavior (e.g. parallelism available at the arithmetic expression level via
chaining or operation spreading), low-level memory behavior (e.g. the influence of spatial and
temporal locality, and memory reference patterns), and the tightly-coupled parallelism within a
single cluster (e.g. vectorization, concurrency, synchronization, and communication); through
computationally intensive kernels such as matrix multiplication; up to constituent algorithms such as
dense linear algebra computations. The models in the encyélopedia are in turn used to make
qualitative performance statements about application codes as well as algorithms and kernels which
are candidates for inclusion in the encyclopedia. Typically, these statements are made using the

tools and methodology above using a decoupling technique in the analysis phase.

An example of such an analysis, is the study performed at CSRD concerning the implementation
on a single CEDAR cluster of the block methods for dense linear algebra computations in terms of

matrix multiplication kernels [13]. Extensive use was made of analytical methods and the empirical
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experimentation tools designed for a single CEDAR cluster (see below). The results of this study
showed that the influences on performance of the hierarchical memory system and the mapping of
the algorithm to the computational resources, could be decoupled, analyzed separately in a simple
fashion, and then reconciled to yield near-optimal algorithmic parameters, for both kernels and
block algorithm, as functions of system characteristics such as cache size, number of processors,

vector register lengths, and so on.

This analysis clearly demonstrated that valid qualitative conclusions can sometimes be reached
concerning the behavior of phenomena of great complexity by assuming a superposition principle
holds for fhe performance of an algorithm in terms of the performances of its constituent parts, i.e.
the interaction between components can be safely ignored. This is, of course, true if the granularity
of the parts is sufficiently large, but in some cases, where granularity is not necessarily large, the
algorithmic transformations can be used to reduce the significance of the interaction to a level such
that it can be ignored when choosing algorithmic parameters. Furthermore, the conclusions in this
study were at a level of abstraction appropriate not only for a single CEDAR cluster, but for many

multivector processors with a hierarchical memory system.

Finally, these results demonstrate the ability of the analysis activity of one group to yield benefits
for another. In this case, the techniques can be generalized and applied as a compiler analysis

technique to determine the best way to exploit a hierarchical memory system.

The second task of the applications group involves a top-down analysis and design of application
codes. Whereas the bottom-up approach above, tended to make use of performance analysis tools
monitoring low-level behavior of the cluster, this approach makes extensive use of the high-level
program analysis tools described in a later section. Typical activities are: identifying major
computational components, if any, via event-trace-based profiling tools, investigating the parallel
structure inherent in the code and exploitable by restructuring techniques via data flow analysis by
tools such as Parafrase, and investigating the influence of scheduling and synchronization on the
dynamic behavior of the code via virtual execution flow analysis. Clearly this approach can benefit
from the integration of these tools into an expert system-based supercomputer programming

environment.

4. SIMULATIVE EXPERIMENTATION TOOLS FOR CEDAR

As described above, simulative experimentation tools support the performance analysis of
supercomputer architecture, hardware, software, and applications without the need for measuring

empirical data directly from the system. Simulative experimentation tools have been used



PRInEE

Performance Analysis on the CEDAR System 123

extensively in the design of the CEDAR system. Investigations making use of such tools have
included studies of compiler restructuring techniques [18], memory access combining [19],
compile-time and run-time scheduling [20] [21], and prefetching for cache memories [22]. In this
section, details of two important simulative experimentation tools are discussed. The

implementation and application of these two tools are evolving with the CEDAR design.

4.1 Parafrase

During the feasibility study and early design phase of CEDAR, much effort was devoted to
evaluating various aspects of system performance. Of particular concern, was the performance gains
achievable through restructuring of programs, originally written for uniprocessors, for paraliel
execution on the evolving CEDAR architecture. The source-to-source parallelizing compiler
Parafrase served as an invaluable simulative experimentation tool not only for exploring new
restructuring techniques, but also for giving first-order estimates of the amount of parallelism

exploitable by programs with respect to various machine architectures [11][23].

Four basic architectures are used in Parafrase to represent target machines for the program

transformations:
SES - Single Execution of Scalar instructions
SEA - Single Execution of Array instructions
MES - Multiple Execution of Scalar instructions
MEA - Multiple Execution of Array instructions

Minor variations from these four basic types include representations of special recurrence solving

hardware and special synchronization instructions to handle DOACROSS loops.

Parafrase has been supplemented with timing passes that estimate the execution time of a
program on a sequential machine, T; , and the execution time on the target machine organization
with p g)rocessors, T,. In addition, the speedup of the program, S, = —?— , and its parallel efficiency,
E = —;}p— are calculated. The user can specify conditional branch prolgabilities and loop bounds to
aid Parafrase in determining these performance measures. Parafrase also generates operation counts

and indicates the number of statements enclosed in each level of loop nesting.
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Although the performance information obtained from Parafrase can be used to infer the
performance of real machines similar to the general architectures, in particular CEDAR (an MES
type machine), Parafrase provides only static first-order estimations of actual run-time performance
[23]. Performance degradations due to scheduling delays, memory and interconnection network

conflicts, and synchronization overheads are not taken into account.

4.2 CEDAR Performance Prediction Package

The CEDAR Performance Prediction Package (CPPP) is a hierarchy of simulative
experimentation tools that provide the user several alternatives for predicting the performance of the
CEDAR design with different tradeoffs in accuracy and cost [17]. The organization of the CPPP is
shown in Figure 3. The CPPP can be used.to tune the design of the CEDAR architecture,

compilers, and operating system, as well as aid application development and algorithm design.

The highest level of the CPPP hierarchy is Parafrase and its static performance estimates
discussed above. Measurements made by Parafrase are the least accurate but cheapest to produce.
Tcedar is the next level in the CPPP hierarchy [24]. It is implemented as an additional pass in
Parafrase. Tcedar produces more accurate performance statistics, at a negligible increase in cost, by
incorporating a simplified model of the CEDAR computational processors distinguishing between
local and shared memory references. The performance statistics produced include execution rate in
MFLOPS, the number of operations of different types, and the number of references to local and

shared memories.

CSIM is a parallel trace driven simulator of the CEDAR machine and represents the lowest level
in the CPPP hierarchy. Every component of the CEDAR system has a parameterized model in
CSIM. A trace generator, Trgen, extracts a parallel trace from the restructured program produced
by Tcedar which becomes input to CSIM. Four major module simulators comprise CSIM: the global
control unit simulator (GCUSIM), the processor unit simulator (CPUSIM), the global memory
simulator (MEMSIM), and the global interconnection network simulator (NETSIM). At the time
CPPP was developed, these four modules map into the major components of the proposed CEDAR

architecture.

CSIM produces a large number of statistics. Overall system performance statistics include total
execution time, estimated one processor execution time, and estimated program speedup. Operation
execution rates are computed in MOPs and MFLOPs, and arithmetic-logical, floating point, fixed
point, and boolean operations are counted. Numerous statistics relevant to the performance of each .

functional unit in each processor are also generated. The network statistics include: number of
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Figure 3. The Three Level CPPP Hierarchy

requests serviced, network throughput, average network delay, maximum network delay, average

utilization, average load, and average conflicts per request. For shared memory systems, the

percentage of time each module is busy, the bandwidth used, and the percentages of references to

local and shared memory are calculated. The average and maximum times to access global memory

are computed as well.
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CPPP was used to study 22 routines from the EISPACK and LINPACK packages for a 32
processor CEDAR machine [17]. The performance degradation due to conflicts in the shared
memory, the delay in the CEDAR interconnection network, and synchronization overhead were
measured. Generally, the results confirm that the architecture of CEDAR is balanced. The
performance of the CEDAR network was shown to be close to that of a crossbar switch. The
maximum performance degradation of almost half of the programs is due to shared memory
conflicts. Synchronization is the major performance degradation factor for the other half of the

programs.

The CPPP is evolving with the development of the components of the CEDAR system. It has
been modified to handle synchronization instructions as well as parallel execution of multiprocessed
constructs generated from macro data flow graphs, Coding of models for other hardware
components of CEDAR is underway. The CPPP could also be used to generate numerous statistics

relevant to the control and scheduling overheads in the design of the CEDAR operating system.

5. EMPIRICAL EXPERIMENTATION TOOLS FOR CEDAR

The CEDAR empirical experimentation toolset is a hierarchically organized group of integrated
specification, instrumentation and data presentation tools. In this section, these tools are described
in detail. First, the hardware monitoring system, the lowest-level set of tools, is presented.
Although such a system does indeed provide powerful experimentation tools (on many systems
rudimentary forms of this toolset is all that is provided), in a complex computing environment such
as CEDAR this basic toolset is inadequate. The interaction between the basic hardware moﬁitoring
system and higher-level software experimentation tools needed to meet the required experimentation
capabilities is discussed next. The tools for measurement specification, instrumentation and data
collection, and data reduction and presentation phases of the empirical experimentation process,
shown in Figure 4, are considered in turn. Finally, a brief overview of the development of the Faust
supercomputing programming environment is given. The CEDAR performance analysis system

presented in this paper will eventually be integrated into the Faust environment.

5.1 The CEDAR Hardware Monitoring System

A hardware monitor is a measurement device that uses high-impedance electrical probes
connected directly to hardware devices on a system. The sensing of pre-defined signal patterns is
used to trigger data collection on some subset of the probes. Because hardware monitors are

separated from the measured system, they do not interfere with the system or alter its states.



Performance Analysis on the CEDAR System 127

Empirical
Experimentation

Instrumentation / Data
Specification Data Reduction /
Collection Presentation

Figure 4. Empirical Experimentation Process

Hardware monitors, however, can be difficult to use in some situations. There are several reasons
for this. First, signals that are of interest to a user may be scattered about the system, and very
often are not well documented. Since most users do not have detailed hardware information of a
system, simply specifying what is to be monitored can be nearly impossible. Even if the signals and
their location are known, signals internal to a chip cannot be probed. Therefore, it is a prerequisite
that all of the signals that are important to performance measurement be accessible and well
documented. (Hence, the pessimism concerning future capabilities of retrofitting hardware monitors
on supercomputers mentioned earlier). Second, due to physical constraints of cabinets, wires, board
space, and the bulkiness of hardware probes, it can be very difficult to attach a significant number
of probes to a system. It is necessary, therefore, that the system be packaged so as to be
instrumentable, i.e. performance measurement signals must brought out to the edge of a board and
concentrated in an accessible area, preferably on a connector. Third, hardware monitors usually do
not have access to software related information. For example, it is almost impossible for a hardware
monitor to tell which process caused an event. This makes post-collection analysis very difficult
unless the system environment is strictly controlled. Provisions must be made to allow software

control of hardware monitors so software information and hardware signals can be correlated.

From the above considerations, hardware monitors can only be effective when necessary steps are
taken during system design and implementation. Performance measurement must be viewed as part
of the system requirements, and those requirements must be met in both hardware and software
design. Recognizing the importance of performance measurement during the hardware and software

design phase of the CEDAR system has resulted in the design of the integral hardware monitoring
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system shown in Figure 5. The key elements of this system are buffered on-board test points, a data

acquisition system, and software configuration and control.

The CEDAR system is observable by way of a series of performance measurement test points
provided on each circuit board. Typically, there are from 50 to 120 test points on each board. They
include information such as microcode instruction and address on the CE boards, control states and
important counters on the network interface boards and other signals specific to the global network
boards and the global memory boards. These signals provide the most vital and indicative
information on the activities of each board. For each of these on-board signals, a buffered copy of

the signal is brought out to an accessible edge.

These signals are monitored by a general purpose high resolution data acquisition system, called
the black box system. A black box card cage can hold up to 32 modules. Each module is a 5-inch

by 6-inch printed circuit card and is individually addressable on the black box bus.

There are several types of modules including signal conditioning, counting, timing, data-logging:
For signal conditioning, currently available modules include combinatorial and programmable logic
for creating composite conditions from the measurable signals. These modules act as filters to reject
data that need not be stored so the amount of data collected can be kept to a minimum. They can

also be used to generate triggering signals for other modules.

For counting, timing and data-logging, there are modules available with interval timers and event
counters. Each of these modules has a 32-bit timer/counter clocked at a rate of 40ns. A local
memory of 32k 32-bit words is provided in each module. Each timer/counter can be started or
stopped from either a user program or by the triggering signals from a conditioning module. The
content of the timer/counter can be stored into the local memory (the address of the local memory
will be incremented automatically) and then be reset for new events. For example, one module can
be configured as an interval timer and another as a counter to count the number of floating-point
operations. Using this configuration, Mflops (million floating-point operation per second) can be

easily obtained for an entire program or for some program segments.

Modules also exist for program tracing. Each tracing module has a large buffered memory for
storing 8-bit wide traces. The memory size is 128k 8-bit words. This memory size can be extended
by cascading several tracing modules together, using the overflow signal of one module as a
triggering signal for the next. Data width can also be increased by using several modules in parallel.
Other useful modules which will be implemented in the future include histogrammers, interrupt

generators, ranging comparators, and sequencers (for detecting certain special sequential events).
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In addition to using signal conditioning modules to trigger modules, triggers can also be obtained
directly from each CE by issuing special trigger instructions. These trigger instructions can be
embedded in a user’s program or in the operating system so precise measurement can be started and
stopped by a user, or by the operating system. These trigger instructions are actually store
instructions to the globally shared memory. Each particular trigger instruction is assigned one
special memory address in the global memory address space. These memory addresses are
specifically reserved for these trigger instructions and can not be used for storing data. The network
interface for each CE will intercept store operations to these locations and generate triggering
signals accordingly. Using this technique, no special trigger instructions are needed in the CE’s

instruction set.

The black boxes are connected to a controller card resident in one of the Multibus backplanes
used by the Interactive Processors (IP’s) in a CEDAR cluster (see Figure 5). Interactive Processors
are responsible for performing most of the functions for the CEDAR operating system including

interfacing to peripherals. Each controller can handle as many as 16 black box systems. Multiple
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controllers can be installed in one Multibus (for centralized control by one IP), or in multiple
Multibuses (for distributed control by several IP’s, either within one cluster, or spanning multiple

clusters in the CEDAR system).

Each black box is mapped onto the Multibus address space, as is each module in a black box. A
controller can control and collect performance data from a module by simply moving data between
different parts of the Multibus address space using simple read and write instructions. The IP
software for communicating with the black box controller residing on the IP’s Multibus is a
collection of operational primitives. The primitives allow an IP to directly control each black box,
and to read the contents of the black box registers and memory and thus obtain the collected data.
This software can be readily manipulated to handle any desired black box configuration. Since an IP
is also responsible for providing disk I/O to the cluster, it is possible for run-time performance data
to be logged to disk as they are collected. Real-time analysis by the IP critically dependé on the
volume of data received and the amount of processing to be performed. If remote monitoring is
being performed (i.e. one otherwise uninvolved cluster is monitoring the actions ofvone or more

other clusters), then the full power of a cluster can be directed toward real-time analysis.

One advantage of using such a hardware monitoring system is that it is highly modular. Each
module in a black box system has an identical standard interface which makes the system easily
expandable. Special types of performance modules can be designed as needed, and as long as their
interface stays the same, all of these modules can be controlled by the same mechanism. This allows
different types of modules to work together collecting different kinds of data simultaneously. It is
often necessary to correlate data collected in different parts of a system within the same time frame
The ability to mix different types of modules together to collect different types of data

simultaneously makes the post-collection analysis much easier and more accurate.

5.2 Empirical Experimentation Software Tools

While the CEDAR hardware monitoring system is a fairly powerful and versatile tool, it is unable
to fulfill the CEDAR empirical experimentation requirements. The major difficulty is that its
capability to detect software events, even with special triggering instructions, is far too limited to
capture the extremely complex software events which are crucial to performance analysis on the
CEDAR system. At the very least, software instrumentation is required to translate the high-level
software events defined in the specification phase of the empirical experimentation process into a set
of measurement events. In addition, it is clear that the data reduction and presentation phase is

purely a software task which transforms raw data, possibly collected by the hardware monitoring
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system, into meaningful statements concerning the goals of the experiment defined in the

specification phase.

5.2.1 Measurement Specification

A standard supercomputer program measurement practice is to time a program’s execution from
beginning to end and compute MFLOPS. More adventurous measurement strategies for parallel
processors time sequential and concurrent execution and calculate speedup. Because of CEDAR’s
multiprocessor architecture, multitasking operating system and multiprogrammed run-time
environment, simple program timings are inadequate to characterize program execution. The special
problem of program performance measurement in the CEDAR system is the need to detect and
record data relating to the asynchronous parallel processing of multiple program tasks and their

interactions with the architecture, operating system and other programs.

Table 1 lists examples of events considered significant in the makeup of program performance in
CEDAR [25]. It should be emphasized that the events most important to performance are
program-specific and can change depending on the level of program analysis and the granularity of
program optimization. For instance, the timing of individual routines or tasks is useful for isolating
time-consuming components of the program at a high-level but provides little insight into dynamic
program behavior.  Observing events related to loop-level parallelism, multitasking, and
synchronization can uncover performance limiting concurrency and dependency problems.
Performance problems can occur at still finer levels of detail, however. Because hierarchical
memory usage is clearly a performance factor in CEDAR, memory reference and contention events
must be monitored to determine their impact on program perfofmance. Also, the run-timé
environment can cause performance to fluctuate, requiring events of this type to be observed and
their impact assessed. The purpose of performance measurement specification is to define a
hierarchical organization of program execution events which allows a programmer to select the

appropriate context in which to monitor the areas of interest for a particular application.

5.2.2 Instrumentation and Data Collection Tools

Program event measurement is composed of two parts: event detection and event data collection.
Detection is accomplished through hardware or software instrumentation depending on event
accessibility. Hardware event detection is preferred to minimize impact on program behavior.
Standard event data collection is generally based on two metrics: i) the number of times an event X
occurs, n(X), and ii) the total amount of time X lasts, #(X). The common measurement practice is to
detect when an event occurs, increment the associated event counter, and update the running total

event time by the interval of time the event is present. However, event counts and times only
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EVENTS
Program Operating Architecture Run-Time

System / Hardware Environment
routines task creation processor concurrency | system load
doall parallelism task execution cache utilization scheduling
doacross parallelism | task deletion memory referencing resource contention
vectorization task suspension memory contention resource queuing
synchronization task synchronization | bandwidth utilization | context switching
instructions VM management communication I/0

Table 1. Program Performance Measurement Specification

summarize program performance and are unable to describe time-dependent program execution. To
fully analyze program performance in the CEDAR environment, the ability to observe the
~ time-ordered sequence of asynchronous concurrent program execution events is required.
Therefore, the standard event counting and timing measurements are complemented in CEDAR by
the recording of event traces [26]. This enables program performance analysis tools based on traced
event data to determine both the level of performance obtained as well as investigate reasons for the

observed performance.

Tracing in CEDAR is based on the simple operation of saving the ID of an event, plus a
high-resolution time-stamp, in a sequential buffer whenever the event occurs during program
execution. Let X(i) denote the ith occurrence of event X and T(X(7)) the time-stamp of X({). The
trace of event X is denoted as 7(X) Given 7, we can compute n(X) by adding up occurrences of
event X found in the trace; n(X)=| 7(X) | . Computing 1(X(?)) from 7(X), however, requires that we
know when X(i) begins and when it ends. Each event is defined by two sub-events: Xi(7) is the
sub-event “X(i/) begins”, a’nd X:(7) is the sub-event “X(7) ends”. 1(X(i)) can then be computed as
To(X(D) — T(Xe(D)).

Software support for tracing primarily exists as instrumentation in the user program and the
operating system to signal software events such as routine entry/exit, synchronization operations,
different states of task execution, and other complex events. Software trace data buffering is also
provided with a caution about its effect on program performance behavior. The hardware

performance monitor organization easily supports the implementation of trace buffering and
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time-stamping facilities for each processor in the CEDAR system, thus allowing tracing of complex
software events to be implemented in a reasonably passive manner. As with the hardware
monitoring facility, enabling of software instrumentation is integrated with the CEDAR
programming environment and run-time system. The effectiveness of event tracing comes from the
ability to measure and analyze a program at several levels of execution. Here, as with the entire
experimentation activity, programmer interaction is important. In addition to defining the
granularity of the events to be traced, the programmer can perform selective tracing to evaluate

certain periods of the program’s execution.

High-resolution, globally-synchronized time measurements are critical in CEDAR for establishing
the exact dynamic flow and timing of concurrent events. Individually-maintained processor traces
must be attributed time-stamps based on a central real-time reference of sufficient resolution to
accurately merge the traces into a single time-ordered stream of events. In order to establish virtual
program execution time measurements in CEDAR’s multiprogrammed run-time environment, it is
necessary to annotate the program execution event trace by task state events such that non-program
execution time periods can be removed. Software tools are being developed for CEDAR to provide

high-resolution timirig information and to track task execution.

5.2.3 Data Reduction and Presentation Tools

The ease with which a programmer can understand and deal with the diverse issues affecting

program performance depends not only on the ability of the instrumentation and data collection

facility to supply the necessary performance information, but also on powerful performance data
reduction and presentation tools devoted to the problem of characterizing program execution in

ways that the programmer can understand and apply to optimizing program performance.

As with specification and instrumentation, data reduction and presentation in CEDAR is
hierarchically organized. The highest level of presentation generalization encapsulates program
performance data into summary statistics such as counts, relative frequencies, fractions of elapsed
time and total elapsed time. Surprisingly, the majority of supercomputer performance analysis is
based entirely on this level of presentation. More sophisticated presentation illustrates the dynamic
flow of events and their interactions at various levels of detail. At the lowest level, the raw
performance data gives an exhaustive insight into the intricate complexities and nuances of program

performance.

Clearly, performance analysis at each level is highly user-interactive. However, it should be

emphasize that because of the heterogeneous factors affecting performance and the range of
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performance characterization and optimization goals, the performance analysis environment must be
highly experimental, customizable and investigatory. For this reason and the fact that program
event specification and measurement are continually being refined and improved, an all-inclusive list
of program performance analysis tools is impossible. Instead, the following describes several tools

being developed for CEDAR showing different levéls of analysis and performance investigation.

Profiling is a performance analysis technique based on counting and timing routine execution to
identify CPU-intensive portions of a program. Originally developed for single-processor machines,
profiling is commonly implemented as interrupt-based periodic program counter sampling to
determine relative frequency of routine execution, augmented by program instrumentation for
routine call counting. There are two reasons why this standard profiling implementation is
unacceptable for supercomputers in general and CEDAR in particular. Basing profiling on program
interrupts can lead to the absurd practice of ‘attempting to retrieve accurate program profiles on
machines with cycle times on the order of ten to one hundred nanoseconds using sample intervals of
one to ten milliseconds. It is amazing that such an interrupt-based profiling approach has even been
considered for use in supercomputer systems. Only by measuring the time between routine entry
and exit can accurate profiling statistics be achieved. The second criticism of standard profiling is its
current dependence on a single thread of program execution. Obviously, information about

concurrent execution is necessary to properly guide parallel program optimization efforts.

The program profile tools being developed for CEDAR are data presentation tools which
generate statistical information from the program traces, thus providing accurate timing analysis and
the ability to profile concurrent execution. Using only routine and task event data, all common
profiling measurements can be produced including routine call counts, descendent routine call
counts, and direct and cumulative execution time. In addition to these results, concurrency statistics

can also be generated. These statistics include:

sequential and concurrent routine call counts
sequential and concurrent routine execution time
number of tasks created

average task execution time

execution time histogram of task concurrency

average task concurrency

Data from the other events only increases the database from which execution profile statistics can
be drawn. Of particular interest is the execution time of parallel loops and synchronization

operations such as:
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CDOACROSS and CDOALL execution times
SDOACROSS and SDOALL execution times
loop-level synchronization counts and times
task wait synchronization counts and times
event wait synchronization counts and times

lock wait synchronization counts and times

Clearly, some profiling statistics are simpler than others to produce from the program event
traces. To provide an execution profile analysis tool capable of completely summarizing program
behavior is unreasonable. Moreover, complex profiling summaries can be difficult for the user to
understand and apply. The CEDAR program profiling tools concentrate instead on a standard set
of events, including the ones shown above, from which statistics are straightforward to generate and
meaningful program characterization is possible. Other program execution flow analysis tools allow
the programmer to look in detail at the program’s execution behavior by analyzing the flow of

events directly.

The ability to observe the program events in a time-ordered sequence of occurrence is the key
difference between execution flow analysis and profiling tools. Statistical summaries give a global
picture of program execution but lack the historical perspectives. Execution flow analysis provides
the programmer with a window into the program traces at various levels of detail. The concept of

replaying the program’s execution with respect to the traced events forms the basis of the tool.

In general, execution flow analysis is used as a means to explore the program’s execution for
evidence of good, bad or interesting behavior. Sometimes the programmer just wants to see general
characteristics, such as the sequence of routine execution. At other times, the programmer will

apply execution flow analysis to highly specialized event traces for “search and destroy” missions to

‘pinpoint some anomalous behavior or dissect a poorly performing section of code. Therefore,

execution flow analysis in CEDAR must be a highly-interactive environment for the programmer to

intelligently search and analyze the program execution trace database.

The function of moving around in the program trace and displaying events is called event trace
browsing. The event trace browser provides various statistical and graphical presentation capabilities
for displaying events that occur in different regions of the trace. One interesting graphical
representation is the dynamic call graph which shows only the active calling arcs of the static
subroutine interconnection graph except with the nodes being generated dynamically as the routines are
encountered in the program trace. Figure 6 gives an example of the state of a task’s execution on an

8-processor CEDAR cluster in the form of dynamic call graphs. Thz routine execution thread of
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each processor is shown, with active routines depicted by [1’s, plus the global dynamic call graph of
the task as a merge of the individual processor threads. A higher-level presentation could show the

dynamic execution of tasks over time in the form of program execution graphs or time lines.

The key feature of the event trace browser is that it is interactive. The event trace browser
defines the lowest level of event trace flow analysis. It takes the event specification and format
information, and provides a front-end for general inquiries about program execution. Basic

searching and event presentation are handled by the browser.

Execution flow generalization provides the programmer with a way of observing higher-level
execution behavior not necessarily represented directly by some event. Although the browser
provides minimal functionality in this area, the execution flow generalizer works with high-level
events défined from combinations of the traced events. The resulting execution flow generalizations
are presented in various ways to the user. For instance, processor concurrency can be analyzed
from the relative occurrence of processor activity events in the program trace. Figure 7 shows a
graph of processor activity that might correspond to the task of the dynamic call graph above. The>
programmer can quickly identify periods of reduced parallelism from the graph and then return to
the browser to look at the specific events occurring at those times. Although this is a simple
example of execution flow generalization, it illustrates the basic ideas. It would be easy, for

instance, to apply the same methods to produce task concurrency graphs.

If CEDAR was a monoprogrammed system, the real-time time-stamped program event trace
would be, to a first approximation, a time-accurate representation of program execution. However,
CEDAR is multiprogrammed, and, unfortunately, this causes problems for the program performance
analysis.  Essentially, what is required is the ability to quantify and remove the effects of
multiprogramming from the collected performance data. Standard approaches keep separate
measurements for the different jobs, updating the values only when a job is executing. This might
be acceptable for sequential programs, but the problems are exacerbated for programs composed of
multiple tasks. In this case, the multiprogrammed run-time environment can actually alter the
dynamic program execution flow requiring significantly more imaginative measurement and analysis

techniques to assess ““virtual” program performance.

Virtual execution flow analysis is an experimental performance tool being developed in CEDAR
for multi-tasked programs. Its purpose is to remove the task scheduling effects of CEDAR
multiprogramming from the observed program execution as represented by the program trace. The
tool is based on the tracing of run-time environment events, such as task context switches and

scheduling events, and operating system events dealing with different task execution states and task
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synchronization. The analysis attempts 10 identify periods of dependent and independent task
execution subject to the inter-task synchronization activities present in the trace. If all task -
synchronization is done using primitives that are traced, virtual execution flow analysis will be able
to maximally “compress” the original trace into a virtual execution trace where all inter-task
dependencies remain ordered in time. Non-traced inter-task synchronization, however, can limit the

ability of virtual execution flow analysis to remove multiprogramming overhead.

An example of the benefit of virtual execution flow analysis can be seen in the before and after
program execution graphs of Figure 8. It is hard to discern true effective parallelism from the
original program trace data displayed in the upper graph as task activity over time. Parallel
execution is observed, but so are periods of complete program inactivity (represented by [J’s); for
this example, it is assumed that the tasks are not waiting for 1/0 during this period. Shorter total
execution time plus more parallelism might be expected if the program were not subject to
multiprogramming.  Using the inter-task synchronization information from the program trace
(indicated by the arrows), the not running, non-waiting periods can be removed from the task traces
producing the virtual execution graph shown below. Now the “effective” parallelism is more
obvious. Although this graph only approximates program execution in a non-multiprogrammed
environment, it does help to estimate the degree of performance degradation and pertubation due to

system load.
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5.3 Supercomputing Programming Environments

It is essential for CEDAR that performance analysis tools be made available to users through an
integrated environment supporting the full range of program development facilities from optimizing
and restructuring compilers to parallel debuggers. In keeping with the performance tools
themselves, the supercomputer programming environment must be general and adaptive, providing

the appropriate level of assistance for users of varying degrees of sophistication [27].

The Faust software environment being developed for CEDAR is shown in Figure 9. The
fundamental goal of Faust is to make the CEDAR system easier to use. Although performance
assessment is shown as only one component of the overall organization, in fact, performance
analysis pervades the entire programming environment. Knowledge gained by the performance
analysts today will be incorporated in tomorrow’s compilers. Algorithm and subroutine libraries are
the product of results from actual performance experiments. Dynamic and adaptive optimization
requires the ability to analyze performance factors of the run-time environment. Pre-compilation
and pre-execution performance analysis tools will be based on estimates of the run-time

performance of an application derived from past execution statistics of the library kernels and the
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extent of their usage in the code. Effective integration of performance analysis tools into the Faust

environment will result in a level of supercomputer usability heretofore unavailable.
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6. CONCLUSION

As supercomputer technology advances, it becomes increasingly clear that an integrated
performance analysis system must exist as a central component of the overall supercomputer design.
The performance analysis system should be hierarchical to support performance investigations at
various levels of detail, adaptable to accommodate the different performance viewpoints of its users,
and extensible to allow the inclusion of new analysis tools. Furthermore, the performance analysis
system should be conceived as an eventual part of a general supercomputing programming
environment able to apply performance knowledge and experience together with measured

performance data in an expert system-based performance optimization tool.

The performance analysis system discussed in this paper is an attempt at achieving these goals in
the context of the design and development of the CEDAR multiprocessor supercomputer. Many
parts of the basic system design have been implemented. Interestingly, as the rudimentary
performance measurement components of the system have become available, the importance of its

presence has increased as has the list of desired additional performance analysis tools. At the same
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time, the need to assimilate the performance analysis system into the Faust programming

environment has become more obvious.
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