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Abstract

Determining the performance behavior of parallel com-
putations requires some form of intrusive tracing mea-

surement. The greater the need for detailed perfor-

mance data, the more intrusion the measurement will

cause. Recovering actual execution performance jfrom

perturbed performance measurements using event-

based perturbation analysis is the topic of this paper.

We show that the measurement and subsequent anal-

ysis of synchronization operations (particularly, ad-
vance and await) can produce, in practice, accurate

approximations to actual performance behavior. We

use as testcases three Lawrence Livermore loops that
execute as parallel DOACROSS loops on an Alliant

FX/80. The results of our experiments suggest that

a systematic application of performance perturbation

analysis techniques will allow more detailed, accurate

instrumentation than traditionally believed possible.

1 Introduction

Many advances in modern science have been achieved
through the systematic application of the scientific

method. However, experiment al scientists have long

understood the relationship between the need tc) ob-

serve finer levels of operational behavior (e.g,, to test

the limits of a theoretical framework) and the tech-

nological capabilities of the measurement tools to de-

liver accurate observations. Clearly, instrumentation

and phenomenon must be commensurate to maintain
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instrumentation perturbations at acceptable levels and

to achieve reliable observations.
The problems of uncertainty and instrumentation

perturbation in computer system performance analy-

sis are no less profound than in other experimental sci-

ences. The terms “Heisenberg Uncertainty” [15] and

“probe effect” [6] have been used to describe the er-

ror introduced in the performance measurement due

to a monitor’s intrusion on computer system behavior.

With the exception of passive hardware performance

monitors, performance experiments rely on software
instrumentation for performance data capture. sLICh

instrumentation mandates a delicate balance between
volume and accuracy, Excessive instrumentation per-

turbs the measured system; limited instrumentation

reduces measurement detail — system behavior must

be inferred from insufficient data. Simply put, perfor-

mance instrumentation manifests an Instrumentation

Uncertainty Principle:

● Instrumentation perturbs the system state.

● Execution phenomena and instrument at ion are

coupled logically.

● Volume and accuracy are antithetical.

The primary source of instrumentation perturbations

is execution of additional instructions. However, ancil-

lary perturbations can result from disabled compiler

optimizations and additional operating system over-

head. These perturbations manifest themselves in sev-

eral ways: execution slowdown, changes in memory ref-

erence patterns, and even register interlock stalls [19].

From a performance evaluation perspective, instru-

mentation perturbations must be balanced against the

need for detailed performance data. Regrettably, there

have been no formal models of performance perturba-

tion that would permit quantitative evaluation given

instrumentation costs, measured event frequency, and

desired instrumentation detail. Given the lack of mod-

els and the potential dangers of excessive instrumenta-

tion, detailed performance measurements, mainly in the
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form of software event traces, often are rejected for fear

of corrupting the data (i.e., a small volume of accurate,

though incomplete, instrumentation data is preferred).

We hypothesize that this restriction is, in many cases,

unduly pessimistic.

Our approach to understanding the problem of per-

formance perturbation involves both the creation of

perturbation models and the testing of those models

through empirical studies [18]. The perturbation mod-

els we developed are based on timing and event anal-

ysis. Time-based perturbation models attempt to re-

cover accurate timing of trace events from knowledge

of instrumentation overhead, assuming event indepen-

dence. Event-based perturbation models focus on re-

moving the effects of instrumentation on the ordering

of events in parallel execution. For both time-based and

event-based perturbation analysis, we have conducted a

series of instrumentation experiments to determine the

validity of the models in an actual execution context

[18, 19]. The results of these experiments suggest that

a systematic application of performance perturbation

anal ysis techniques will allow more detailed, accurate

instrumentation than traditionally believed possible.

This paper reports the results from an empirical

study of event-based perturbation analysis as applied to

parallel loops with execution dependencies. In particu-

lar, we demonstrate the utility of perturbation analysis

for three parallel loops from the Lawrence Livermore

Loops these three loops execute as DOACROSS loops

on an Alliant FX/80. We briefly describe the instru-

mentation approach we used for our experiments and

the goals of performance perturbation analysis in 32.

In !3, we present our results from time-based analy-

sis and discuss the basic limitations of this approach

for parallel computations with dependent execution. In

!j4, we consider conservative perturbation analysis ap-

proaches for programs with DOACROSS loops using

advance/await synchronization. The results from the

Livermore loop experiments using event-based pertur-

bation analysis are presented in ~5. In $6, we give con-

cluding remarks.

2 Instrumentation and Pertur-

bation Analysis

Models to capture and remove perturbations due to in-

strumentation must be based on a particular instru-

mentation approach. Because tracing is the most gen-

eral form of instrumentation, allowing both static and

dynamic analysis, we derive perturbation models for

trace instrumentation. Given an understanding of pos-

sible performance instrumentation perturbations and

measures of in vitro trace instrumentation costs in an

execution environment, our goal for perturbation anal-

ysis is to recover the “true” trace of events from an mea-

sured trace as they would have been generated during

an execution without instrumentation. There are two

phases in this perturbation analysis:

● Execution Timing Analysis – Given the mea-

sured costs of instrumentation, adjust the trace

event times to remove these perturbations.

● Event Trace Analysis – Given instrumentation

perturbations that can reorder trace events, adjust

the event sequence based on knowledge of event

dependencies, maintaining causality.

In both phases, models are needed that describe ob-

served behavior as a perturbation of true behavior. For

timing analysis, one must approximate true times of

event occurrence, either for each trace event or for the

total execution time. That is, the timing model must

describe how the perturbations affect measured execu-

tion times. Event analysis models are more difficult;

program or system semantic information is needed to

determine if the relative event order is incorrect and,

if so, generate a better approximation to the true or-

der. Before discussing the timing and event models, we

begin with a formal description of our instrumentation

approach.

Given a program P composed of a sequence of

statements S1, Sz, . . . . S~ and a set of instrumentation

points 11, lz, ..., 1., an instrumentation of P is defined

as

Z(l’)=l l,sl,lz,sz, . . ..ln.sn ,

where some Ij may be null (i.e., no instrumentation).

Thus, we define instrumentation on a statement basis,

where an event represents the execution of a statement.

A logical event trace, r, is a time-ordered sequence

of events el, . . .,e~ where each ei is of the form

{t(ei), eidi}, eidi is the event identifier for the ith event

representing the statement Seid, in the program, and

t(ei) is the time when the event occurred. The logi-

cal event trace represents the program’s act ual perfor-
mance. If the program is instrumented, we use the no-

tation I-m to denote a measured event trace. The mea-

sured event trace represents the program’s measured

performance. However, r~ also reflects a perturbation

of r in execution time and, possibly, event order. Per-

turbation models attempt to use execution information

contained in rm to resolve the instrumentation pertur-

bations that occurred during the measurement and to

approximate actual performance behavior.
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Figure 1: Sequential Loop Execution: Measured and Approximated Ratios

3 Time-Based Analysis

In previous work [19], we developed time-based pertur-

bation models that permit the removal of perturbations

from application program traces. The models assumed

independence among threads of execution and, there-

fore, accounted only for the execution time overhead

of the instrumentation when constructing performance

approximations from the measured traces. We applied

the models in the performance analysis of scalar, vector,

and concurrent executions of the Lawrence Livermore

Loops [20] on the Alliant FX/80 multiprocessor [24].

To test the robustness of the models, a full, statement-

level instrumentation of the loops was performed —

every source statement execution was captured by an

event in an execution trace.

Surprisingly, the relatively simple models were able

to approximate many of the Livermore loop execution

times to within fifteen percent from full trace instru-

ment ations, where measured execution time perturba-

tions exceeded four orders of magnitude. As an e:~am-

ple, Figure 1 shows the perturbation analysis results

for sequential loop execution of some of the Livermore

loops. In the figure, the black bars represent the ratio

of measured loop execution time (with full instrumenta-

tion) to the actual loop execution time. The dotted bars

represent the ratio of the approximated execution time

(using the time-based models) to the actual loop exe-

cution time. Even though slowdowns exceeded sixteen

times, as in the case of loop 19, approximated times

were extremely accurate, relative to the measured er-

ror. Not only did the models perform well when ap-

proximating total execution time, but the accuracy of

individual event timings were equally impressive.

The time-based perturbation models accurately cap-

ture the effects of instrumentation perturbation when

the time and order events occur is execution indepen-

dent. This is true for sequential execution because the

execution states of sequential programs form a total

order, and event times are affected only by instrumen-

tation overhead. As a result, our timing model approx-

imations for the Livermore loops in sequential and vec-

tor modes were extremely accurate. Even for some con-

current execution scenarios, typically those with simple

fork-join behavior and no inter-thread dependencies,

the time-based perturbation models were good.

However, in general, concurrent execution involves

data dependent behavior. The states of parallel pro-

grams inherently form a partial order that must be fol-

lowed during execution. If dependency control is spread

across threads of execution, instrumentation can per-

turb the timing relationships of events. Direct appli-

cations of time-based perturbation models will fail be-

cause they do not capture these inter-thread event de-

pendencies. This was the case for loops 3 (Inner Prod-

uct), 4 (Banded Linear Equations), and 17 (Implicit,

Conditional Computation). From our full instrumen-

tation experiments, Table 1 gives the ratio of the mea-

sured and approximated execution times to the actual

execution times using time-based perturbation analysis

for the three loops.

For Livermore loops 3 and 4, our execution time

model over-estimates the instrument at ion pert urbat ion

(i.e., the model’s estimate of total concurrent execution

time is too low). Both loops contain a small critical

section for the update of a shared variable that syn-

chronizes the loop iterations. Without instrumentation,

most processors are blocked on entry to this critical sec-

tion. Adding instrumentation increases the total com-

putation in each concurrent iteration and reduces the

probability of blocking at tbe critical wction. In con-

sequence, the processors spend less time wait ing when
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r
Execution Ratio

Livermore Loop Measured Approximated

-ir5Gir Actual

J 1

3 2.48 0.37

4 2.64 0.57

17 9.97 8.31

Table 1: Loop Execution Time Ratios: Time-Based

Analysis

the code is instrumented. Removing only the instru-

mentation overhead without considering the effects on

blocking probability results in an under-approximation

of the total execution time.

For Livermore loop 17, our model under-estimates

the instrumentation perturbation. The reason is the

same as for loops 3 and 4 — the loop contains a crit-

ical section. However, the critical section is large and

includes tracing code when instrumented. The ad-

ditional instrumentation code increases the probabil-

ity of contention, and the critical section becomes a

larger fraction of the total execution time in the in-

strumented code. The additional waiting time associ-

ated with increased blocking is not considered by the

time-based perturbation analysis, resulting in an over-

approximation of total execution time.

4 Event-Based Analysis

The performance of parallel computations often de-

pends on the relative ordering of dependent events

across multiple threads of execution. Each parallel

thread can be viewed as making transitions between

phases of independent and dependent execution. That

is, either the thread can proceed with a computation

independent of the activities in the other threads, or

the thread is dependent on some conditions that must

be satisfied before proceeding. In cases where a thread

is waiting for a synchronization action, overall perfor-

mance is reduced. However, parallel performance is also

dependent on the efficient allocation and utilization of

resources, mainly processor, memory, and network re-

sources. Scheduling, load balancing, data partitioning,

and communication overhead are among the many per-

formance issues that must be addressed.

degradation, as it is with sequential computations, but

rather the perturbation of the set of “likely” event or-

derings, resulting in the re-mapping of event occurrence

to threads of execution, the reassignment of computa-

tional resources [16], and changes in the behavior of re-

source use. Unlike parallel debugging approaches that

attempt to detect data races in parallel programs by

applying an event-based, partial order theory of “feasi-

ble” program execution [5, 23, 25], perturbation anal-

ysis must recover the actual run-time performance be-

havior from a perturbed performance measurement.

If performance instrumentation is designed correctly,

an un-instrumented parallel execution that satisfies

Lamport’s seqzteniial consistency criterion [13] im-

plies that the performance measurement will be non-

interjer%g and safe [10]. If the performance measure-

ments involve only the detection and recording of event

occurrence (i.e. tracing), the partial order relationships

will be unaffected and the set of feasible executions will

remain unchanged [21, 23]. This consequence will also

be true in the less restricted condition of weak order-

ing [2}. Thus, perturbation analysis begins with a total

ordering of measured events consistent with the hap-

pened before relation [12] defined by the original par-

tial order execution. To this total order, we can apply

time-based perturbation analysis to thread events that

occurred during independent execution to remove the

instrumentation overhead. Similarly, event-based per-

turbation analysis [18] (see below) can be applied to the

synchronization operations (e.g., barriers, semaphores,

advance/await) that implement the dependency rela-

tionships. As long as the total ordering of dependent

events present in the measured execution is maintained

during the analysis, the approximated execution also

will be a feasible execution. We will call such an ap-

proximated execution a conservative approximation.

However, the important question is not whether the

conservative approximation is a feasible execution, but

whether it is a likely execution. The set of Iikel y exe-

cutions is the subset of the feasible executions that are

most probable. Computing the likelihood distribution

of feasible executions is an extremely difficult problem,

requiring a model of time and concurrent execution.

Analytical queueing models have been used to predict

the performance of parallel computations [8, 9], includ-

ing general, parallel execution structures with prece-

dence constraints [17, 22, 27, 28] and synchronization

[1]. However, these approaches typically model exe-

4.1 Likely Executions and Conservative

Approximations

The fundamental problem with making detailed mea-

surements of parallel computations is not performance

1A parallel execution is sequentially consistent if the result is

the same as if the operations were executed in some sequential

order obtained by arbitrarily interleaving the thread execution

streams.
2 He~bold and Brym refer to the set of feasible executions

defined by the partial order of program events as the partially

orde9-ed set [10].
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cution time behavior stochastically, limiting their use

in practice. Other approaches attempt to model time

dependent behavior in concurrent software. Lane [14]

proposes the event dependency tree model that includes

time semantics but lacks a broad set of synchronization

operations to make it a practical approach. Haase [7]

and Shaw [26], on the other hand, each define a time
logic based on program statements for reasoning about

timing properties in programs. Shaw’s work is more ro-

bust, considers a larger class of program constructs and

uses interval arithmetic in the logic specification, but it

only superficially treats timing issues in dependent con-

current execution. Shaw comments that an approach

to concurrent timing analysis must consider the spe-

cific context within which synchronization statements

are used, including their overheads and interactions.

The inability to predict likely executions makes it

difficult to bound the error of conservative approxi-

mations. Furthermore, no intrusive performance mea-

surements can possibly allow event-based perturbation

analysis to determine the proper assignment and u~seof

resources in the approximated execution. To improve

the “accuracy” of the conservative approximation, ad-

ditional information must be provided to the perturba-

tion analysis process that describes certain behavioral

properties of the computation (e.g., data dependency

information and loop scheduling algorithms). The per-

turbation analysis can use this information to make

more ‘(liberal” approximations. Although the liberal

approximations might be more accurate than ccmser-

vative ones, in the sense that they are closer to likely

executions, it is still difficult to show error bounds with-

out a more formal timing model.

4.2 Advance/Await Synchronization

In [18], we give an extensive discussion of methods for

conservative perturbation analysis of synchronization

operations found in concurrent programs. Because we

are interested in testing event-based analysis in la real

execution context, we limit the discussion here to ad-

vance/await synchronization as found in DOACIROSS

loops — the Livermore loops with data dependencies

execute in concurrent mode on the Alliant FX/80 as

DOACROSS loops using the advance/await synchro-

nization hardware of that machine.

4.2.1 operation

The advance/await form of synchronization is a spe-

cial case of the general semaphore. Each await oper-

ation synchronizes with a unique advance operation.

Each advance/await operation pair can be thought
of as operating on a unique semaphore. A general ad-

vance/await synchronization variable, A, stores the his-

tory of advance operations. The semantics of the ad-

vance and await operations are shown below:3

advance (A, i): mark in A that i was advanced

await (A, i): if (i has not been advanced in A)

wait until i has been advanced

4.2.2 Instrumentation

To correctly identify which advance and await op-

erations should be paired during perturbation analy-

sis, advance and await events must be recorded with

a unique value identifying the pair. Typically, ad-

vance/await synchronization is used to control the ex-

ecution of loops with iteration dependencies [3]. The

unique identifier in this case might be the loop itera-

tion index. In general, the instrumentation for captur-

ing the advance and await events must generate the

unique identifier itself. From the semantics of the ad-

vance and await primitives above, this unique identi-

fier could be the argument i.

Actually, two await events are recorded: one to iden-

tify the beginning of the await operation, aU)ait13, and

another to identify the end of the await operation,

aUJaitE, after the advance operation has occurred. If

the advance operation occurs before the corresponding

await operation, the UWUifE event will be recorded im-

mediately after awaitB, separated in time only by the

instrumentation overhead and the await code process-

ing. The advance event is recorded after the advance

operation completes.

4.2.3 Perturbation Analysis

Because of the strict synchronization enforced by the

advance and await operations, a partial ordering of

these actions can be determined directly from the mea-

sured advance and await events. We can easily iden-

tify the advance/await pairing from the instrumenta-

tion measurement and, hence, the ordering relationship

of pairs of these events across the t breads of execution.

Independent of how advance and await operations are

assigned to threads, this partial ordering must be main-

tained in the approximated execution.

Perturbation analysis is a constructive process. For

each thread of execution, it attempts to resolve the ap-

proximate time of occurrence, t., for each successive

event. The approximate time of an event z, t~(z),can-

not be determined until the approximate time of all

other events upon which z depends have been resolved;

3 our de~tio~ of the advance and await Operations is lnore

general than what is often described. However, the perturbation

analysis still applies in the more restrictive case.
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x is always execution dependent [29] on the last pre-

ceding event occurring on the same thread.4 Of these

events, one will serve as a time basis when calculating

ta(z).

When approximating the time of advance events, we

only need to know the approximate time of the preced-

ing event on the same thread. If we let u represent the

preceding event, then

ta(advance) = ta(u)+ tm(advance) – tin(u) – a,

where tm (advance) represents the measured time of the

advance event, tm (u) the measured time of u, and a

the overhead of the advance operation instrumenta-

tion. Similarly, the approximate time of the event pre-

ceding an awaitB event, v, serves as the time basis for

calculating ta(await~),

~a(aWa~tB) = t.(?)) + %a(CIWa~tB) – h(v) – ~,

where /3 is the instrumentation overhead at the begin-

ning await operation.

However, approximating the time of an a?.OaitE

event requires knowing t. (advance) and t~(awaitB). If

ta(advance) < ta(awaitB), we assume no waiting oc-

curs in the approximate execution and

ta(a~a~tE) = ~a(~?f)~dB)+ 6’nowczit,
,

‘where snOW~it represents the synchronization overhead

of the await operation when no waiting occurs. If

ta(advance) > ta(awaitB), waiting will occur in the

approximated execution, and t ~ (advance) will serve as

the time basis for approximating the time of occurrence

of aU)aitE. That is,

ta(awaitE) = ta(advance) + sWait,

where sWait represents the synchronization overhead of

the await operation when waiting results, after the ad-

vance operation occurs. The overheads snOW.it and

SW.it are empirically determined and are input to the

perturbation analysis.
By applying the above formulae, we can resolve all

time approximations for advance and await events ap-

pearing in the measured trace. However, because in-

strumentation intrusion can cause a perturbation of

the relative ordering of advance and await operation

from the actual to the measured execution, this relative

ordering could also be different in the approximation.

This can cause synchronization waiting, which occurred

in the measured execution due to instrumentation in-

trusion, to be removed during perturbation analysis. It

is also possible that synchronization waiting manifests

4 If an event y occurs before an event z on the same thread of
execution, then z is execution dependent on y, but only in the

context of the particular execution.

..

itself in the approximation when it did not occur in

the measurem~nt. Figure 2 shows these two cases, with

the advance, awa~tB, and awaitE events marked. Note

that the instrumentation overheads have been removed

in the approximation.

One interesting aspect of advance/await synchroniza-

tion is that the pair of execution threads synchroniz-

ing can change dynamically. Although conservative,

event-based perturbation analysis can keep the partial

order consistent wit h a feasible execution, the concur-

rent work constrained by the advance and await oper-

ations might be scheduled differently in the actual exe-

cution than what is observed from the measured events

— a condition that conservative analysis cannot detect

or resolve. The perturbation analysis does not know

a priori that work reassignment to threads is allowed.

The use of external execution information to reassign

the work bounded by advance and await events during

perturbation analysis can lead to significant differences

in approximated execution behavior [18].

4.3 The DOACROSS Loop Model

A DOACROSS loop [3] contains data dependencies [11]

between iterations that that must be enforced to main-

tain correct execution order. The notion of a data de-

pendence distance [29], d, is used to quantify the depen-

dencies within an iteration of a DOACROSS loop. If

iteration i + d is dependent on iteration i, the distance

of the data dependence is d. For our purposes, we will

focus on constant-distance dependencies [29] (i.e., de-

pendencies with constant data dependence distances).

Unlike DOALL loops [4], the execution of

DOACROSS loops is not entirely nondeterministic—

the execution is constrained by the synchronization

points within each iteration and by their partially or-

dered execution. Although errors can occur in conser-

vative event-based perturbation analysis because of lack

of knowledge about correct resource assignment, requir-

ing some form of scheduling simulation to improve ap-

proximation accuracy, the dependent execution can re-

strict the set of possible run-time behaviors.

5 Event-Based

Perturbation Analysis of the

Livermore Loops

As discussed earlier, not all of the Livermore loops were

amenable to timing-based perturbation analysis of con-

current execution. Loops 3, 4, and 17, in particular,

show significant errors in the timing model approxima-

tions on the Alliant FX/80. All three loops execute
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Figure 2: Advance/Await Synch ionization: Measurement and Approximation
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as DOACROSS loops with advance/await synchroniza-

tion to prevent concurrent access to a critical section.

The concurrent execution behavior of the loops violates

the assumptions of the time-based perturbation analy-

sis; namely, the assumptions of event independence and

simple fork-join behavior of parallel computations. An

event-based approach must be applied instead. To eval-

uate the effectiveness of our event-based perturbation

anal ysis, in particular the models for advance,/ await

synchronization in DOACROSS loops, we applied an

event trace analysis tool to these three Livermore loops.

5.1 Loop Synchronization Structure

Figure 3 shows the structure of the three loolps, in-

cluding the placement of DOACROSS loop begin and

end, and the advance and await synchronization op-

erat ions. As before, every statement in the loop was in-

strumented — each node in the graph corresponds to a

statement in the loop and, hence, an event in the trace.

In addition, the synchronization operations used to sat-

isfy statement dependencies were also instrumented.5

The statement dependencies are shown by the white ar-

rows. The events following the advance and await op-

erations are identified as special synchronization events

by the analysis tool so that the advancejawait se-

mantics can be correctly enforced.s The end of the

DOACROSS loops are handled as barriers.7

5.2 Loop Approximations

Table 2 gives the ratio of measured and approximated

execution time to the actual execution time of the loops.

The
Measured

Actual
ratio compares the measured execution

time from a full instrumentation for event anallysis to

the actual time. When compared to the ratios in Table

1, we see a slowdown in measured execution time for

event analysis because of the additional synchronization

instrument ation overhead.

The ‘pp~C~U~~ted ratio shows the accuracy of the

approximation from event-based perturbation analysis.

Applying event-based perturbation analysis to ensure

the partial ordering of advance and await operations

in the approximated execution significantly improves

5It is interesting to note that these synchronization operations

were not a part of the original source and, therefore, coulld not be

instrumented at the source level. Instead, these operations were

aclded by the Alliant parallelizing Fortran compiler, requiring the

instrumentation to be made to the assembly code produce by the

compilation.
6 As di~cu~~ed in 4.2 .’J, the instrumentation for eVent perturba-

tion analysis stores additional information with synchronization
events to correctly determine their relationship. In the case of
the 100ps here, we store the iteration n-be. with every event.

7 For this barrier synchronization, we applied barrier pertur-

bation models [18] during the analysis.

II Execution Ratio II
J

Livermore Loop Measured Apgwoximated
Actua? Actual

3 4.56 0.96

4 3.38 1.06

17 14.08 0.97

Table 2: Loop Execution Time Ratios: Event-Based

Analysis

the accuracy of the execution time estimations. For

loops 3 and 4, the timing model approximated a smaller

execution time (see Table 1) than actual because the

analysis did not treat the advance and await events as

special, and waiting times that should result because of

the critical section in the actual execution are not main-

tained in the approximation. In the case of loop 3, the

actual execution time is 2.7 times that of the timing-

based approximation (a -63 percent error). However,

event perturbation modeling improves the approxima-

tion to be a factor of 0.96 of the actual time (a -4

percent error). The improvements in the loop 4 ap-

proximation are simiIar. The event model achieves a 6

percent error in this case.

In contrast, the timing-based model approximates an

execution time slower than actual for loop 17. Here

the instrumentation in the critical section of the loop

results in greater waiting during measured execution

which cannot be removed by the timing analysis. How-

ever, even with a 14 times slowdown in the measured

execution, event-based perturbation analysis accurately

resolves the timing of advance and await synchroniza-

tion events to produce an approximation with only a

-3 percent error. The advantage over the timing-based

model is apparent — a factor of over 8 in improved

accuracy is achieved.

From the results above, there appears to be a vio-

lation of the Instrumentation Uncertainty Principle we

introduced in ! 1; namely, performance data volume and

accuracy are ant it hetical. It was necessary to inst ru-

ment loops 3, 4, and 17 more heavily in order to capture

synchronization execution. From the ‘~~~~~~d ratios,

this additional instrumentation shows up clearly as in-

creased execution time overhead. However, the addi-

tional instrumentation is providing information about

the occurrence of synchronization operations during the

computation. Although the instrumentation overhead

further perturbs the execution time measurements, this

additional knowledge of synchronization operation al-

lows more accurate perturbation analysis.
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Processor

o 1 2 3 4 5 6 7 [

4.0570 8.09 % 4.05 ‘%0 2.70 % 4.05 % 5.40 % 2.70 % 4.05 %

Table 3: DOACROSS Waiting Time in Loop 17

waiting -

no waiting n n nl
waiting -

no waiting - I Ill n n n n

waiting -

no waiting - D n II

waiting -

no waiting - n n I

waiting -

no waiting – R n n

waiting -

no waiting - n n nll

waiting -

no waiting - n nl

waiting -

no waiting - n n 11

I 1 I I 1 I I

Processor

o

Processor

1

Processor

2
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3

Processor

4
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5
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6

Processor
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Time (microseconds)

Figure 4: Approximated Waiting Behavior in Livermore Loop 17
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5.3 Loop Performance Analysis

In addition to producing total execution time approxi-

mations, event-based analysis can also generate st atis-

tics about loop execution such as the amount of wai ting

on each processor and the degree of parallelism across

processors. As an example, we computed the percmt-

age of total execution time spent waiting on each ~pro-

cessor in loop 17. These results are shown in Table

3. A execution time history graph of waiting time for

each processor is shown in Figure 4. (The sequential

portions before and after the parallel DOACROSS 1oop

are shown as processor zero active.)

From the waiting information, we computed the level

of parallelism in the computation. The average level

of parallelism of loop 17, excluding the sequential por-

tions, is 7.5. More insight into parallelism behavior can

be gained from a graph of parallelism over time. This

graph is shown in Figure 5. All the waiting and par-

allelism curves presented were generated from the exe-

cution approximations of the event-based perturbation

model.

6 Conclusion

Achieving the accuracy in the event-based approxima-

tions of Livermore loops 3, 4, and 17 from full instru-

mentations is astonishing. It is even more surprising

in light of the extra instrumentation (and hence intru-

sion) needed to collect synchronization operation data

for perturbation analysis; a perceived violation of the

instrumentation principle. Although we cannot expect

this level of accuracy in all cases, it does suggest that

a systematic application of these techniques wil 1 in-

crease the confidence of making detailed perforrnlan ce

measurements.

In general, event-based perturbation models must be

based on a better understanding of the effects of intru-

sion in the context of nondeterministic execution. In

many cases, the complete range of feasible executions

will be restricted to a smaller set of likely executions

due to the computational environment. If instrumen-

tation is added, the set of likely executions can change.

Without a formulation of nondeterministic execution in

the presence of instrumentation, we must rely on empir-

ical evidence, as demonstrated above, that event-based

perturbation analysis is a viable technique.
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