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Talk Outline
 The Problem

 What is Operating System / Runtime (OS/R) interference
 Is it a problem?
 Measurement question

 The Solution
 KTAU and TAU performance systems
 Fine-grained OS/App performance correlation
 Noise-effect estimation technique

 Evaluation
 Demonstrating measurement and analysis of real OS noise
 Investigating accuracy of noise-estimation analysis at scale

 Conclusion
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Example of Noise and its Propagation
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Example of Noise and its Propagation

Phases of Alternating Computation & Collectives
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Is OS Noise a problem? How?
 Previous work has shown significant OS/R interference problems

 Large variability in point-point communication latency [Mraz SC’94] 
 Measurement mismatched performance model [Petrini et al. SC’03] 
 Poor scaling performance of collectives [Jones et al. SC’03]

 Nature of noise matters
 Theoretical modeling [Agarwal et al. HiPC’05]

 Heavy-tailed and Bernoulli noise most detrimental
 Noise Emulation [Beckman et al. CCJ’07]

 Effect of noise on collectives
 Maximum noise duration determines effects

 Large, rare noise-events are problematic
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Figure 8: Execution time magnification when injecting constant amounts of noise into a benchmark based

on allreduce (incomplete data sets on 32K nodes for noise ratios of 0.08% and 0.15% are due to time

constraints in our access to such a large machine configuration).

in particular 0.015% (Fig. 8, top left), execution times increase significantly only for the largest

process counts. More worrying, it appears as if, in that case, we will see the dreaded explosion

in run-time as the number of processes increases. We have included two more plots with interim

noise ratios of 0.08% and 0.15% to show that that is in fact not the case. As can be observed,

execution time magnification does not exponentially grow ad infinitum with an increasing process

count, but fairly quickly levels off or even slightly decreases. The larger the noise ratio, the sooner

this effect takes place—for 1% noise, it is not visible even for the smallest process count tested.

The leveling-off is due to noise saturation—with a fixed per-process noise ratio, the total amount

of noise in the system increases linearly with an increasing process count. It reaches a stage when

at any given point in time, a detour is almost guaranteed to be taking place somewhere—adding

more processes, and thus more detours, will simply force the latter to overlap in time, significantly

reducing their ability to do any (further) damage.

16

Beckman et al. CCJ’07
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Effect of Injected Noise on a Real Application (POP)

Total: 23% @ 1024 | 32% @ 2048
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Noise Effects are Complex
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Noise Effects are Complex
 Local noise dependent on the OS/R and its configuration, but global effects ...
 Depend on the underlying platform

 Interconnect latency, timer resolution, TLB ...
 Depend on the OS/R configuration and noise sources

 Scheduling policy, interrupt frequency, daemons ... 
 Depend on parallel application behavior

 Synchronous communications, computational grain, load balance ...

 Can we measure the global delay an application experiences due to specific 
noise sources? 

 Real application + real, existing noise => noise effect?
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Our Approach and Contribution
 General noise-effect estimation by direct measurement of application and OS

 Contribution
 Isolate OS noise in application performance data
 Quantify global effects of noise on application
 Attribute the effects to specific noise sources
 Analyze application sensitivity
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How do we measure?
 Application

 TAU Performance System
 Profiling and/or tracing of application events
 Execution time, h/w performance counters ...

 Operating System
 KTAU 
 Profiling and tracing of system-level events
 System calls, scheduling, interrupts, ...

 Integration 
 KTAU extended to allow fast access to system performance data
 TAU captures OS data as counters stored with application events

Application w/ TAU

OS w/ KTAU
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How do we measure?
 Application

 TAU Performance System
 Profiling and/or tracing of application events
 Execution time, h/w performance counters ...

 Operating System
 KTAU 
 Profiling and tracing of system-level events
 System calls, scheduling, interrupts, ...

 Integration 
 KTAU extended to allow fast access to system performance data
 TAU captures OS data as counters stored with application events

Application w/ TAU

OS w/ KTAU

Tight Integration
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How the integration works...
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How do we analyze?
 Trace information

 Application event trace with OS noise counters
 Presence of OS noise has affected the timing of events

 Timeline Approximation
 Reason about timing of events that may have occurred in the absence of noise
 Remove time-duration of noise and adjust event timestamps
 Must be careful to maintain constraints in event ordering

 E.g. A recv cannot end before the corresponding send
 Delay due to the global noise-effect (Accumulated Noise)

 Difference in end times between measured and approximated timeline
 Two main cases

 Noise Propagation; Noise Absorption
 See paper for other cases
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Global Noise Estimation - Noise Propagation
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Global Noise Estimation - Noise Propagation
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Global Noise Estimation - Noise Propagation
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Global Noise Estimation - Noise Absorption
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Global Noise Estimation - Noise Absorption
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Global Noise Estimation - Noise Absorption
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Global Noise Estimation - Noise Absorption
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Prior Work on Trace-based Timeline Approximation
 Wolf, Malony, Shende and Morris | HPCC’06

 Context: Measurement perturbation compensation.
 Sottile, Chandu and Bader | IPDPS’06

 Trace-based simulation
 Inject artificial noise into existing application traces and adjust timestamps
 Reverse of our current work - we remove existing, real noise effects from trace.
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Noise-Effect Estimation Demonstrated
 Demonstrate estimation of delay caused in application/benchmark by real noise
 Platform: 32 (2x2) Opterons (P=128); GigE; Linux w/ KTAU; SDSC
 Application : Sweep 3D (kernel representative of ASC applications)

 Repeating phases of Send/Recv followed by Allreduce
 Problem - 650^3, 15 iterations, MPI based

 Scaling
 Strong
 P=32, P=128

 Instrumentation / Measurement
 TAU Tracing of MPI events
 Associating KTAU OS Metrics with the events

 Analysis
 Run Trace analysis (described earlier) to calculate delay due to noise
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Noise Sources and Metrics
 OS Noise Sources

 global timer interrupt - keeps time & timers, intervals (10, 4, 1 msec)
 local timer interrupt - update process times (scheduling), every cpu/core
 preemptive schedule - duration preempted

 Metrics
 Accumulated Noise 

 Estimate of delay due to global noise effects, in secs 
 By how much time would the application have run faster w/o noise?

 Noise Amplification Ratio
 Accumulated Noise / Local Noise
 How much was noise amplified? How much was absorbed?

 Lesser means better for both metrics
 Metrics calculated seperately for each noise source and combined noise
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Overall Accumulated Noise - Effect of Scaling
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Overall Accumulated Noise - Effect of Scaling
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Overall Accumulated Noise - Effect of Scaling
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Overall Accumulated Noise - Effect of Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0  20  40  60  80  100  120  140

P=32 Default Run
P=128 Default Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)
1.7 secs

1.3 secs

1.3x

Local noise proportional to runtime.
Longer the run, more timer interrupts.
Shorter the run, fewer are expected.



Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 16

Overall Accumulated Noise - Effect of Scaling
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Overall Accumulated Noise - Effect of Scaling
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Overall Noise Amplification Ratio - Effect of Scaling
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Overall Noise Amplification Ratio - Effect of Scaling
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Overall Noise Amplification Ratio - Effect of Scaling
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Overall Noise Amplification Ratio - Effect of Scaling
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Confirms that scaling is increasing global noise-effect.
How do the noise sources contribute?
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Noise Sources -- Accumulated Noise -- P=128
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Noise Sources -- Accumulated Noise -- P=128
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Preemptive schedule is dominant source of noise.
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Noise Sources -- Accumulated Noise -- P=128
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Preemptive schedule is dominant source of noise.

By just removing schedule() noise, 85% of noise can be removed. 
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Noise Sources -- Accumulated Noise -- P=128
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Preemptive schedule is dominant source of noise.

By just removing schedule() noise, 85% of noise can be removed. 

Lets make a simple change that affects scheduling.
Pin the ranks to the processors.

What happens?
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Overall Accumulated Noise - Pinned - Effect of Strong Scaling
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Overall Accumulated Noise - Pinned - Effect of Strong Scaling
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Overall Accumulated Noise - Pinned - Effect of Strong Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0  20  40  60  80  100  120  140

P=32 Pinned Run
P=128 Pinned Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

1.55 secs

0.37 secs

4.2x
Matches Runtime reduction - 4x.

Noise-effect is scaling down with runtime.

P=32

P=128



Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 19

Overall Accumulated Noise - Pinned - Effect of Strong Scaling
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Noise-effect is scaling down with runtime.
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Lets look at the different noise sources again...
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The Noise Sources -- Pinned -- P=128
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The Noise Sources -- Pinned -- P=128
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Preemptive schedule is not largest noise source anymore.
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Small Noise Effects
 Magnitude of the Accumulated Noise - 1.3 secs

 Represents approx. 1% of runtime (132 secs)

 Small cluster (32 nodes) + Slow interconnect (GigE)
 => Small global-noise effect

 For large OS noise related slowdowns
 Larger scales
 Fast interconnect

 Global-Noise Estimation still detected and revealed interesting noise features
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Accuracy of Noise-Estimation Analysis at Scale
 How accurate is the “Accumulated Noise” value provided by analysis?
 Methodology

 Take (relatively) noise-less platform (BG/L); Inject noise (Selfish Suite/ANL)
 Run parallel application without noise & then with injected noise
 Perform trace analysis to provide the accumulated noise estimate
 How far is calculated accumulated noise value from actual delay?

 Simple BSP Benchmark (Bulk Synchronous Processing)
 Repeated phases of computation & collective communication
 Inputs: Scaling type, No. of Phases, Type of Collective, No. of Nodes
 Used: Strong scaling, 10000 phases, Barrier, 32 to 2048 Nodes
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The Effect of Noise on the Benchmark
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The Effect of Noise on the Benchmark
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Perform Noise-Effect estimation for each trial.
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b. %Runtime-Estimation Error(%RE) c. %Noise-Estimation Error(%NE)

Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error
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Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

Error between 3% to 4.5%

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error
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Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

Error between 3% to 4.5%

Error less than 1%

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error
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Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

Error between 3% to 4.5%

Error less than 1%

Noise-Estimation is Accurate
- At varying scales (N=32, 2048).
- At varying comp. grain
- At varying noise-levels

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error



 Compare access costs (in cycles) to
 PAPI counters
 no-op” /proc call 

 Metric Access order of magnitude faster than /proc access

 Metric Access comparable to PAPI h/w counter access
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How fast is access to KTAU OS Metrics?

# Metrics OS Metric Access /proc Access PAPI Access
1 192 1150 248
2 272 - 304
3 288 - -
4 400 - -
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 PAPI counters
 no-op” /proc call 

 Metric Access order of magnitude faster than /proc access

 Metric Access comparable to PAPI h/w counter access
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How fast is access to KTAU OS Metrics?

# Metrics OS Metric Access /proc Access PAPI Access
1 192 1150 248
2 272 - 304
3 288 - -
4 400 - -



 Measure Overall Perturbation of NPB LU under multiple configurations
 Configuration: base

 No instrumentation in application or OS

 Configuration: ktau-tau-metrics 
 TAU MPI tracing
 Tracking 4 OS metrics for each MPI event

 Performing OS Metric access + TAU MPI Tracing < 1% Perturbation
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What is the Measurement Perturbation?

NPB LU Class C on 16 Nodes

Configuration base ktau-tau-metrics
Minimum Exec. Time 475.04 479.66

% Min. Slowdown -- 0.97
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Conclusion
 General measurement technique that estimates the delay caused by direct OS 

noise effects on a parallel message passing application
 Integrated OS / Application performance measurement
 Trace timeline approximation

 Demonstrate its use on a Linux cluster to measure effects of real, existing noise
  Evaluate accuracy of analysis at scale (2048 nodes)

 0.5% to 4.5% estimation error over varying noise levels and computational grain
 Questions in the HPC community

 OS/R suites for large-scale platforms - Light-weight or Full-featured?
 Can applications be changed to be less noise-sensitive?
 DOE FAST-OS project created to investigate OS issues, including noise
 Integrated (OS/Application) measurement and noise analysis techniques can aid 

in answering some of the questions
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Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A
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Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A
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Preemptive schedule is largest source of noise.
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Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A
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Preemptive schedule is largest source of noise.
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Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A
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Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A
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Global Noise Estimation - Noise Combination

Approximated Timeline

 

Process 1 Sends; Process 2 Receives

Appendix A

Measured Timeline time

Process 1
Local Noise N1 = 80s

0 50 150

w = 100

S

ReRb

T =

Process 2
Local Noise N1 = 0s



Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 29

Global Noise Estimation - Noise Combination
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Appendix A
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Global Noise Estimation - Noise Combination
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Appendix A
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Global Noise Estimation - Noise Combination
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Appendix A
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Global Noise Estimation - Noise Combination

Approximated Timeline
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Appendix A
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Global Noise Estimation - Noise Combination

Approximated Timeline

 

Process 1 Sends; Process 2 Receives

Appendix A
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The Noise Sources -- Accumulated Noise -- P=128
Appendix A
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The Noise Sources -- Accumulated Noise -- P=128
Appendix A
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Noise does not simply add (previous example).         

On combination, 42% of noise gets absorbed! 

By just removing schedule() noise, 85% of noise can be removed. 
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Related Work in Noise Measurement
 Petrini et al. SC’03 - Microbenchmark, simulation, modeling to close the loop

 Specific to application (SAGE). Accurate model difficult to produce.
 Gioiosa et al. ISSIPIT’04 - Microbenchmark & measurement

 Identify noise sources using OProfile sampling. Quantifies only local-noise.
 Agarwal et al. HiPC’05 - Theoretical Modeling under different distributions

 Assumptions include: Balanced Load, Stationary, Balanced Noise, Identical noise
 Beckman et al. CLUSTER’06 (Emulation), Sottile et al. IPDPS’06 (Simulation)

 Injected artificial noise at runtime into micro-benchmarks to understand effects
 Modify application traces by adding artificial noise.

Appendix B



Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 32

Profiling LU Application using KTAU OS Metrics

timer interrupt smp_apic_timer_interrupt schedule

schedule
global timer interrupt local timer interrupt schedule

global timer interrupt local timer interrupt schedule

Appendix C
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Profiling LU Application using KTAU OS Metrics

timer interrupt smp_apic_timer_interrupt schedule

schedule
global timer interrupt local timer interrupt schedule

global timer interrupt local timer interrupt schedule
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Profiling LU Application using KTAU OS Metrics

timer interrupt smp_apic_timer_interrupt schedule

schedule
global timer interrupt local timer interrupt schedule

global timer interrupt local timer interrupt schedule
Local noise is measured and

attributed to respective MPI ranks.

Appendix C
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Profiling CG using KTAU OS Metrics

u-secs

Functions

Ra
nk

s

Local noise is isolated from
application events.

schedule

Appendix C
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