
An approximate method for optimizing HPC
component applications in the presence of multiple

component implementations
N. Trebon

�
, J. Ray � , S. Shende

�
, R. C. Armstrong � and A. Malony

�
� Sandia National Laboratories, Livermore, CA 94551�

jairay,rob � @ca.sandia.gov
and�

University of Oregon, Eugene, OR 97403�
ntrebon,sameer,malony � @cs.uoregon.edu

Abstract— The Common Component Architecture allows com-
putational scientists to adopt a component-based architecture for
scientific simulation codes. Components, which in the scientific
context, usually embody a numerical solution facility or a physical
or numerical model, are composed at runtime into a simulation
code by loading in an implementation of a component and linking
it to others. However, a component may admit multiple imple-
mentations, based on the choice of the algorithm, data structure,
parallelization strategy, etc. posing the user with the problem
of having to choose the “correct” implementation and achieve
an optimal (fastest) component assembly. Under the assumption
that a performance model exists for each implementation of each
component, simply choosing the optimal implementation of each
component does not guarantee an optimal component assembly
since components interact with each other. An optimal solution
may be obtained by evaluating the performance of all the possible
realizations of a component assembly given the components and
all their implementations, but the exponential complexity renders
the approach unfeasible as the number of components and their
implementations rise. We propose an approximate approach
predicated on the existence, identification and optimization of
computationally dominant sub-assemblies (cores). We propose
a simple criterion to test for the existence of such cores and
a set of rules to prune a component assembly and expose its
dominant cores. We apply this approach to data obtained from
a CCA component code simulating shock-induced turbulence on
four processors and present preliminary results regarding the
efficacy of this approach and the sensitivity of the final solution
to various parameters in the rules1.

I. INTRODUCTION

The Common Component Architecture (CCA) is a
component-based methodology for developing scientific simu-
lation codes. This architecture consists of a framework which
enables components, (embodiments of numerical algorithms
and physical models) to work together. Components are peers
and derive no implementation from others. Components pub-
lish their interfaces and use interfaces published by others.
Components publishing the same interface and with the same
functionality (but perhaps implemented via a different algo-
rithm or data structure) may be transparently substituted for

1Submitted to International Parallel and Distributed Processing Symposium
2004, Workshop on High-Level Parallel Programming Models & Supportive
Environments, Santa Fe, NM.

each other in a code or a component assembly. Components are
compiled into shared libraries and are loaded in, instantiated
and composed into a useful code at runtime. Details regarding
CCA can be found in [1], [2]. An analysis of the process of
decomposing a legacy simulation code and re-synthesizing it
as components (and thus constructing a simulation toolkit) can
be found in [3], [4]. Actual scientific results obtained from this
toolkit can be found in [5], [6].

Components exist so that they can be reused. Thus, the
component writer is rarely the sole user of the components.
A component writer can be expected to ensure the correctness
of the component. The performance, however, is of primary
importance to the component user who may not be familiar
with the implementation to the component. Thus, in the con-
text of HPC (high performance computing) with components,
one needs a reliable way of measuring the performance of
each implementation of a component non-intrusively (since
this will probably have to be done by the component user)
and correlate the performance with the problem size to create
a performance model. This was addressed in [7], where a
prototypical performance measurement and modeling infras-
tructure (a set of performance related components monitoring
and recording performance metrics of a scientific simulation)
was demonstrated. In this paper we present how these perfor-
mance models, constructed for every implementation of every
component (used in a code), may be used to obtain an optimal
component assembly i.e., an optimal code.

Once a performance model has been created for each of
the components and their implementations, it is possible to
construct a global performance model for the application. By
comparing global performance models utilizing different sub-
sets (implementations) of components, it is possible to select
an optimal set of component implementations for a given prob-
lem. However, simply selecting the optimal implementation of
each component does not guarantee an optimal global solution
because the individual performance models do not consider
the interactions between components (e.g., cost of translating
one data structure to another if the interacting components
have different data layouts). If the number of components and
their implementations are small, one may adopt the brute-

force approach of enumerating all the possible realizations
of the component assembly (obtained by changing the im-
plementation of each component, one at a time), constructing
and evaluating their global performance models and choosing
the optimal one. However, typical scientific codes consist of
assemblies of 10 to 20 components. If each component has
three implementations, the solution space consists of ����� to �����
possible realizations, which makes the brute-force approach of
comparing each realization unfeasible. Clearly, there is a need
to reduce the size of the solution space to a manageable size.

We propose a simple rule-based approach to reduce the
solution space by eliminating “insignificant” components. A
component is insignificant if it does not significantly contribute
to the overall performance of the application. These com-
ponents are eliminated from the global performance model,
leaving behind the “dominant” sub-assemblies, or cores. Once
the cores have been selected, an optimal assembly can be
realized through comparing the reduced number of global
performance models from these cores. The optimal component
assembly (consisting entirely of the cores) may then be turned
into a functioning component assembly by using (adding)
any implementations of the “insignificant” components. This
ensures that the final assembly will be close to optimal.

This work is similar in spirit to current dynamic scheduling
and optimization currently being done as a part of AppLeS
[8] and ATLAS [9]. AppLeS informs a running application of
changes in (system) resources and suggests how the applica-
tion may change to best use them. Thus, it requires that the
application define the parameters that affect its performance
and rules regarding how they affect it. ATLAS provides
an extremely fast BLAS library by probing the machine
architecture and carrying out source-level transformations and
optimizations at compile time. The binaries formed are specific
to a given machine. Runtime automated optimization of codes,
as done by Autopilot [10], [11] and Active Harmony [12] are
closest to our approach as outlined here and in [7]. Both re-
quire the application to identify performance parameters (and
the valid values that they can take) to a tuning infrastructure.
This infrastructure also monitors their performance, which
in case of Active Harmony is provided by a function (the
objective function) implemented by the application itself. Each
of the parameters are perturbed and the application run to
obtain the effect of the perturbation. Active Harmony relies
upon a simplex algorithm to identify the optimal values of
the parameters while Autopilot uses fuzzy logic. Both (Active
Harmony and Autopilot) require the identification of “bad”
regions in parameter space, so that the optimization search
may be concluded faster by avoiding these regions. Active
Harmony also has an infrastructure to swap in/out multiple
libraries in order to identify an optimal implementation.

Neither of these approaches are quite right for us. We can
afford many evaluations of the objective function since it is
an algebraic formula synthesized out of multiple component
performance models. However, no approach will stand up
to exponential complexity. Our strategy has been to identify
the core set of parameters (component implementations) that

TABLE I

THE TABLE DISPLAYS THE EXCLUSIVE (EXCL.) AND INCLUSIVE (INCL.)

TIMES (DEFINED IN SECTION II, AS WELL AS THE INCLUSIVE

PERCENTAGE FOR EACH OF THE INSTRUMENTED ROUTINES OF A GIVEN

COMPONENT. ALL TIMES ARE IN MILLISECONDS.

Component Name Method name Excl. time Incl. Time %
driver proxy go() 285 90,785 96
rk2 proxy Advance() 6,887 34,411 36.4
ee proxy Regrid() 31,607 32,582 34.5

flux proxy compute() 3,118 22,156 23.4
sc proxy compute() 11,131 11,131 11.8

efm proxy compute() 7,549 7,549 8.0
grace proxy GC Synch() 1,956 3,689 3.9
icc proxy prolong() 1,044 1,044 1.1

grace proxy GC regrid above() 644 946 1.0
icc proxy restrict() 815 815 0.9

stats proxy compute() 212 271 0.3
c proxy compute() 129 253 0.3

rk2 proxy GetStableTimestep() 5 157 0.2
cq proxy compute() 86 150 0.2
bc proxy compute() 38 38 0.0

significantly affect performance and to perform a brute-force
evaluation/optimization only on the core.

II. AN APPROXIMATE APPROACH

Table I displays the average results from the four proces-
sor run of the hydro-shock simulation (as described in [7])
averaged over the four CPUs. The exclusive time represents
the time spent in the given routine, minus the time spent
in all instrumented routines that occur prior to the routine’s
completion. Inclusive time measures the time spent from the
start of the routine until routine completion. These results
clearly show that all components are not equal with regards
to their contribution to the overall performance of the code
assembly. The ErrorEstimator (ee proxy) component’s routine
alone contributes over 30 seconds, or approximately 33%
of the total execution time, while the BoundaryConditions
(bc proxy) component contributes a mere 38 milliseconds, or
less than 1%.

Our aim is to propose an algorithm that identifies these
insignificant components and removes them from considera-
tion during the optimization process. To accomplish this, we
extend our “proxying” technique described in [7]. Proxies are
“dummy” components that are inserted between a caller and
a callee component. The proxy traps the method invocation
and turns on performance monitoring before forwarding the
invocation to the actual component. On the completion of the
invocation, the monitoring is turned off, the performance is
recorded and control is returned to the caller. We create proxies
for every component in the code and record every invocation.
It is during this process that the call-graph is constructed.
Each time a routine invocation is trapped, the current location
in the call-graph is updated. If the called component does
not already exist in the call-graph at this location (i.e., this
is the first time that the caller component has ever called

Fig. 1. The component call-graph for the shock hydro simulation. Along
with the component instance name, the inclusive time, in microseconds, is
included in each node.

on the callee component), a new call path node is created
to represent the callee component. Once the invoked routine
has completed, several counters are updated before the current
location in the call-graph is updated to point to the parent. In
this manner a call-graph created. Once the monitoring phase
is completed, the call-graph is written to a file. The pruning
application then reconstructs the call-graph from the file and
performs the pruning algorithm. Figure 1 shows the entire
call graph for the simulation that we analyze (see [7] for
details). Since a component may be invoked from multiple
places i.e., it may exist on many call paths, it may appear
on multiple nodes on that graph. Once this graph is created,
it can be traversed, and based upon a set of rules, branches
classified as insignificant can be pruned off. “Insignificance”,
in our case is decided based on the inclusive time of a
component. The resulting graph will be an optimized core tree,
that identifies the major contributors to the code assembly’s
global performance. The selection of the optimal solution can
then be based upon the performance of these dominant core
components. Any combination of pruned component instances
can then be included to complete an approximately optimal
global solution.

A. Algorithm

In the following, let ��� represent the set of children of node�
. Let �����
	����� be the inclusive time of child 	 of node

�
.

Let
�

have ��� children, i.e., the order of the finite set ��� is��� . When examining the children of a given node, we see
that two cases arise :

1) The total inclusive time of the children is insignificant
compared to the inclusive time of node

�
i.e.,�

��� ������� � ��� � ���! �
where " �# %$'& . Thus the children contribute little
to the parent node’s performance and may be safely
eliminated from further analysis. is typically around
0.1 i.e., 10%.

2) The total inclusive time of the children is a substantial
fraction of node

�
’s inclusive time i.e., the children

Fig. 2. A simple call-graph example with pruned branches colored red and
node shaded.

contribute significantly and (��� ������� ��� � �)��* . In this
case the children are analyzed to identify if dominant
siblings exist. Let +

�-, �
��� ������� � ��� � �

be the average or “representative” inclusive time for the
elements of � � . We then iterate through each node 	.�/	0�� � , eliminating the elements of � � where � ���

+
� �#1 .

Thus, children of
�

whose contributions are small rela-
tive to a representative figure are eliminated. Typically,1 is chosen to be around 0.1 i.e. 10%.

The process is quick since eliminating a node eliminates the
entire tree rooted at that node. In the worst case, the algorithm
scales as 243�576 , where Q is the number of nodes in the graph.

III. EXAMPLES

In order to test our approach, it was first applied to a series
of simple call-graphs in order to ensure its correctness. One
of these examples is described in Section III-A. The pruning
algorithm was then applied to a call-graph that was created
from an actual scientific simulation. Results are presented in
Sections III-B and III-C.

A. Example 1: Dominant Path

Figure 2 depicts a simple call-graph that consists of only six
nodes. The algorithm works in a depth-first search. Starting at
the root, the two children, B and C, together do significantly
contribute to the parent’s inclusive execution time, and so each
branch is preserved and searched. First, the branch leading to
node B is examined, and since it contributes significantly, it
remains as part of a dominant path. At this point, node B’s
children are examined to see if they are significant to node
B; they are not and so nodes D and E are both immediately
pruned. Next, node C is examined to see if it is significant to
its parent, node A. Node C is determined to be insignificant
and that branch along with its children is pruned off. In the
figures hereafter, we will follow the convention of coloring
pruned branches and their nodes red.

Fig. 3. The resulting call-graph after pruning using levels of 10% for both
thresholds i.e., ��� � �����	�

B. Example 2: Shock-Hydro with 10% thresholds

Our pruning approach was then applied to a real scien-
tific simulation code. The complete component call-graph is
depicted in Figure 1. Each node in the graph contains the
name and the inclusive count for the given node. Using the
default threshold values of 10%, the original call-graph of 19
nodes (12 unique component instances) is reduced to a call-
graph of 8 nodes (8 unique component instances). The amount
of unique component instances has been reduced by roughly
33%. These results are depicted in Figure 3.

C. Example 3: Shock-Hydro with variable thresholds

Our pruning approach was also applied with threshold levels
set to 5% and 20%. These results are shown in Figures 4,
and 5 respectively. In the case of the 5% threshold levels, the
optimized call-graphs match their respective 10% counterparts,
with the addition of the two children from the flux component.
Similar results are observed when comparing the 10% and
20% graphs. As expected, with a higher threshold, we pruned
off a branch that the lower thresholds identified as significant.
Also, with the 20% thresholds only 7 out of the 12 components
were preserved in the component assembly. Thus this method
trades speed (achieving a small “core” call-graph) against
accuracy (recovering the actual inclusive time of the call-graph
root from the “core” call-graph) but allows one to conduct a
sensitivity (with respect to and 1) analysis if it is deemed
important.

IV. CONCLUSIONS

In this paper we have presented a simple algorithm to iden-
tify the dominant components (from a performance point of
view) in a component assembly. This algorithm was tested on a
call-graph created by monitoring a hydrodynamics simulation
as analyzed in [7]. The inclusive execution times, though
obtained from actual measurements, could have also been ob-
tained from performance models. Starting with a call-graph of
19 nodes (12 separate components), with thresholds (� 1) of
10 % we were able to determine a core component assembly of
8 nodes. The resulting call-graph represents a smaller solution
space to search for the optimal set of component instances to

Fig. 4. The resulting call-graph after pruning using levels of 5% for both
thresholds, i.e., ��� � �
��� ��� .

Fig. 5. The resulting call-graph after pruning using levels of 20% for both
thresholds, i.e., ��� � �
��� �� .

solve a given problem. This algorithm successfully reduced the
call-graph of a real scientific simulation by roughly 41 % and
the number of realizations of component assemblies from ��� �
to ��� (assuming that 3 implementations of each component
exist), a saving of over two orders of magnitude when the
thresholds were set to 20%.

In the future we will address the construction of the com-
posite performance model for the entire component assembly
from the call-graph. The current monitoring infrastructure is
being extended to record the traversals of the branches of the
call-graph along with the problem size that the components are
presented with per invocation. For static scientific problems
(e.g. PDEs solved on a static mesh) the problem size is
expected to remain constant for the duration of the simulation.
This constraint is violated for dynamic approaches where the
algorithm adapts to the problem (e.g. PDEs solved on an
adaptively refined mesh) and the problem size per component
invocation is expected to change during the course of the
simulation. In such a case, the deterministic component per-
formance models will be embedded in a stochastic framework
to provide the “most probable” performance of a component
assembly as well as some (mathematically rigourous) mea-
sure of the uncertainity associated with the “most probable”
number.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy,
Office of Science, via the Scientific Discovery through Ad-
vance Computing program at Sandia National Laboratories,
Livermore. The authors would like to thank the Department of
Computer Science, University of Oregon, Eugene, for letting
us use their “neuronic” cluster for our runs .

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under Contract DE-AC04-94AL85000.

REFERENCES

[1] R. Armstrong, D. Gannon, A. Geist, K. Keahy, S. Kohn, L. McInnes,
S. Parker, and B. Smolenski, “Towards a Common Component Archi-
tecture for High Performance Scientific Computing.” in Proceedings
of the ���

�
International Symposium on High Performance Distributed

Computing, 1999.
[2] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt,

and J. A. Kohl, “The CCA Core Specifications in a Distributed Memory
SPMD Framework,” Concurrency: Practice and Experience, vol. 14, pp.
323–345, 2002, also at http://www.cca-forum.org/ccafe03a/index.html.

[3] S. Lefantzi, J. Ray, and H. N. Najm, “Using the Common Component
Architecture to Design High Performance Scientific Simulation Codes,”
in Proceedings of the International Parallel and Distributed Processing
Symposium, Nice, France, April 2003.

[4] S. Lefantzi and J. Ray, “A Component-based Scientific Toolkit for
Reacting Flows,” in Proceedings of the Second MIT Conference on
Computational Fluid and Solid Mechanics. Boston, Mass.: Elsevier
Science, 2003.

[5] J. Ray, C. Kennedy, S. Lefantzi, and H. N. Najm, “High-order Spatial
Discretizations and Extended Stability Methods for Reacting Flows on
Structured Adaptively Refined Meshes,” in Third Joint Meeting of the
U.S. Sections of The Combustion Institute, Chicago, Illinois, March
2003, distributed on a CD.

[6] S. Lefantzi, C. Kennedy, J. Ray, and H. N. Najm, “A Study of the Effect
of Higher Order Spatial Discretizations in SAMR (Structured Adaptive
Mesh Refinement) Simulations,” in Proceedings of the Fall Meeting of
the Western States Section of the The Combustion Institute, Los Angeles,
California, October 2003, distributed on a CD.

[7] J. Ray, N. Trebon, S. Shende, R. C. Armstrong, and A. Malony,
“Performance Measurement and Modeling of Component Applications
in a High Performance Computing Environment : A Case Study,”
Sandia National Laboratories, Tech. Rep. SAND2003-8631, June 2003,
Also submitted to International Parallel and Distributed Computing
Symposium, 2004.

[8] F. Berman and R. Wolski, “Scheduling from the Perspective of the
Application,” in Proceedings of the 5 �

�
IEEE International Symposium

on High Performance Distributed Computing, 1996, Syracuse, NY, USA,
August 6–9.

[9] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra
software (ATLAS),” in Proceedings of the 1998 ACM/IEEE Conference
on Supercomputing, 1998.

[10] R. L. Ribler, H. Simitci, and D. A. Reed, “The Autopilot Performance-
Directed Adaptive Control System,” Performance Data Mining, vol. 18,
pp. 175–187, 2001, Special Issue : Future Generation Computer Sys-
tems.

[11] R. L. Ribler et al, “Autopilot : Adaptive Control of Distributed Appli-
cations,” in Proceedings of the 5 �

�
IEEE International Symposium on

High Performance Distributed Computing, 1998, Chicago, IL, USA.
[12] I.-H. C. Cristian Tapus and J. K. Hollingsworth, “Active Harmony :

Towards Automated Performance Tuning,” in Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, 2002.

