Performance
Instrumentation and
Visualization

Edited by

Margaret Simmons
Rebecca Koskela

acm

-
ES
ACM Press
New York, New York

A
\ A4

Addison-Wesley Publishing Company
The Advanced Book Program
Redwood City, California * Menlo Park, California » Reading, Massachusetts
New York * Don Mills, Ontario » Wokingham, United Kingdom « Amsterdam
Bonn * Sydney Singapore Tokyo « Madrid * San Juan

JED: Just An Event Display

Allen D. Malony?

7.1 Introduction

Event tracing has become a popular form of gathering performance data on
multiprocessor computer systems. Indeed, a performance measurement facility
has been developed for the Cedar multiprocessor that uses tracing as a back-end
mechanism for collecting several run-time measurements including count, time,
virtual memory, and event data [1,2]. Tools to study an event trace, however,
are typically specialized according to the type of data collected. Usually various
trace analyses and displays are developed based on some event interpretation
model. Whereas this approach will give specific information about particular
events and their occurrence in a trace, it is not particularly easy to extend; new
events often require new analysis and display techniques.

One approach to developing a more flexible performance analysis and visu-
alization system is that proposed in Hyperview [3]. The Hyperview architecture
supports the easy addition of new event filter and display modules into the

1Supported in part by NSF Grants NSF MIP-8410110 and NSF DCR 84-06916,
DOE Grant DOE DE-FG02-85ER25001, Air Force Office of Scientific Research Grant
AFOSR-F496200, and a donation from IBM.

99

100 Chapter 7. JED: Just An Event Display

system and provides a patch-cord style of interconnection of filter/display com-
binations. This approach is the desired one for developing high-end performance
environments where there are a variety of analyses and displays that must be
integrated in a single system.

In the first phases of performance measurement, a user is often interested
in such data as the relative sequence of events on different execution threads,
the time a certain event occurs in the computation, or the state of each task
as execution proceeds. High-end environments such as Hyperview, although
powerful, can be overkill in situations where the user only desires to observe
the sequence of events present in the trace together with information about
each event’s type, its time of occurrence, its place of occurrence, and any other
information associated with the events as recorded in the trace. Simple analysis
and presentation of individual events might be all that is required for these
situations.

The goal of the project reported in this paper was to design a simple event
display tool that provided basic trace management support, user-definable event
specification, user-customizable graphical presentation based on a standard Gantt
chart (timeline) display, and a user-extensible analysis and display architecture.
The project was not without an example. In fact, the BBN GIST tool supports
some of these features for the Butterfly multiprocessor [4]. We enhanced GIST’s
functionality in the context of the Cedar multiprocessor system to allow events
to be displayed relative to “logical” tasks instead of physical processors only,
to provide multiple viewports into the trace, and to run under X Windows. We
also provide the user with more flexibility in display customization.

The tool we developed is named JED for (J)ust an (E)vent (D)isplay tool.
It uses event traces produced by the Cedar performance measurement system
referred to above. The following sections discuss the organization and operation
of JED. The mechanisms to extend the standard event analysis and display
features of JED are also described.

7.2 Target Environment

The current implementation of JED is targeted at parallel, multitask programs
running on the Cedar multiprocessor system. In this environment, parallel pro-
grams use the multitasking capabilities of the Xylem operating system to parti-
tion themselves into individual tasks for execution on the Cedar clusters. A task
can further take advantage of hardware concurrency support on each cluster, an
Alliant FX/8, 1o execute loops in parallel across up to eight processors.

The Cedar performance measurement facility allows the collection of trace
data from multiple program tasks. The facility is implemented as a library of
counting, timing, and tracing routines that use a trace buffering run-time sys-
tem for storing performance data. Currently, trace buffers are implemented in

7.3. Organization 101

software. Every task is assigned eight trace buffers, one for each potentially
concurrent execution thread, to be used for tracing during execution.

The measurement facility produces a trace file for each task at program
completion that is a time-ordered merge of a task’s eight processor trace streams.
The file contains a header portion that gives information about the task and about
the file such as the number of events generated. The format of an event appearing
in a trace file is shown below:

event id

processor id

cluster state
event data size (dsize)

timestanp

dsize bytes of event data

All performance measurements made using the library routines are represented as
events in the trace. The event data portion is used to store information associated
with a particular event. This allows measurements such as task execution times,
although not specifically an event, to be recorded as such using a special event
id and using the event data field to store the timing data.

7.3 Organization

JED is an X Windows [5] (Version X11.R3) application organized into four sep-
arate components; see Figure 7.1. The Trace Control component is responsible
for reading the trace, positioning within the trace, and searching for particular
events. It provides these functions for each viewport open on the trace. The
Event Control component provides event definition services. It allows the user
to associate names and graphic icons to events. The event to graphic icon map-
ping can be controlled interactively as can the visibility of events in a task trace
display. The Task Display component opens viewports onto the trace and allows
events for tasks assigned to the viewports to be displayed in a Ganit chart-style
form. Finally, the Event Display component controls how events are shown when
“clicked” on in the task display. A standard event display is provided but the
user can override this default by specifying event display modules that will be
dynamically linked with JED at run-time; see Event Display section.

The implementation of JED is roughly 6000 lines of C code. It uses the Xt
toolkit [6], the Athena widget set [7], and the HP widget set [8]. The current
version works both in black and white and in color. The dynamic linking of
event display modules is currently being implemented.

102 Chapter 7. JED: Just An Event Display

Trace Control

Event Control

input

event definition

positioning

display control

searching

Task Display

Event
Display—>

Modules

Event Display

FIGURE 7.1
JED organization.

7.4 Top-Level Interface

The top-level interface to JED is shown in Figure 7.2. It allows the user to input
information as to where the trace files are located and where to find information
about the events that appear in the task traces. The LOAD, NEW TASK
GROUP, and EVENT CONTROL command buttons provide access to the
the trace control, event control, and task display components, respectively. These

are discussed in the following sections. The QUIT button exits JED.

7.5. Trace Control 103

3] jed =&l
JED - Just an Event Display
Trace Directory: lusaﬁ I
Trace File List: [baskaa I
Event Directory: lteat’i I
Event Definition: levmt"’A J
Images Directory: Iteats“ I
Imaqe Map: Ilap. l

Event Types: Total Events:
Start Time: [:::::::::] End Time: 10000
o e

LOAD { NEW TASK GROUP | EVENT CONTROL | QUIT

FIGURE 7.2
JED top-level interface.

7.5 Trace Control

The trace control portion of JED implements various trace management func-
tions. In particular, it reads task trace files according to the event trace format
specification. All trace management functions operate on a per task basis. That
is, trace control information is maintained for each task separately allowing
operations such as trace positioning to occur on each task independently. The
trace control component uses this technique to improve the efficiency of trace
handling.

7.5.1 Trace Loading

Clicking the LOAD button in the main panel activates the trace control com-
ponent. The Trace Directory input string is used as the directory path to find the
Trace File List file. The trace file list contains a list of task trace files produced
by a parallel program execution. In the example in Figure 7.2, the file tasks
looks like:

task.
task.
task.
task.
task.

b W N = O

104 Chapter 7. JED: Just An Event Display

The total number of tasks for which trace files are present is reported in
the Total Tasks field.

7.5.2 Trace Statistics

JED opens each task trace file and reads its header. From the header, the num-
ber of events generated for this task, the time of the START_TASK_TRACE
event, and the time of the END_TASK_TRACE event can be determined;
START_TASK_TRACE and END_TASK_TRACE are special events in-
serted by the performance measurement facility . The sum of all task events is
reported in the Total Events field. The earliest event time and latest event time
across all tasks are shown in the Start Time and End Time fields, respectively.

7.5.3 Task Trace Control

As mentioned earlier, JED maintains separate trace control information for each
task. It does so to increase the efficiency of updating the task displays that have
different viewports opened on the trace; this will become apparent later. Since
the main display items are events from a task trace, JED must be able t0 quickly
interrogate events of a particular task. Maintaining separate task trace files and

control information allows this to occur.
The C structure for task trace control information is shown below:

typedef struct task

int tid; /* task id for this trace
int tracesize; /* task trace size

int indexsize; /* trace index size

int indexfactor; /* trace index factor

int eventcachesize; /* number in event cache
Hrc begin, end; /* beginning, ending time
Event event; /* current event

Event eventbegin; /* beginning event

Event eventend; /* ending event

Event eventsearch; /* search event

Event eventcache [MAX_EVENT_CACHE]; /* task event cache

Index index[MAX_TRACE_INDEX]; /* trace index array

FILE *file; /* task trace file

Task;

Because trace files can be large, JED maintains an index of each task
trace file for rapid event searching. The indexfactor gives the number of events
between each event index as determine by tracesize and the maximum size of

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

7.6. Event Control 105

the index array. Since the index factor is an integer, index array sizes less than
the maximum may result; indexsize is the actual size. JED also stores in memory
the beginning and ending event for each task trace. Storage for a search event
is also provided.

Although indexed trace files improves the speed of positioning within a file,
we would like to avoid constantly returning to a task trace file to find events.
This is especially true when studying events local to each other in a trace. The
solution is to cache events for each task. If when looking for an event it is
not found in the cache, it is located in the task trace file and a new block of
events from that event forward MAX_EVENT_CACHE events is read into the
event cache. It is hoped that further accessing of events local to this one will
already be present in the cache and will not have to be searched for on disk.

It was found that after implementing the event caching scheme, the speed
of certain operations reflecting local movement within a trace file was signifi-
cantly improved. These operations include scrolling forward, scrolling backing,
zooming in, and zooming out. Of course, the maximum event cache size deter-
mines the locality of event reference that can be supported. This has to be traded
off against the space required to hold the events in memory which additionally
depends on the number of tasks.

7.6 Event Control

The event control component of JED maintains information about the events
appearing in the traces and how they are to be shown in the displays. A defini-
tion file is provided at start-up for labeling events and indicating how data for
events should be displayed. Additionally, a user-supplied image map for show-
ing events in task displays is used at start-up to assign default graphic event
icons. Interactive control over how events are displayed is also provided.

7.6.1 Event Definition

The Event Directory and Event Definition input strings together indicate where
the event definition file is found. The format on an entry in the file is:

event id event name “event data format”

The event id is the integer number of an event as it appears in the trace file. The
event name is character string naming an event. The event data format is used
to format data associated with an event in the default event display; see Event
Display section. A few entries from the sample events file are shown below:

106 Chapter 7. JED: Just An Event Display

Routine_A_entry
Routine B _entry
Routine C entry
Routine A exit
Routine B exit
Routine C_exit

0w JANKO

In this case, no event data format has been specified.

7.6.2 Event Image Map

The Images Directory and Image Map input strings together indicate where the
event image map file is found. This file contains file names of bitmap images
created by the X Windows application bitmap that will be assigned to events.
The default event icon mapping is to assign successive images to successive

events in a round-robin fashion until all events have been assigned images.
Some entries from the file images are shown below:

black
square
boxes
diamond
arrow_down
arrow_left
arrow_right
arrow_up
circle

dot

All the images in this example are shown in the /mage Map Window in
Figure 7.3. Naturally, the user can create her own set of images using the bitmap
program. All images are assumed to be 16x 16 pixels. Currently, only black and
white images are accepted. We will be adding the ability to specify foreground
and background colors for images in the future.

7.6.3 Event Control Window

The Event Control Window shows the user the current event display control
for each event; see Figure 7.4. The name of the event is given together with
the current icon assignment and a visibility control. The window is scrollable
allowing the user to see all events.

Clicking on an event’s icon opens the image map window. A new icon for
this event can then be selected. This has the immediate effect of replacing the

7.6. Event Control 107

B K
[[®]
N E
B X
B B
C &l

m
VAAA,
O
-
RS
ot

]
a3
B
K
=

G VAP KEOE®

|
B
E
&
i
3
V4
2

FIGURE 7.3
Event image map.

X [Routine_A__entry
D E IRoutine_B_entry
@ g IRoutine_C_entry
B X Inoutine_n_entry
E E]Routina_E_entty
qH R |Eout:ine_!'_entry
B X ﬁcutine_a_exit
X lRoutine_B__em’.t
@ @ !Routine_c_exit
[® [X] [routine_D_exit
BX lRout:ine_E_exit
B [Routim_?_e:dc
E lLoop_12

X lLoop_lB

X ILoop_M

Options]

{1 O O O

FIGURE 7.4
Event control.

108 Chapter 7. JED: Just An Event Display

event’s old icon with the newly selected on in all task displays; see Task Display
section.

The visibility of an event in a task display can be controlled. An event is
visible if the visibility box is crossed out. This is true of the Routine _A_entry
event in Figure 7.4. An empty visibility box indicates the event is invisible as in
the case of Routine_F_exit. Clicking on the visibility box toggles the visibility
setting.

The items in the Options pop-up menu allow further event display control.
They are:

All Visible
All Invisible
All Image

Reset

The All Visible and All invisible items set all the events to be visible and invisible,
respectively. All Image sets all the events to the same graphic image; the image
map window is popped-up and the user selects an icon. Reset returns all event
image assignments to their original defaults.

' Clearly, more could be added to the Options menu. In particular, more
sophisticated “event coloring™ choices would be useful. The idea is that events
could be classified by type, such as routine entry and exit, and assigned an icon
based on its type; for instance, all routine entry events might be shown as a
black-filled box and all routine exits as a white box. This would enable the user
to obtain a more graphically abstract view of the events in the task display. As it
is currently, events are classified with respect to only one type, i.e., “an event”.

7.7 Task Groups

To see the trace for a task in JED, the user must first open a Task Group Window;
see Figure 7.5. :

2% Task Group 6~

| arraes |f [ml gu so:u]' ™ ! ’))SO.:)! Lm i

FIGURE 7.5
Task group.

7.7. Task Groups 109

A task group is essentially a viewport (time window) into the trace files
for all tasks assigned to the task group. A viewport is defined by beginning
and ending execution times. The task group window implements operations
allowing the attributes of the time window to be changed by scrolling forwards
or backwards in time, or by zooming in or zooming out in time. Multiple task
groups can be created allowing task events from different times for different
tasks to be viewed simultaneously.

7.7.1 Time Ruler

The time ruler shown in a task group window shows divisions of the current
task group time interval in units of clock ticks. JED makes no assumptions about
the resolution of a clock tick.! The time values shown are global times across
the entire program execution. The difference between the beginning and ending
times for a time window defines the current time window resolution.

7.7.2 Time Commands

At the bottom of a task group window are commands buttons for changing the
attributes of the time window. The START button sets the beginning time to
be that of the first event generated across ALL task traces. The time window
resolution is maintained so the ending time value is set to be the beginning
time plus the resolution; for instance, if the first event occurred at time 100 and
the current time window resolution is 1000, clicking START would set the
beginning time to 100 and the ending time to 1100. The END button is defined
similarly except the ending time is set to the time of the last event generated
across ALL task traces.

The < 50% < button scrolls the time window to the left by 50% of the
current resolution with the resolution maintained. The > 50% > button scrolls
the time window to the right by 50% of the current resolution with the resolution
maintained. The IN button zooms in on the current time window by dividing
the time interval in half and maintaining the beginning time. The OUT button
zooms out (grows) the current time window by twice its size while maintaining
the beginning time.

7.7.3 Options

The Options pop-up menu provides functions for adding tasks to a task group,
marking interesting points in time, and iconifying or closing the task group
window. The menu items are:

1For the Cedar machine, a clock tick is 10 useconds.

110 Chapter 7. JED: Just An Event Display

New Task
Set Mark
Delete Mark
Delete All Marks
Go To Mark
Rotate Marks
Iconify
Close

The New Task item lets the user assign a task to a task group. A list of
tasks are shown from which the desired one is selected. A new task display is
then created; see Figure 7.6 and the Task Display section. Any or all tasks can
be assigned to a task group; notice, it does not make sense to assign the same
task to a task group more than once. '

JED lets the user to “mark” interesting points in time for a task group. The
intent is to let the user return to these interesting points in the future. Setting a
mark is done by selecting the Set Mark menu item and then clicking at a point
on the current time ruler. When a mark is set it becomes the current mark. JED
maintains a queue of marks for each task group. A mark icon (a triangle) is
shown on the ruler at the time where the mouse click occurred; a black triangle
indicates the current mark. Marks can be seen in Figure 7.6.

A variety of things can be done with marks. Delete Mark deletes the current
mark. Delete All Marks does what it says for a task group. Go To Mark goes
to the current mark. The time window is moved such that the beginning time
is that of the mark and the resolution stays the same. Rotate Marks places the
current mark at the tail of the mark queue, makes the next mark in the queue
the current mark, and goes to that mark.

The lconify menu item unmaps a task group window and shows it iconified
in the top-level window. This feature is currently not implemented although it
would be easy to add. Close closes the task group. window and all assigned task

displays. '

7.8 Task Display

A task display is a region of the task group window that gets created when a
task is assigned to a task group; Figure 7.6 shows a task group window with
one task display and Figure 7.7 shows one with two task displays.

The graphics part of the region displays events for the particular task oc-
curring in the time window as defined by the task group. Events are shown by
their graphic icons. In the case of our Cedar implementation, task-level concur-

7.8. Task Display 111

8 Taeibpgwigis bt e

rs:] ! L 1 _

| Ty — '_.{ﬂm_i — ; 5 i -

73] S O ga— b ’ =

T g { — = —

ni— — N N SN =
" ¥ L eRFoB-mEl - Opes eosEe—ed
orop 0 | « 8 120 160 200 “u0 280 320 %0
[urrxmi“ | sox | feesoe BER I s [|

FIGURE 7.6

Task display—one task.

28 Ta-k Gt ¢

FIGURE 7.7
Task display—two tasks.

rency is also shown in the form of lines of sequential and concurrent activity.
The CLOSE button de-assigns a task from a task group.

7.8.1 Gantt Chart Display

The type of display chosen to show task events is a Gantt chart. The intent
was to have a simple display that would show event history. The task display
does this by showing events for each task assigned to a task group occurring
within the task group time window. The horizontal placement of event icons for

112 Chapter 7. JED: Just An Event Display

a particular task display reflect the time relationship between events occurring
for that task. The vertical stacking of task displays allows one to see the time
relationship between events occurring on different tasks.

7.8.2 Cedar implementation

The task display for Cedar tasks needs some explaining. Because each task exe-
cutes on an Alliant FX/8, the cluster component of Cedar, it can take advantage
of special concurrency hardware to have up to eight processors working con-
currently. Each processor can be generating events. Therefore, there are eight
possible event streams for each task.

The events for each processor are shown separately in the task display.
Further, concurrency lines are shown to distinguish between periods of sequential
and concurrent execution.? Sequential execution events are always shown on the
processor 1’s event line.

When interpreting the task display for Cedar programs it is important to
understand that JED can only use the event information to determine sequential
versus concurrent state. It cannot assume that at the time a sequential to con-
current transition occurs, as occurs in Figure 7.6 at time 220, only the processor
generating the event is active. Similarly, JED must assume all processors remain
active until a concurrent to sequential transition is noticed, as at time 280 in
Figure 7.6.

7.9 Event Display

Clicking on an event icon in a task display opens an event display window. This
provides detailed information about that particular event: the event name, the
time the event occurred, and some representation of the data field, if any. JED
provides a standard textual event display. Additions are being implemented that
will allow a user to link to JED his own special displays for certain events.

7.9.1 Standard Event Display

An example of the standard event display is shown in Figure 7.8. It simply gives
the event name, the time of the event, and the event data textually formatted
using the format string specification from the event definition file.® In this ex-
ample there are no data associated with the event. The CLOSE button closes the

2Notice, by setting all events to be invisible, only the concurrency lines will be shown
allowing the user to observe sequential/concurrent transitions.

3At this time, textual event data formatting is not implemented.

7.9. Event Display 113

[E5] Event Display

Event: Loop_12
Time: 410
Data:

CLOSE

FIGURE 7.8
Event display.

event display window. An event display window can also be closed by again
clicking on the event icon.

The BBN GIST tool also has this capability of popping-up a textual event
display window. In fact, the idea of using a format specification string to format
the event data was borrowed from GIST.

7.9.2 Custom Event Displays

Often the event data can be represented in ways other than textually. Also, a
large amount of event data can pose problems with textual event layout. For
instance, an event trace may contain events recording the number of entries in
a work queue. It might be desired to show these data in the form of a bargraph
with the amount the bargraph is filled relative to the number of queue entries.
To provide the capability for extending the standard set of event displays,
we are taking the following approach in JED; see Figure 7.9. An interface is
specified in JED that allows user-defined event displays to be linked with the
JED program. Essentially this interface passes an event structure from JED to
a user’s event display through a special create event display routine specific for
that display. The event display interprets the event information and presents the
data accordingly. JED also requires the event display modules to support a close
event display routine to be used for closing event display windows from JED.

User-defined event display modules will be specified as part of the event
definition file. For each event, there will be an indication as to what event display
1o use—standard or user-defined—and if user-defined, where the event display
object code module resides. JED will make use of an object code instrumentation
tool developed for Cedar to perform the module linking.

114 Chapter 7. JED: Just An Event Display

User Event Standard
Display Definitions Event
Modules ' l Display

N Object _—
Code » JED? event
Instrument. \\\\s\\‘
User

JED Event

Display
FIGURE 7.9

User-defined event displays.

7.10 Conclusion

The JED tool attempts to fill a gap between rudimentary performance report-
ing tools and sophisticated performance analysis and visualization systems. JED
concentrates on managing and displaying event traces produced from paral-
lel, multitasked programs running on multiprocessor systems. Currently, JED is
working for traces from programs running on the Cedar machine.

Schemes have been implemented in JED to improve the efficiency of brows-
ing multiple, potentially large, task event traces. These include per task trace
control, indexing of task trace files, and event caching

Certain decisions about task trace displays and event displays have been
made in JED. A Gantt chart-style display was selected because it shows event
history and the time relationship between events. Events are represented in this
display as graphic icons. JED support multiple viewing ports onto the traces
allowing events from multiple tasks to be seen from different time periods
simultaneously. Details of an event can be shown using the standard textual
event display.

JED can be customized in several ways. First, there are no assumptions
about events except for the event format. All event information is provided by
the event definition file set up by the user. This includes the event id, event
name, textual format specification, and special event displays. Second, the user
can control how events are shown in the task displays using special image maps.
Finally, the user can replace the standard textual event display with a custom

7.10. Conclusion 115

display. For the Cedar implementation, we are building event display modules
to show counting, timing, and virtual memory statistics.

References

1.

Allen D. Malony, Program Tracing in Cedar, CSRD Report No. 660, Uni-
versity of Nllinois at Urbana-hampaign, April 1987.

. K. Gallivan, W. Jalby, A. Malony, and P.-C. Yew, Performance Analysis

on the Cedar System, CSRD Report No. 680, University of Illinois at
Urbana-Champaign, June 1988.

. A. Malony, D. Reed, R. Aydt, B. Totty, J. Arendt, and D. Grabas, An Inte-

grated Performance Data Collection, Analysis, and Visualization System,
4th Conf. on Hypercubes, Concurrent Computers, and Applications, March
1988.

4. GIST User’s Manual, Bolt, Beranek and Newman, 1988.

- R. Scheifler and J. Gettys, The X Window System, ACM Trans. on Graph-

ics, Vol. 5, No. 2, April 1986, pp. 79-109.

. J. McCormak, P. Asente, R. Swick, X Toolkit Intrinsics — C Language

Interface, MIT, 1988.

Ralph R. Swick and Terry Weissman, X Toolkit Athena Widgets — C Lan-
guage Interface, MIT, 1988.

. Programming With the HP X Widgets, Hewlett-Packard, Nov. 1988.

