
Perturbation Analysis of High Level

Instrumentation for SPMD Programs

Sekhar R. Sarukkai” Allen D. Malonyt

Dept. of Computer Science Dept. of Computer and Information Science

Indiana University, Bloomington, Indiana University of Oregon, Eugene, Oregon 97405

Abstract

The process of instrumenting a program to study its

behavior can lead to perturbations in the program’s

execution. These perturbations can become severe

for large parallel systems or problem sizes, even when

one captures only high level events. In this paper, we

address the important issue of eliminating execution

perturbations caused by high-level instrumentation of

SPMD programs. We will describe perturbation anal-

ysis techniques for common computation and com-

munication measurements, and show examples which

demonstrate the effectiveness of these techniques in

practice.

1 Introduction

Any measurement of a program’s execution, no

matter how non-intrusive, can perturb how the

program behaves (important for debugging) and

performs (important for performance evaluation).

In contrast to perturbations of correct execution

behavior, perturbations of performance behavior,

although more tractable in theory, pose difficult

problems for performance analysis in practice.

For example, programs run on massively parallel

systems with detailed performance measurement

can have subtle perturbation effects that lead to

*Supported by the NSF New Technologies Program un-

der grant NSF ACS 911616 and a contract from IBM. Cur-

rent address: Recoin Technologies, MS 269-3, NASA Ames

Research Center, Moffett Field, California 94035.
tsupported in part by a contract from Rome Labs under

Air Force contract no. AF 30602-92-C-0135.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

titla of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requirea a fee

and/or apacific permission.

4th ACM PPOPP,51931CA,USA
0 1993 ACM 0.89791 -589 -5/93 /0005 /0044 . ..$1 .50

large performance evaluation errors. In general,

a balance exists between measurement detail and

measurement perturbations that depends on the

requirements of the performance evaluation prob-

lem being addressed. When perturbations lead to

performance data that is too inaccurate to ade-

quately evaluate a performance issue, measure-

ments must be reduced, but this occurs at the

risk of lost performance detail and, again, perfor-

mance evaluation accuracy. Clearly, understand-

ing perturbation effects of performance measure-

ment is important for determining appropriate

levels of instrumentation. However, improving

the tradeoff of measurement detail and evalua-

tion accuracy will come only from the incorpora-

tion of better perturbation analysis techniques in

performance data processing.

The issue of perturbation analysis has been

treated extensively by Malony [7, 8, 9]. However,

that work dealt exclusively with shared mem-

ory programs and assumed the presence of fine-

grained, low-level instrumentation. In this pa-

per, we focus on source level instrumentation of

programs based on the Single-Program, Multiple-

Data (SPMD) execution model. Our aim is to de-

termine the types of perturbations caused by high

level instrumentation of SPMD programs and to

devise analysis methods for removing perturba-

tion effects.

The assumptions made regarding SPMD in-

strumentation are few. We assume that the

un-instrumented parallel program is sequentially

consistent (i.e., satisfies Lamport’s sequential

consistency criteria [5]). This implies that the in-

strumented program will be non-interfering and

safe [1]. We assume that the instrumentation de-

tects and records events independently in each

processor. As such, the instrumentation does not

44

affect the partial order of the original program.

However, since the actual execution may have in-

herently nondeterrninistic behavior, a single per-

formance measurement reflects only one possible

execution scenario.

Section 2 discusses the characteristics of SPMD

instrumentation, the effect of instrumentation

on program performance, and the requirements

for accurate perturbation analysis. Section 3

presents the perturbation analysis of several

important instrumentation cases of interest in

SPMD computations. In Section 4, we show ex-

perimental results that validate the use of pertur-

bation analysis in practice.

2 Instrumentation

The SPMD execution paradigm offers the pro-

grammer a high level abstraction of parallel com-

putation. In SPMD programs implemented us-

ing message passing, processors perform compm

tations on local data, while executing local copies

of the same code. When data from other proces-

sors are required, processors perform conlmunica-

tion operations to obtain the data. This commu-

nication is also used for processor synchroniza-

tion. Logically, there are no sequential regions

in a SPMD program, since the whole program is

executed in parallel by all the processors.1

From the perspective of the programmer, un-

less low level instrumentation is provided in the

target system, the performance characteristics of

a SPMD program execution must be determined

through an analysis of high level, source code

events. While it is clearly important to know if

source code events alone are sufficient for perfor-

mance evaluation, it is also important that the

collected performance data accurately reflect the

program’s actual execution – perturbation effects

introduced by the source instrumentation have to

be eliminated or reduced to acceptable levels.

We assume that instrumentation inserted in a

SPMD program generates data in the form of

events that are stored in a trace file. There are

a number of source level events that that might

be captured during SPMD program execution.

These can be broadly classified as:

Processor computation events: These events

occur in each processor and reflect local com-

putation states. The events on a particular

processor are dependent only on local conl-

putations. However, the timing of the events

can be affected by the execution dependen-

cies that exist between processors. The mea-

surement of these events is necessary to cap-

ture timing information of local processor

computations for reasons of execution pro-

filing.

Message communication events: Messa~es

are used for different purposes such as data

exchange, broadcast communication, and

synchronization. Measurements of these

events are needed to observe the performance

of communication operations used to enforce

data and control dependencies that exist in

the SPMD computation.

The capture of processor computation or mes-

sage communication events can perturb the exe-

cution of a program both directly and indirectly.

Any event measurement will introduce a timing

perturbation in a region of execution local to

when the event occurred. However, perturbations

can accumulate and can propagate through an ex-

ecution, affecting the order and timing of events

later captured.

As shown in Figure 1, the process of perturba-

tion analysis takes the measured event trace and

produces an event trace that is an approximation

of the actual execution. It uses the execution se-

mantics of the operations captured by the high-

level events to reduce or eliminate the perturba-

tions introduced in the measurement. The pro-

cess of eliminating any perturbation effects must

ensure that:

● causality is preserved (e.g., a message should

not be received before it has been sent);

● partial order of the events is preserved (e.g.,

a new communication should not be initiated

before a previous communication upon which

it might depend has been completed); and

● deadlocks are not introduced.

1The SPMD execution model is the basis for several

programming languages targeting massively parallel sys-

tems [4, 6].

Causality can be preserved

dering and timing relationships

by enforcing or-

between message

45

3 Perturbation Analysis
SPMD Source Program

JuSource

Instrumentation

and Execution

Measured ~ Event Trace

uPerturbation

Analysis

Approximate Event Trace

Figure 1: Perturbation Analysis Process

send and receive operations. Partial order is pre-

served on a single processor by guaranteeing that

the time order of any two events is unchanged. By

satisfying causality and partial order constraints

during perturbation analysis, it follows that if

no deadlock occurs in the observed execution of

the program, none will be present in the approx-

imated execution.

Our approach to perturbation analysis at-

tempts to resolve the timing of measured events

on each processor in sequence. The time of an

event is approximated based on the perturbations

introduced by events occurring prior to it and the

timing relationships of events upon which it de-

pends. It is our contention that perturbation ef-

fects of SPMD program instrumentation can be

effectively analyzed by considering only the per-

turbations that result from instrumenting stan-

dard computation, communication, and synchro-

nization primitives. Results from test studies of

several applications run on different parallel sys-

tems show this approach is effective in practice;

see Section 4. The following section describes the

formal techniques involved in perturbation analy-

sis for different SPMD program operations; a full

description of the analysis and experimental re-

sults can be found in [10].

For the perturbation analysis discussion that fol-

lows, we consider as input a trace file consisting

of a time ordered set of events. The time stamp

of the ith event stored by a processor p in the

trace file is represented by t%(i) (p < P, where P

is the total number of processors that execute the

program). The m indicates that the time stamp

is a measured value. The perturbation analyzer

generates a new trace file with the same num-

ber of events, but with recomputed time stamps.

The time stamp of the events generated by the

analyzer are represented as t%(i); the a subscript

indicates that the time stamp is approximated.

If we let T represent the actual time taken to

execute a SPMD program without instrumenta-

tion, Tm indicates the total time of the measured

program and T. the total approximated time after

perturbation analysis. The difference between the

measured and actual execution time of the pro-

gram, lTm – TI, gives an indication of the total

amount of measurement error introduced into the

program. The difference between the measured

and approximated execution times, ITm – T. 1,

gives an indication of the amount of perturbation

error that can be accounted for in the analysis.

The aim of eliminating the perturbations is to

ensure that \Ta – TI < lTm – T I and to minimize

d = l~a-~l
T“

3.1 Programs without Communication

Although somewhat unrealistic, a SPMD pro-

gram without any inter-processor communication

is the easiest to analyze. This case consists of

a set of processors executing the same program

on some local data, independent of each other.

When instrumented, such a program produces a

trace file containing processor computation events

only. In this case, no communication occurs, so

the ~erturbation analysis is all localized to the

processors.

The effect of perturbation on such simple pro-

grams is an increase in the execution time on each

processor. Although the perturbation effect for

each processor is not dependent on the number

of events captured in other processors, it is de-

pendent on the number of events captured locally,

Thus, one could see large perturbation effects for

46

the SPMD computationi nexecution timed ueto

the differences in the local perturbations on each

processor.

The elimination of perturbation effects is per-

formed incrementally, starting from the first event

collected in each processor. Given t~(i), the ap-

proximated time stamp oft he event, t~ (i), is given

by: t:(i) = t&(i) – j(i – 1) where ~() is an in-

strumentation overhead function. Assume that

the time taken to store an event can be approxi-

mated by a constant a, then j(i) = ai.

3.2 Programs with Global Synchro-

nization

SPMD programs typically involve communica-

tion between processors for purposes of data ex-

change and synchronization. Different communi-

cation mechanisms require different perturbation

analysis. Here we consider global synchroniza-

tion. Global synchronization can manifest itself

in SPMD programs in one of the following ways:

● barrier synchronization operations,

. global broadcast operations, Of

● global reduction/ conlbining operations.

Since the perturbation analysis for each case is

similar, we concentrate on barrier synchroniza-

tion.

A barrier is loosely defined as a point where

all participating processors synchronize. Here,

we treat the case where all P processors perform

the barrier synchronization. The high level in-

strumentation of barrier synchronization involves

capturing two events for each processor: barrier

ent~y and barrier exit. Unless the barrier opera-

tion is explicitly coded at the source level, captur-

ing low level communication events may be pro-

hibitive. Thus, the high level semantics of bar-

rier operation are all we can use in perturbation

analysis.2

2We sho@d note that global barriers act as boundaries

to perturbation propagation. Because there is a point in

time when all the processors are waiting for a single event

to occur (i.e., the global synchronization), perturbation

analysis errors occurring before that global synchroniza-

tion point do not carry forward beyond that point in the

approximation – the timings of all events following the

synchronization point are relative to the time of the syn-

chronization. Once the time of the barrier synchronization

event is resolved, all following event times can be approx-

imated.

Perturbation analysis of global synchronization

must determine t~(entry) and t~(e:cit) for each

processor p. Whereas t:(entry) can be calculated

separately for each processor, t~(exit)depends on

the time when the last processor arrives at the

barrier as well as the barrier semantics concern-

ing how processors exit. For sake of discussion,

we assume that the processors leave the barrier

sequentially in the reverse order of their arrival.

Figure 2 shows the measured and approximated

execution for a SPMD program involving a bar-

rier synchronization. Notice that, after the re-

moval of the instrumentation overhead, it is pos-

sible that a different processor is the last to arrive

at the barrier; in the figure, processor P3 is the

last to arrive at the barrier in the measured ex-

ecution whereas P2 is the last to arrive in the

approximated execution. Once the approximated

entry event times, t:(entry), are known, the exit

event times, t: (ezit), can be approximated by

t~(ezit) = t~(entry) + (P – i + 1) * ~, where 1

is the last processor to enter the barrier (and the

first processor to exit the barrier), processor p is

the ith processor to enter the barrier, and ~?is the

synchronization overhead per processor. Now all

we have to do is approximate ~. If F is the first

processor to exit the barrier synchronization (in

the measured execution) and L the last processor

to exit the barrier synchronization (in the mea-

sured execution), ~ can be approximated from the
tL exit–t: exit

measured data as /3 = ~.

In the case of logarithmic or sequentially sched-

uled barriers, the perturbation analysis is simpler

because the order in which the processors exit

from the synchronization is fixed. The analysis of

these barrier cases and the cases of global commu-

nication operations (e.g., broadcast) and global

reduction/combining operations can be found in

[10].

3.3 Programs with Processor-pair

Synchronization

Inter-processor communication in SPMD pro-

grams is most commonly performed by one pro-

cessor writing data to another processor which

reads the data. The read-write operations can

be blocking or non-blocking. The most commonly

used form of communication is blocking read-

write. Invoking a blocliing read operation causes

47

1

I

P3

P2
I

PI
t

Po
I

I >

Time

Measured Execution

I

P3

P2
n

PI
I

Po
- Lb
I >

Time

Approximated Execution

❑ instrumentation overhead ❑ synchronization overhead

w synchronization waiting time

Figure 2: Perturbation analysis of barrier syn-

chronizat ion

the callhg processor to block until the data has

been received and copied into the program ad-

dress space. Two mechanisms may be used for

blocking writes: asynchronous and synchronous.

Invoking a blocking write using some compilers,

such as Fort ran D [4], causes the calling process

to block until the data has been copied out of

the program address space into the system ad-

dress space. However, this does not mean that

the process must wait for the message to be actu-

ally received by another processor (i.e., the write

blocks on buffer copy but is asynchronous to the

receive). In other systems, blocked communi-

cations are implemented by ensuring that both

the receiving and the sending processors have ex-

ecuted their respective communication calls be-

fore actually initiating the message transfer (i.e.,

blocking synchronous write).

Non-blocking messaging, supported in ma-

chines such as the iPS C!/860, allow computation

and message copying to be performed in paral-

lel. The time to copy data into a system buffer

is the amount of time that can be saved using

non-blocking instead of blocking writes. How-

ever, in some cases, message startup time for

non-blocking messages is higher than for block-

ing communication; hence, it is used selectively.

In the blocking and non-blocking case, the high-

Ievel events captured in the SPMD program are

assumed to be the begin and end of each of the

communications, read or write.

The effects of perturbations in processor-pair

synchronizations are more complex than in the

global synchronization cases. Unlike the global

synchronization cases, the approximated events

must be resolved in sequence while carefully

maintaining causality and partial order, Blocked

synchronous communication is similar to a ren-

dezvous between two processors followed by a

message communication. The perturbation anal-

ysis for this case can be derived from that for

global broadcasts where the number of processors

is restricted to two. The non-blocked read-write

case does not pose any problems for analysis per

se, but it does includes a busy wait component,

normally used in association with this call, that

can lead to non-deterministic behavior. .Although

blocked asynchronous communications is more re-

strictive than the pure non-blocked case (since the

read operation waits explicitly for the message),

the perturbation analysis still must estimate mes-

sage transfer times using communication timing

models to improve perturbation resolution accu-

racy. We analyze this situation in detail below,

It is important to note that in some cases

the processor that transmits the data may not

be known to the receiving processor (e.g., when

the receiving processor performs a “blind” re-

ceive). In such cases, the perturbation analyzer

will have to determine which sending processor’s

data was actually read from the receiving proces-

sor’s buffer. Unfortunately, it may be impossible

to accurately determine this information without

detailed knowledge of machine execution or ac-

cess to lower level eyents. Instead, the perturba-

tion analysis must assume the order in which the

messages are read from the 1/0 buffer.

Perturbation analysis of blocked asynchronous

read-write communications is complicated by the

fact that the times the receiver and sender per-

form the read and write operations, respectively,

can be reversed from the measured to the approx-

imated execution. Consider the situation in Fig-

48

c

Ps

Pr

I I

t;(B) t:(B) t~(E) Time

Measured Execution

c

Ps

cm

Pr
c

t:(B) t:(E) Tim-e

Approximated Execution - Case A

c

Ps

cm

Pr
n
c

t:(B) t:(E) Time

Approximated Execution - Case B

instrumentation overhead ❑ sender transmission time

buffer copy overhead ❑ communication time

read waiting time ❑ approximated receive time

Figure 3: Perturbation analysis of blocked asyn-

chronous communication – Scenario 1

ure 3. Here, processor Ps sends a message to

processor PT. In the measured execution, P2 ar-

rives at the read earlier than the write and has to

wait. Once Ps starts the write (at time t~(13)),

it begins sending the data to Pr which receives

all the data by time V(E); here, ~ refers to the re-

ceiver, s refers to the sender, B is the beginning

event (send or receive), and E is the endinging

event (send or receive). The difference in time

between the initiation of the write and the com-

pletion of the read is the time taken to actually

pass the data: communication time, C’n, plus the

time to copy the data to and from system buffers,

c. This time should be preserved in the approxi-

mated execution.

Now, let us look at the approximated execu-

tion. Suppose that perturbation analysis pro- .

duces an approximation of the beginning read and

write events such that tj(l?) < t~(l?). There are

two cases to consider. In Case A, the receiving

processor performs the read after the sending pro-

cessor performs the write, but before the commu-

nication has ended. In this case, the completion

of the read operation will depend on when the

write was initiated. The time of completion of

the read is the sum of the approximated time of

initiation of the send, tj (B), and the measured

time for communicating the data, Cm, and buffer

copy time, c, in the receiving processor. Case B

illustrates the situation where the approximated

time the read begins occurs after the communi-

cation finishes. Here, the time of completion of

the read is the approximated time for read begin

plus the buffer copy time.

In Figure 4, we see another scenario where,

in the measured execution, the read operation

is initiated after the write operation has com-

pleted. To apply the same perturbation analysis

as above, the communication time must be cle-

termined. However, in this case, communication

time cannot be exactly determined from source

level instrumentation alone, because there is no

event indicating when Pr received the data – only

when the read operation completed. Rather, an

estimation of the communication time must be

used.

Figure 4 illustrates one of two situations that

can arise in the approximated execution. Here,

we see Pr beginning a read operation after the

entire message has been transmitted; note, t~(l?)

does not depend on tj(ll). However, how is t~(ll)

calculated? Since the time needed to transmit the

data (represented by Cn) cannot actually be de-

termined only from source level events, we have

to approximate the communication time in one

of two ways: 1) based on the length of the mes-

sage in bytes n and the network bandwidth, or 2)

based on lower and upper bound analysis. If the

rate of transfer of a byte is v, the start up time is

S, and the per-hop delay is H, then the approxi-

mated communication time, C~, can be estimated

by: C. = S+nxq J+hx H, where his the number

of hops.3 The approximated time of the comple-

2The constant values can be determined by using a

49

c
Ps

*cm++

Pr
c

I I I I I
>

t:(B) t;(E) t#Il) t~(E) Time

Measured Execution

c
Ps

Kcm++

Pr
c

Approximated Execution

❑ instrumentation overhead ❑ sender transmission time

•I buffer copy overhead ❑ communication time

■ read waiting time

Figure 4: Perturbation analysis of blocked asyn-

chronous communication – Scenario 2

tion of the read operation can then be expressed

as:

t:(E) = MAX

{

t;(B) +ca+2xc

%(q) + C

Alternatively, we can use lower and upper

bound values of the communication time to cal-

culate t;(E). The lower bound assumes that the

communication is infinitely fast (i.e., CL = O).

The upper bound is assumes that the measured

time between the write begin and the read end

is the communication time (i.e., C~ = CL =

t~ (E) – t%(B)). The actual communication time

will be between these two bounds.

linear-least square fit by experimenting with a number of

different message sizes and processors. In [3], Dunigan es-

timates the constant values for messages > 100 bytes, for

the iPSC/860 cube to be: S = 136~wecs, y = 0.4psecs and

H = 33psecs.

(A) 0.4

0.35

0.3

$ 0.25
s

-? 0.2
9
g 0.15

0.1

0.05

I I i I I I

2 Processors —
4 Processors

.

. ...-

...~~ ---
.. -”-*.-. . - “ -
-z -----
.- 16 Processors - --

OL—LUJ—J

5 10 15 20 25 30 35 40
Alpha values (analysed)

(B) 0.06 I I I I I I

2 Processors —

0.05 -

0.04 .
z 4 Processors ---”-
a

1 8 Processors
---,

> 0.03
SJ 16 Processors ---

& 002 _----. -----G;:::.:,..G;
.,

,- . . .

0.01,,’.’.
‘.

‘\ .-.. .. .
----- -

01 1 I
5 10 15 20 25 30 35 40

Alpha values (analysed)

Figure 5: Perturbation analysis results from bar-

rier synchronization experiments. (A): Measured

versus Actual. (B): Approximated versus Actual.

4 Experimental Results

In this section, we present some experimental re-

sults to determine the efficacy of the perturba-

tion analysis approach. All of the experiments

were performed on an Intel iPSC/860 machine.

Each experiment generated a trace file that was

passed through a perturbation analyzer, produc-

ing a new trace file with approximate ed event or-

ders and time stamps.

4.1 Barrier Synchronization

Our first experiment considers a program with

global barriers. We use a simple test program

that performs some local computation in each it-

50

emtion of a loop and then synchronizes all the

processors at the end of each iteration. .4 se-

quence of barrier executions result. The begin

and end of each barrier is instrumented. We

want to investigate the effect of the instrumen-

t ation overhead, a, on perturbation analysis. As

a increases, the amount of intrusion int reduced

in the observed program execution also increases.

Graph (A) in Figure 5 shows the difference in to-

tal execution time between the program’s mea-

sured execution and its uninstrumented execu-

tion, dn, as a percentage of the uninstrumented

time, for different number of processors and a

values. The number of processors varies between

2 and 16, while a varies between 6 and 36 time

units. The graph shows that a and 6~ are pos-

itively correlated, as expected. However, notice

that the b~ value changes are more significant

for a smaller number of processors. This is due

to the fact that the amount of time taken to exe-

cute the program increases as the number of pro-

cessors increase (with the same number of events

stored per processor), due to increase in synchro-

nization time. This results in a reduction in per-

centage time spent in instrumentation overheads

with increasing number of processors. For a pro-

gram that scales well, however, we would tend to

see the exact opposite effect, because the time to

execute the program decreases with increase in

number of processors, while the instrumentation

time would remain constant.

Using perturbation analysis for barrier syn-

chronization, we can determine ti~ values from the

approximated execution derived from the mea-

sured trace. Graph (B) in Figure 5 we see that

perturbation analysis can determine a total pro-

gram execution time that is within 5 percent of

the actual execution of the program, independent

of a value and number of processors used.

4.2 Ocean Code

In general, measurement of an application pro-

gram will involve capturing events from several

different types of communication operations. For

simplicity, the next experiment included events

from blocked non-synchronous read-write com-

munication only. We instrumented a parallel

ocean

cation

circulation code [2] to capture comnluni-

between processors when transpose opera-

(B)

160000

140000

“~ 80000

60000

40000 1 Optimistic - “ “
Pessimistic – -

Analyzed - - 4

20000 t -1

2345678
Number of Processors

200000

180000

160000

140000

120000

Measured —

Pessimistic
——

Analyzed - -

-. .,.,. .
. . . . ,’

-. .,, -
..”

80W0 ~

2345678

Numtw of Processors

Figure 6: (A): Decreasing events per processor.

(B): Equal events stored per processor.

tions were performed on various matrices. In the

code, each matrix is divided into slabs of columns.

Each slab is divided into P blocks (for P proces-

sors), with the pth block communicated to proces-

sor p using a blocked non-synchronous read-write

mechanism. We executed this program under two

different scenarios: 1) the number of comput ation

events stored by each processor decreases as the

number of processors is increase, and 2) the num-

ber of computation events stored per processor is

constant.

Each case was analyzed using certain assump-

tions about the program execution. The cases we

considered were:

●

●

optimistic analysis

pessimistic analysis

51

● analysis based on a communication model

Optimistic analysis corresponds to the lower

bound analysis presented in Section 3.3 (i.e.,

we assume that messages are communicated in-

finitely fast in the approximated execution). As

shown in Figure 6 (C{raph (A)), the execution

times from optimistic analysis are consistently

less than the actual execution times. This is

the expected result. Pessimistic analysis corre-

sponds to the upper bound analysis presented in

Section 3.3 (i.e., we assume that message commu-

nication times can always be determined from the

time difference between the beginning of the write

and the completion of the corresponding read in

the measured execution). In Figure 6 (Graph

(A)), the execution times from pessimistic analy-

sis are consistently larger than the actual execu-

tion times, as expected.

To improve the accuracy of perturbation anal-

ysis, we must apply a communication model in

the analysis that approximates the actual com-

munication time. Following the model presented

in [3], we assume that the communication time

for a message of size n that traverses h hops is

given by:

c. =
{

76+nx0.4+hxll n < 100
136+nx0.4+h x33 n> 100

Using this expression in the analysis results in

an approximated execution more closely reflecting

the actual execution for the different numbers of

processors tested; see Figure 6 (Graph (A)). The

fact that the analysis results in execution times

that are lower than the actual execution times

might be explained by the choice of constant fac-

tors in the model or by other errors in the per-

t urbation analysis.

If the number of computation events stored is

proportional only to the problem size, the num-

ber of computation events per processor reduces

as the number of processors are increased, reduc-

ing per processor perturbation in turn. However,

if the number of computation events collected per

processor is constant, the total number of events

collected increases in proportion to the number of

processors. As shown in Figure 6 (C;raph (B)), as

the number of processors increase, the deviation

between the observed and actual execution also

increases. This implies that the execution time is

not influenced only by the events stored in each

processor independently. As in the analysis pro-

ducing C4raph A, we get lower and upper bound

approximations on the actual execution time in

Graph B using optimistic and pessimistic per-

turbation analysis. Similarly, the analysis based

on modeled communication falls between the two

bounds and consistently tracks the actual execu-

tion time of the program.

Now consider the same program but with all

the receives replaced by a “blind” receive (i.e.,

the receiving processor can read any data that

is present in its input buffer, without knowledge

of the message’s sending processor). Assume also

that the events do not store information about the

transmitting processor. In such a case, the anal-

ysis for the receiving processor will not be able

to accurately match the processor whose value

has been read from the receiving buffer. Rather,

assumptions must be made in the perturbation

analysis about the order in which the blind re-

ceives are satisfied. Possible strategies for per-

turbation analysis to follow include:

●

●

●

Preserve communication order: The order of

sends and receives in each processor is as-

sumed to remain the same from the mea-

sured to the approximated execution. This is

clearly a bad assumption for unbalanced in-

strumentation, since some processors may in-

cur more perturbations than others, severely

altering communication order in the mea-

sured execution.

Last In First Out (LIF’0): All sends in the

approximated execution are stored in a stack.

Each time the receiving processor performs

a receive, it reads the last message writ-

ten to its buffer (i.e., the most recently re-

ceived message). Typically, this is not a good

choice, since messages are most often written

to a receiving queue.

First In First Out (F’lFO): .411 sends in

the approximated execution are stored in a

queue. The receiving processor reads data

from its message queue, the next message

read being the oldest one in the queue.

Executing the program with instrumentation

that varies wit h the number of processors, we ob-

served a ‘20Y0 slowdown in actual execution time

for 4 to 16 processors: see Figure 7. Using a

52

References

~ 0.16

I ‘/

Measured

“~ 0.14
~Fo

“g 0.12

~lR ---

g 0.1

0.08 . ..-”’ ”------
. ..”

0.06 ‘“-”

-.

OMLJ—LJJJ

468 10 12 14 16

Number of Processors

Figure 7: Perturbation analysis with communica-

tion order approximations

LIFO strategy in perturbation analysis, we no-

tice that the error is not reduced. However, as ex-

pected, the FIFO strategy performs better than

the LIFO strategy, significantly reducing the er-

ror in perturbation analysis.

The results of this experiment demonstrate

that, even with simple assumptions regarding the

execution characteristics at lower levels, the per-

turbation analysis can conservatively reduce per-

turbations using only high-level events.

5 Conclusion

Current and future performance analysis of

SPMD programs requires the runtime measure-

ment of program execution. Measurement issues

concern the level of program instrumentation and

the probe effect. In this paper, we have con-

centrated on high level source instrumentation of

SPMD programs and have presented a practical

approach to the systematic elimination of pertur-

bation effects introduced by this instrumentation.

The perturbation analysis techniques presented

provide a means of generating a new set of events

from a measured trace which more closely reflect

the actual execution of the program. With the

use of a few examples, we have shown that these

techniques do help to reduce perturbation effects.

Equally important, however, is the fact that the

approach is based on high-level events.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

P. Bates and J. Wileden, “Higl~-Level De-

bugging of Distributecl Systems: The Be-

havioral Abstraction .Approach,” Jownal of

Systems and Software, .April 1983.

Z. Christidis, “Parallel Calculations on

the Wind- Driven Oceanic Circulation Us-

ing Fourier Pseudospectral Methods,” Pro-

ceedings of Third International Conference

on Supercomputing (ICS88), Boston, May

1988.

T. Dunigan, “Performance of the Intel

iPSC/860 and Ncube 6400 Hypercubes,)’

Technical Report ORNLITM 11491, Oak

Ridge National Laboratory, 1991.

G. Fox et al., “Fortran D Language Specifi-

cation,” Technical Report 90-141, Rice Uni-

versity, Dept. of Computer Science, 1990.

L. Lamport, “How to make a Multiproces-

sor Computer that Correctly Executes Mul-

tip recess Programs ,“ IEEE Tramsf~ctions

on Computers 28,9, September 1979.

J. Lee and D. Gannon, “Object Ori-

ented Parallel Programming: Experiments

and Results,” Supercomputing ’91, Albu-

querque, pp. 273-282, November 1991.

A. Malony, “Event Based Performance Per-

turbation: A Case Study,” Third ACM

SIGPLAN Symp. on Principles and Prac-

tice of Parallel Programming, pp. 201-212,

Apr. 1991.

A. Malony and D. Reed, “Models for Per-

formance Perturbation Analysis,” Proceed-

ings of the A CM/ONR Workshop on Paral-

lel and Distributed Debugging, Santa Cruz,

May 1991.

A. Malony and D. Reed, “Performance

Measurement Intrusion and Perturbation

Analysis,” IEEE Transactions on Parallel

and Distributed Systems, VO1.3, 4, July

1992.

S. Saruldmi, “Performance Debugging Envi-

ronments for Parallel Programs,” PhD The-

sis, Indiana University, December 1992.

53

