
Aroon Nataraj, Alan Morris, Allen Malony, Matthew Sottile, Pete Beckmanl

 {anataraj, amorris, malony, matt}@cs.uoregon.edu

Department of Computer and Information Science

University of Oregon

beckman@mcs.anl.govl

Mathematics and Computer Science Division

Argonne National Laboratory

The Ghost in the Machine
Observing the Effects of Kernel Operation on

Parallel Application Performance

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 2

Talk Outline
 The Problem

 What is Operating System / Runtime (OS/R) interference
 Is it a problem?
 Measurement question

 The Solution
 KTAU and TAU performance systems
 Fine-grained OS/App performance correlation
 Noise-effect estimation technique

 Evaluation
 Demonstrating measurement and analysis of real OS noise
 Investigating accuracy of noise-estimation analysis at scale

 Conclusion

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 3

Example of Noise and its Propagation

Compute

Compute

Compute

w

w

C
ol

le
ct

iv
e

Compute

Compute

Compute

w

w

C
ol

le
ct

iv
e

Compute

Compute

Compute

w

w

C
ol

le
ct

iv
e

Phases of Alternating Computation & Collectives

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 3

Example of Noise and its Propagation

Compute

Compute

Compute

w

w

C
ol

le
ct

iv
e

Compute

Compute

Compute

w

w

C
ol

le
ct

iv
e

Compute

Compute

Compute

w

w

C
ol

le
ct

iv
e

Phases of Alternating Computation & Collectives

What is the
cause of

imbalance?

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 3

Example of Noise and its Propagation

Compute

Compute

Compute

w

w

C
ol

le
ct

iv
e

Compute

Compute

Compute

w

w

C
ol

le
ct

iv
e

Compute

Compute

Compute

w

w

C
ol

le
ct

iv
e

os

os

os

Phases of Alternating Computation & Collectives

What is the
cause of

imbalance?

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 3

Example of Noise and its Propagation

Phases of Alternating Computation & Collectives

Compute

Compute

C
ol

le
ct

iv
e

Compute

Compute

Compute

C
ol

le
ct

iv
e

Compute

Compute

Compute

C
ol

le
ct

iv
e

Compute

Time lost to global noise

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 4

Is OS Noise a problem? How?
 Previous work has shown significant OS/R interference problems

 Large variability in point-point communication latency [Mraz SC’94]
 Measurement mismatched performance model [Petrini et al. SC’03]
 Poor scaling performance of collectives [Jones et al. SC’03]

 Nature of noise matters
 Theoretical modeling [Agarwal et al. HiPC’05]

 Heavy-tailed and Bernoulli noise most detrimental
 Noise Emulation [Beckman et al. CCJ’07]

 Effect of noise on collectives
 Maximum noise duration determines effects

 Large, rare noise-events are problematic

 2048
 4096

 8192
 16384

 32768

 1351.5

 136.5
 15

 0

 10

 20

 30

 40

 50

Exec. time magnification

0.015% noise

processes

Detour time [µs]

Exec. time magnification

 2048
 4096

 8192
 16384

 32768

 786.5
 651.5

 80
 8

 0
 10
 20
 30
 40
 50
 60
 70
 80

Exec. time magnification

0.08% noise

processes

Detour time [µs]

Exec. time magnification

 2048
 4096

 8192
 16384

 32768

 1486.5
 1351.5

 136.5
 15

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Exec. time magnification

0.15% noise

processes

Detour time [µs]

Exec. time magnification

 2048
 4096

 8192
 16384

 32768

 986.5
 851.5

 100
 10

 0

 20

 40

 60

 80

 100

 120

 140

Exec. time magnification

1% noise

processes

Detour time [µs]

Exec. time magnification

Figure 8: Execution time magnification when injecting constant amounts of noise into a benchmark based

on allreduce (incomplete data sets on 32K nodes for noise ratios of 0.08% and 0.15% are due to time

constraints in our access to such a large machine configuration).

in particular 0.015% (Fig. 8, top left), execution times increase significantly only for the largest

process counts. More worrying, it appears as if, in that case, we will see the dreaded explosion

in run-time as the number of processes increases. We have included two more plots with interim

noise ratios of 0.08% and 0.15% to show that that is in fact not the case. As can be observed,

execution time magnification does not exponentially grow ad infinitum with an increasing process

count, but fairly quickly levels off or even slightly decreases. The larger the noise ratio, the sooner

this effect takes place—for 1% noise, it is not visible even for the smallest process count tested.

The leveling-off is due to noise saturation—with a fixed per-process noise ratio, the total amount

of noise in the system increases linearly with an increasing process count. It reaches a stage when

at any given point in time, a detour is almost guaranteed to be taking place somewhere—adding

more processes, and thus more detours, will simply force the latter to overlap in time, significantly

reducing their ability to do any (further) damage.

16

Beckman et al. CCJ’07

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 5

Effect of Injected Noise on a Real Application (POP)

Total: 23% @ 1024 | 32% @ 2048

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1024 2048

Pe
rc

en
t D

el
ay

 in
 R

un
tim

e

Number of Processors

Total + 1.6% Noise
Baroclinic + 1.6% Noise
Barotropic + 1.6% Noise

Baroclinic: 1% @ 1024 | 3% @ 2048

Barotropic: 75% @ 1024 | 86% @ 2048

Pe
rc

en
t I

nc
re

as
e

in
 R

un
tim

e

Number of Processors

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 6

Noise Effects are Complex

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 6

Noise Effects are Complex
 Local noise dependent on the OS/R and its configuration, but global effects ...
 Depend on the underlying platform

 Interconnect latency, timer resolution, TLB ...
 Depend on the OS/R configuration and noise sources

 Scheduling policy, interrupt frequency, daemons ...
 Depend on parallel application behavior

 Synchronous communications, computational grain, load balance ...

 Can we measure the global delay an application experiences due to specific
noise sources?

 Real application + real, existing noise => noise effect?

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 7

Our Approach and Contribution
 General noise-effect estimation by direct measurement of application and OS

 Contribution
 Isolate OS noise in application performance data
 Quantify global effects of noise on application
 Attribute the effects to specific noise sources
 Analyze application sensitivity

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 8

How do we measure?
 Application

 TAU Performance System
 Profiling and/or tracing of application events
 Execution time, h/w performance counters ...

 Operating System
 KTAU
 Profiling and tracing of system-level events
 System calls, scheduling, interrupts, ...

 Integration
 KTAU extended to allow fast access to system performance data
 TAU captures OS data as counters stored with application events

Application w/ TAU

OS w/ KTAU

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 8

How do we measure?
 Application

 TAU Performance System
 Profiling and/or tracing of application events
 Execution time, h/w performance counters ...

 Operating System
 KTAU
 Profiling and tracing of system-level events
 System calls, scheduling, interrupts, ...

 Integration
 KTAU extended to allow fast access to system performance data
 TAU captures OS data as counters stored with application events

Application w/ TAU

OS w/ KTAU

Tight Integration

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 9

How the integration works...

schedule

timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 0

Application w/ TAU

User

Kernel

KTAU
Performance
State

PID: 1423

User-level
Double-Buffered
Container

14

schedule

timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 1

Application w/ TAU

User

KTAU
Performance
State

PID: 1430

User-level
Double-Buffered
Container

sys_write
do_IRQ

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 9

How the integration works...

schedule

timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 0

Application w/ TAU

User

Kernel

KTAU
Performance
State

PID: 1423

User-level
Double-Buffered
Container

14

schedule

timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 1

Application w/ TAU

User

KTAU
Performance
State

PID: 1430

User-level
Double-Buffered
Container

sys_write
do_IRQ

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 9

How the integration works...

schedule
timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 0

Application w/ TAU

User

Kernel

KTAU
Performance
State

PID: 1423

User-level
Double-Buffered
Container

14

schedule

timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 1

Application w/ TAU

User

KTAU
Performance
State

PID: 1430

User-level
Double-Buffered
Container

sys_write
do_IRQ

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 9

How the integration works...

schedule
timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 0

Application w/ TAU

User

Kernel

KTAU
Performance
State

PID: 1423

User-level
Double-Buffered
Container

On schedule()
update counter

14

schedule

timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 1

Application w/ TAU

User

KTAU
Performance
State

PID: 1430

User-level
Double-Buffered
Container

sys_write
do_IRQ

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 9

How the integration works...

schedule
timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 0

Application w/ TAU

User

Kernel

KTAU
Performance
State

PID: 1423

User-level
Double-Buffered
Container

On schedule()
update counter

get_shared_counter()

14

schedule

timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 1

Application w/ TAU

User

KTAU
Performance
State

PID: 1430

User-level
Double-Buffered
Container

sys_write
do_IRQ

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 9

How the integration works...

schedule
timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 0

Application w/ TAU

User

Kernel

KTAU
Performance
State

PID: 1423

User-level
Double-Buffered
Container

On schedule()
update counter

get_shared_counter()

14

schedule
timer_interrupt

schedule

timer_interrupt

sys_read

MPI Rank 1

Application w/ TAU

User

KTAU
Performance
State

PID: 1430

User-level
Double-Buffered
Container

On
timer_interrupt
update counter

get_shared_counter()

sys_write
do_IRQ

Per-Process Virtualized OS Counters No Daemon or System Call needed!

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 10

How do we analyze?
 Trace information

 Application event trace with OS noise counters
 Presence of OS noise has affected the timing of events

 Timeline Approximation
 Reason about timing of events that may have occurred in the absence of noise
 Remove time-duration of noise and adjust event timestamps
 Must be careful to maintain constraints in event ordering

 E.g. A recv cannot end before the corresponding send
 Delay due to the global noise-effect (Accumulated Noise)

 Difference in end times between measured and approximated timeline
 Two main cases

 Noise Propagation; Noise Absorption
 See paper for other cases

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 11

Global Noise Estimation - Noise Propagation

Rank 1 Sends; Rank 2 Receives

timeMeasured Timeline

Rank 1
Local Noise = 100s

0 100 200

w = 100

S

ReRb

T =

Rank 2
Local Noise = 0s

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 11

Global Noise Estimation - Noise Propagation

Rank 1 Sends; Rank 2 Receives

timeMeasured Timeline

Rank 1
Local Noise = 100s

0 100 200

w = 100

S

ReRb

T =

Rank 2
Local Noise = 0s

Approximated Timeline

R’b

S’

R’e

Accumulated Noise
200 - 100 = 100s

Rank 1
Local Noise = 100s

0 100 200T =

Rank 2
Local Noise = 0s

Accumulated Noise
200 - 100 = 100s

w = 0

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 11

Global Noise Estimation - Noise Propagation

Rank 1 Sends; Rank 2 Receives

timeMeasured Timeline

Rank 1
Local Noise = 100s

0 100 200

w = 100

S

ReRb

T =

Rank 2
Local Noise = 0s

Approximated Timeline

R’b

S’

R’e

Accumulated Noise
200 - 100 = 100s

Rank 1
Local Noise = 100s

0 100 200T =

Rank 2
Local Noise = 0s

Accumulated Noise
200 - 100 = 100s

w = 0

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 11

Global Noise Estimation - Noise Propagation

Rank 1 Sends; Rank 2 Receives

timeMeasured Timeline

Rank 1
Local Noise = 100s

0 100 200

w = 100

S

ReRb

T =

Rank 2
Local Noise = 0s

Approximated Timeline

R’b

S’

R’e

Accumulated Noise
200 - 100 = 100s

Rank 1
Local Noise = 100s

0 100 200T =

Rank 2
Local Noise = 0s

Accumulated Noise
200 - 100 = 100s

w = 0

Accumulated Noise = Last Measured Timestamp - Last Approximated Timestamp

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 11

Global Noise Estimation - Noise Propagation

Rank 1 Sends; Rank 2 Receives

timeMeasured Timeline

Rank 1
Local Noise = 100s

0 100 200

w = 100

S

ReRb

T =

Rank 2
Local Noise = 0s

Approximated Timeline

R’b

S’

R’e

Accumulated Noise
200 - 100 = 100s

Rank 1
Local Noise = 100s

0 100 200T =

Rank 2
Local Noise = 0s

Accumulated Noise
200 - 100 = 100s

w = 0

Propagation - Rank 2 picks up 100s of delay even though its local-noise is 0!

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 12

Global Noise Estimation - Noise Absorption

Rank 1 Sends; Rank 2 Receives
time

Measured Timeline

Rank 1
Local Noise = 50s

0 100 200

w = 100

S

ReRb

T =

Rank 2
Local Noise = 100s

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 12

Global Noise Estimation - Noise Absorption

Rank 1 Sends; Rank 2 Receives
time

Measured Timeline

Rank 1
Local Noise = 50s

0 100 200

w = 100

S

ReRb

T =

Rank 2
Local Noise = 100s

Approximated Timeline

R’b

S’

R’e

Accumulated Noise
200 - 150 = 50s

Rank 1
Local Noise = 50s

0 100 200T =

Rank 2
Local Noise = 100s

Accumulated Noise
200 - 150 = 50s

150

w = 150

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 12

Global Noise Estimation - Noise Absorption

Rank 1 Sends; Rank 2 Receives
time

Measured Timeline

Rank 1
Local Noise = 50s

0 100 200

w = 100

S

ReRb

T =

Rank 2
Local Noise = 100s

Approximated Timeline

R’b

S’

R’e

Accumulated Noise
200 - 150 = 50s

Rank 1
Local Noise = 50s

0 100 200T =

Rank 2
Local Noise = 100s

Accumulated Noise
200 - 150 = 50s

150

w = 150

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 12

Global Noise Estimation - Noise Absorption

Rank 1 Sends; Rank 2 Receives
time

Measured Timeline

Rank 1
Local Noise = 50s

0 100 200

w = 100

S

ReRb

T =

Rank 2
Local Noise = 100s

Approximated Timeline

R’b

S’

R’e

Accumulated Noise
200 - 150 = 50s

Rank 1
Local Noise = 50s

0 100 200T =

Rank 2
Local Noise = 100s

Accumulated Noise
200 - 150 = 50s

150

w = 150

Absorption - Rank 2’s Acc. Noise is only 50s, but local noise was 100s. It loses 50s!

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 13

Prior Work on Trace-based Timeline Approximation
 Wolf, Malony, Shende and Morris | HPCC’06

 Context: Measurement perturbation compensation.
 Sottile, Chandu and Bader | IPDPS’06

 Trace-based simulation
 Inject artificial noise into existing application traces and adjust timestamps
 Reverse of our current work - we remove existing, real noise effects from trace.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 14

Noise-Effect Estimation Demonstrated
 Demonstrate estimation of delay caused in application/benchmark by real noise
 Platform: 32 (2x2) Opterons (P=128); GigE; Linux w/ KTAU; SDSC
 Application : Sweep 3D (kernel representative of ASC applications)

 Repeating phases of Send/Recv followed by Allreduce
 Problem - 650^3, 15 iterations, MPI based

 Scaling
 Strong
 P=32, P=128

 Instrumentation / Measurement
 TAU Tracing of MPI events
 Associating KTAU OS Metrics with the events

 Analysis
 Run Trace analysis (described earlier) to calculate delay due to noise

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 15

Noise Sources and Metrics
 OS Noise Sources

 global timer interrupt - keeps time & timers, intervals (10, 4, 1 msec)
 local timer interrupt - update process times (scheduling), every cpu/core
 preemptive schedule - duration preempted

 Metrics
 Accumulated Noise

 Estimate of delay due to global noise effects, in secs
 By how much time would the application have run faster w/o noise?

 Noise Amplification Ratio
 Accumulated Noise / Local Noise
 How much was noise amplified? How much was absorbed?

 Lesser means better for both metrics
 Metrics calculated seperately for each noise source and combined noise

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 16

Overall Accumulated Noise - Effect of Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Default Run
P=128 Default Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

) P=32

P=128

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 16

Overall Accumulated Noise - Effect of Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Default Run
P=128 Default Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

) P=32

P=128

1.7 secs lost to
global noise.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 16

Overall Accumulated Noise - Effect of Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Default Run
P=128 Default Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

Local noise proportional to runtime.
Longer the run, more timer interrupts.
Shorter the run, fewer are expected.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 16

Overall Accumulated Noise - Effect of Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Default Run
P=128 Default Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)
1.7 secs

1.3 secs

1.3x

Local noise proportional to runtime.
Longer the run, more timer interrupts.
Shorter the run, fewer are expected.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 16

Overall Accumulated Noise - Effect of Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Default Run
P=128 Default Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)
1.7 secs

1.3 secs

1.3x

But... Runtime reduces 3.8x.

Local noise proportional to runtime.
Longer the run, more timer interrupts.
Shorter the run, fewer are expected.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 16

Overall Accumulated Noise - Effect of Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Default Run
P=128 Default Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)
1.7 secs

1.3 secs

1.3x

Global noise becomes worse on scaling.

But... Runtime reduces 3.8x.

Local noise proportional to runtime.
Longer the run, more timer interrupts.
Shorter the run, fewer are expected.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 17

Overall Noise Amplification Ratio - Effect of Scaling

Sorted Rank

N
oi

se
 A

m
pl

if
ic

at
io

n
R

at
io

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140

P=32 Default Run
P=128 Default Run

Zero Amplification Line

P=32

P=128

Local Noise = Global Noise

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 17

Overall Noise Amplification Ratio - Effect of Scaling

Sorted Rank

N
oi

se
 A

m
pl

if
ic

at
io

n
R

at
io

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140

P=32 Default Run
P=128 Default Run

Zero Amplification Line

P=32

P=128

Local Noise = Global Noise

2/3 Ranks - Noise Absorbed.
Rest Noise amplified atmost 1.25x.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 17

Overall Noise Amplification Ratio - Effect of Scaling

Sorted Rank

N
oi

se
 A

m
pl

if
ic

at
io

n
R

at
io

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140

P=32 Default Run
P=128 Default Run

Zero Amplification Line

P=32

P=128

Local Noise = Global Noise

2/3 Ranks - Noise Absorbed.
Rest Noise amplified atmost 1.25x.

Amplification in all but one. Upto 3.8x.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 17

Overall Noise Amplification Ratio - Effect of Scaling

Sorted Rank

N
oi

se
 A

m
pl

if
ic

at
io

n
R

at
io

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140

P=32 Default Run
P=128 Default Run

Zero Amplification Line

P=32

P=128

Local Noise = Global Noise

2/3 Ranks - Noise Absorbed.
Rest Noise amplified atmost 1.25x.

Amplification in all but one. Upto 3.8x.

Confirms that scaling is increasing global noise-effect.
How do the noise sources contribute?

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 18

Noise Sources -- Accumulated Noise -- P=128

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Overall Noise

local-timer Noise

global-timer Noise

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 18

Noise Sources -- Accumulated Noise -- P=128

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Overall Noise

local-timer Noise

global-timer Noise

Preemptive schedule is dominant source of noise.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 18

Noise Sources -- Accumulated Noise -- P=128

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Overall Noise

local-timer Noise

global-timer Noise

Preemptive schedule is dominant source of noise.

By just removing schedule() noise, 85% of noise can be removed.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 18

Noise Sources -- Accumulated Noise -- P=128

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Overall Noise

local-timer Noise

global-timer Noise

Preemptive schedule is dominant source of noise.

By just removing schedule() noise, 85% of noise can be removed.

Lets make a simple change that affects scheduling.
Pin the ranks to the processors.

What happens?

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 19

Overall Accumulated Noise - Pinned - Effect of Strong Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Pinned Run
P=128 Pinned Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

P=32

P=128

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 19

Overall Accumulated Noise - Pinned - Effect of Strong Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Pinned Run
P=128 Pinned Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)
1.55 secs lost to global noise.

P=32

P=128

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 19

Overall Accumulated Noise - Pinned - Effect of Strong Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Pinned Run
P=128 Pinned Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

1.55 secs

0.37 secs

4.2x

P=32

P=128

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 19

Overall Accumulated Noise - Pinned - Effect of Strong Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Pinned Run
P=128 Pinned Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

1.55 secs

0.37 secs

4.2x
Matches Runtime reduction - 4x.

Noise-effect is scaling down with runtime.

P=32

P=128

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 19

Overall Accumulated Noise - Pinned - Effect of Strong Scaling

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

P=32 Pinned Run
P=128 Pinned Run

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

1.55 secs

0.37 secs

4.2x
Matches Runtime reduction - 4x.

Noise-effect is scaling down with runtime.

P=32

P=128

Lets look at the different noise sources again...

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 20

The Noise Sources -- Pinned -- P=128

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

schedule

local-timer

global-timer

Combined

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 20

The Noise Sources -- Pinned -- P=128

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

schedule

local-timer

global-timer

Combined

Preemptive schedule is not largest noise source anymore.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 21

Small Noise Effects
 Magnitude of the Accumulated Noise - 1.3 secs

 Represents approx. 1% of runtime (132 secs)

 Small cluster (32 nodes) + Slow interconnect (GigE)
 => Small global-noise effect

 For large OS noise related slowdowns
 Larger scales
 Fast interconnect

 Global-Noise Estimation still detected and revealed interesting noise features

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 22

Accuracy of Noise-Estimation Analysis at Scale
 How accurate is the “Accumulated Noise” value provided by analysis?
 Methodology

 Take (relatively) noise-less platform (BG/L); Inject noise (Selfish Suite/ANL)
 Run parallel application without noise & then with injected noise
 Perform trace analysis to provide the accumulated noise estimate
 How far is calculated accumulated noise value from actual delay?

 Simple BSP Benchmark (Bulk Synchronous Processing)
 Repeated phases of computation & collective communication
 Inputs: Scaling type, No. of Phases, Type of Collective, No. of Nodes
 Used: Strong scaling, 10000 phases, Barrier, 32 to 2048 Nodes

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 23

The Effect of Noise on the Benchmark

 32 64 128 256 512 1024 2048

10

5

1.6

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225

% Dilation in Runtime

Injected Noise %

No. of Nodes

Noise Injection
Frequency: 1000 HZ
Length : 16, 50, 100 usec

%Noise : 1.6%, 5%, 10%

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 23

The Effect of Noise on the Benchmark

 32 64 128 256 512 1024 2048

10

5

1.6

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225

% Dilation in Runtime

Injected Noise %

No. of Nodes

Noise Injection
Frequency: 1000 HZ
Length : 16, 50, 100 usec

%Noise : 1.6%, 5%, 10%

Perform Noise-Effect estimation for each trial.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 24

%Noise-Estimation Error

Injected 1.6%

Injected 5%

Injected 10%

%
 N

oi
se

-E
st

im
at

io
n

E
rr

or

No. of Nodes

!"#

!$%

!&#'

!#($

!(&#

!&)#%

!#)%'

!&)

!(

!&

!)*#(

!)*(

!&

!#

!%

!'

!&$

!"#

+,-./01!234

56/31!78819.!73./0:./6-

-6!-6/31
;/.<!-6/31

960=1-3:.1>

56*!68!56>13

?!56/31!@-A19.1>

+,-./01!234

a. Noise Tracking Scalability

!"

!"#$

!"#%

!"#&

!"#'

!(

!(#$

!)$!&% !($' !$*& !*($!("$% !$"%'

+
,
-
.
/0
1
2
34
5
/0
1
6
/0
7
.
!4
88
7
8

97#!7:!97;25

<-=>!?@.AB87.7-5!C686==2=!D<?CE!<2.AB168>!F!?/87.G!?A6=0.G

(+!0.H2A/2;!.7052
*+!0.H2A/2;!.7052
("+!0.H2A/2;!.7052

!"

!"#$

!%

!%#$

!&

!&#$

!'

!'#$

!(

!(#$

!'& !)(!%&* !&$) !$%& !%"&(!&"(*

+
,
-
./
0
12
/
3.
4
5
3.
-
6
!2
77
-
7

,-#!-8!,-90/

:;<=!>?6@A7-6-;/!B575<<0<!C:>BD!:06@A457=!E!>37-6F!>@5<.6F

%+!.6G0@309!6-./0
$+!.6G0@309!6-./0
%"+!.6G0@309!6-./0

b. %Runtime-Estimation Error(%RE) c. %Noise-Estimation Error(%NE)

Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 24

%Noise-Estimation Error

Injected 1.6%

Injected 5%

Injected 10%

%
 N

oi
se

-E
st

im
at

io
n

E
rr

or

No. of Nodes

!"#

!$%

!&#'

!#($

!(&#

!&)#%

!#)%'

!&)

!(

!&

!)*#(

!)*(

!&

!#

!%

!'

!&$

!"#

+,-./01!234

56/31!78819.!73./0:./6-

-6!-6/31
;/.<!-6/31

960=1-3:.1>

56*!68!56>13

?!56/31!@-A19.1>

+,-./01!234

a. Noise Tracking Scalability

!"

!"#$

!"#%

!"#&

!"#'

!(

!(#$

!)$!&% !($' !$*& !*($!("$% !$"%'

+
,
-
.
/0
1
2
34
5
/0
1
6
/0
7
.
!4
88
7
8

97#!7:!97;25

<-=>!?@.AB87.7-5!C686==2=!D<?CE!<2.AB168>!F!?/87.G!?A6=0.G

(+!0.H2A/2;!.7052
*+!0.H2A/2;!.7052
("+!0.H2A/2;!.7052

!"

!"#$

!%

!%#$

!&

!&#$

!'

!'#$

!(

!(#$

!'& !)(!%&* !&$) !$%& !%"&(!&"(*

+
,
-
./
0
12
/
3.
4
5
3.
-
6
!2
77
-
7

,-#!-8!,-90/

:;<=!>?6@A7-6-;/!B575<<0<!C:>BD!:06@A457=!E!>37-6F!>@5<.6F

%+!.6G0@309!6-./0
$+!.6G0@309!6-./0
%"+!.6G0@309!6-./0

b. %Runtime-Estimation Error(%RE) c. %Noise-Estimation Error(%NE)

Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

Error between 3% to 4.5%

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 24

%Noise-Estimation Error

Injected 1.6%

Injected 5%

Injected 10%

%
 N

oi
se

-E
st

im
at

io
n

E
rr

or

No. of Nodes

!"#

!$%

!&#'

!#($

!(&#

!&)#%

!#)%'

!&)

!(

!&

!)*#(

!)*(

!&

!#

!%

!'

!&$

!"#

+,-./01!234

56/31!78819.!73./0:./6-

-6!-6/31
;/.<!-6/31

960=1-3:.1>

56*!68!56>13

?!56/31!@-A19.1>

+,-./01!234

a. Noise Tracking Scalability

!"

!"#$

!"#%

!"#&

!"#'

!(

!(#$

!)$!&% !($' !$*& !*($!("$% !$"%'

+
,
-
.
/0
1
2
34
5
/0
1
6
/0
7
.
!4
88
7
8

97#!7:!97;25

<-=>!?@.AB87.7-5!C686==2=!D<?CE!<2.AB168>!F!?/87.G!?A6=0.G

(+!0.H2A/2;!.7052
*+!0.H2A/2;!.7052
("+!0.H2A/2;!.7052

!"

!"#$

!%

!%#$

!&

!&#$

!'

!'#$

!(

!(#$

!'& !)(!%&* !&$) !$%& !%"&(!&"(*

+
,
-
./
0
12
/
3.
4
5
3.
-
6
!2
77
-
7

,-#!-8!,-90/

:;<=!>?6@A7-6-;/!B575<<0<!C:>BD!:06@A457=!E!>37-6F!>@5<.6F

%+!.6G0@309!6-./0
$+!.6G0@309!6-./0
%"+!.6G0@309!6-./0

b. %Runtime-Estimation Error(%RE) c. %Noise-Estimation Error(%NE)

Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

Error between 3% to 4.5%

Error less than 1%

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 24

%Noise-Estimation Error

Injected 1.6%

Injected 5%

Injected 10%

%
 N

oi
se

-E
st

im
at

io
n

E
rr

or

No. of Nodes

!"#

!$%

!&#'

!#($

!(&#

!&)#%

!#)%'

!&)

!(

!&

!)*#(

!)*(

!&

!#

!%

!'

!&$

!"#

+,-./01!234

56/31!78819.!73./0:./6-

-6!-6/31
;/.<!-6/31

960=1-3:.1>

56*!68!56>13

?!56/31!@-A19.1>

+,-./01!234

a. Noise Tracking Scalability

!"

!"#$

!"#%

!"#&

!"#'

!(

!(#$

!)$!&% !($' !$*& !*($!("$% !$"%'

+
,
-
.
/0
1
2
34
5
/0
1
6
/0
7
.
!4
88
7
8

97#!7:!97;25

<-=>!?@.AB87.7-5!C686==2=!D<?CE!<2.AB168>!F!?/87.G!?A6=0.G

(+!0.H2A/2;!.7052
*+!0.H2A/2;!.7052
("+!0.H2A/2;!.7052

!"

!"#$

!%

!%#$

!&

!&#$

!'

!'#$

!(

!(#$

!'& !)(!%&* !&$) !$%& !%"&(!&"(*

+
,
-
./
0
12
/
3.
4
5
3.
-
6
!2
77
-
7

,-#!-8!,-90/

:;<=!>?6@A7-6-;/!B575<<0<!C:>BD!:06@A457=!E!>37-6F!>@5<.6F

%+!.6G0@309!6-./0
$+!.6G0@309!6-./0
%"+!.6G0@309!6-./0

b. %Runtime-Estimation Error(%RE) c. %Noise-Estimation Error(%NE)

Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

Error between 3% to 4.5%

Error less than 1%

Noise-Estimation is Accurate
- At varying scales (N=32, 2048).
- At varying comp. grain
- At varying noise-levels

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error

 Compare access costs (in cycles) to
 PAPI counters
 no-op” /proc call

 Metric Access order of magnitude faster than /proc access

 Metric Access comparable to PAPI h/w counter access

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 25

How fast is access to KTAU OS Metrics?

Metrics OS Metric Access /proc Access PAPI Access
1 192 1150 248
2 272 - 304
3 288 - -
4 400 - -

 Compare access costs (in cycles) to
 PAPI counters
 no-op” /proc call

 Metric Access order of magnitude faster than /proc access

 Metric Access comparable to PAPI h/w counter access

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 25

How fast is access to KTAU OS Metrics?

Metrics OS Metric Access /proc Access PAPI Access
1 192 1150 248
2 272 - 304
3 288 - -
4 400 - -

 Compare access costs (in cycles) to
 PAPI counters
 no-op” /proc call

 Metric Access order of magnitude faster than /proc access

 Metric Access comparable to PAPI h/w counter access

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 25

How fast is access to KTAU OS Metrics?

Metrics OS Metric Access /proc Access PAPI Access
1 192 1150 248
2 272 - 304
3 288 - -
4 400 - -

 Measure Overall Perturbation of NPB LU under multiple configurations
 Configuration: base

 No instrumentation in application or OS

 Configuration: ktau-tau-metrics
 TAU MPI tracing
 Tracking 4 OS metrics for each MPI event

 Performing OS Metric access + TAU MPI Tracing < 1% Perturbation

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 26

What is the Measurement Perturbation?

NPB LU Class C on 16 Nodes

Configuration base ktau-tau-metrics
Minimum Exec. Time 475.04 479.66

% Min. Slowdown -- 0.97

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 27

Conclusion
 General measurement technique that estimates the delay caused by direct OS

noise effects on a parallel message passing application
 Integrated OS / Application performance measurement
 Trace timeline approximation

 Demonstrate its use on a Linux cluster to measure effects of real, existing noise
 Evaluate accuracy of analysis at scale (2048 nodes)

 0.5% to 4.5% estimation error over varying noise levels and computational grain
 Questions in the HPC community

 OS/R suites for large-scale platforms - Light-weight or Full-featured?
 Can applications be changed to be less noise-sensitive?
 DOE FAST-OS project created to investigate OS issues, including noise
 Integrated (OS/Application) measurement and noise analysis techniques can aid

in answering some of the questions

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 28

Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Combined Noise

local-timer Noise

global-timer Noise

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 28

Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Combined Noise

local-timer Noise

global-timer Noise

Preemptive schedule is largest source of noise.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 28

Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Combined Noise

local-timer Noise

global-timer Noise

Preemptive schedule is largest source of noise.

Sum(Components) = 2.24 sec

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 28

Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Combined Noise

local-timer Noise

global-timer Noise

Preemptive schedule is largest source of noise.

Sum(Components) = 2.24 sec

Combined Noise = 1.30 sec

?

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 28

Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Combined Noise

local-timer Noise

global-timer Noise

Preemptive schedule is largest source of noise.

Why?

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 29

Global Noise Estimation - Noise Combination

Approximated Timeline

Process 1 Sends; Process 2 Receives

Appendix A

Measured Timeline time

Process 1
Local Noise N1 = 80s

0 50 150

w = 100

S

ReRb

T =

Process 2
Local Noise N1 = 0s

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 29

Global Noise Estimation - Noise Combination

Approximated Timeline

Process 1 Sends; Process 2 Receives

Appendix A

Measured Timeline time

Process 1
Local Noise N1 = 80s

0 50 150

w = 100

S

ReRb

T =

Process 2
Local Noise N1 = 0s

R’b

S’

R’e

Accumulated N1

150 - 70 = 80s
Process 1
Local Noise N1 = 80s

Process 2
Local Noise N1 = 0s

0 50 150T = 70

Accumulated N1

150 - 70 = 80s

w=20

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 29

Global Noise Estimation - Noise Combination

Approximated Timeline

Process 1 Sends; Process 2 Receives

Appendix A

Measured Timeline time

Process 1
Local Noise N2 = 70s

0 50 150

w = 100

S

ReRb

T =

Process 2
Local Noise N2 = 0s

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 29

Global Noise Estimation - Noise Combination

Approximated Timeline

Process 1 Sends; Process 2 Receives

Appendix A

Measured Timeline time

Process 1
Local Noise N2 = 70s

0 50 150

w = 100

S

ReRb

T =

Process 2
Local Noise N2 = 0s

R’b

S’

R’e

Accumulated N2

150 - 80 = 70s
Process 1
Local Noise N2 = 70s

Process 2
Local Noise N2 = 0s

0 50 150T = 80

Accumulated N2

150 - 80 = 70s

w=30

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 29

Global Noise Estimation - Noise Combination

Approximated Timeline

Process 1 Sends; Process 2 Receives

Appendix A

Measured Timeline time

Process 1
Local Noise N1+N2 =150s

0 50 150

w = 100

S

ReRb

T =

Process 2
Local Noise N1+N2 =0s

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 29

Global Noise Estimation - Noise Combination

Approximated Timeline

Process 1 Sends; Process 2 Receives

Appendix A

Measured Timeline time

Process 1
Local Noise N1+N2 =150s

0 50 150

w = 100

S

ReRb

T =

Process 2
Local Noise N1+N2 =0s

R’b

S’

R’e

Acc. N1+N2

150 - 0 = 150s
Process 1
Local Noise N1+N2 =150s

0 50 150T =

Process 1
Local Noise N1+N2 =0s

Acc. N1+N2

150 - 50 = 100s

w=0

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 30

The Noise Sources -- Accumulated Noise -- P=128
Appendix A

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Combined Noise

local-timer Noise

global-timer Noise

Preemptive schedule is largest source of noise.

Sum(Components) = 2.24 sec

Combined Noise = 1.30 sec

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 30

The Noise Sources -- Accumulated Noise -- P=128
Appendix A

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140

Combined Acc. Noise
schedule Acc. Noise

local-timer Acc. Noise
global-timer Acc. Noise

MPI Rank

A
cc

um
ul

at
ed

 N
oi

se
 (

us
ec

)

schedule Noise

Combined Noise

local-timer Noise

global-timer Noise

Preemptive schedule is largest source of noise.

Sum(Components) = 2.24 sec

Combined Noise = 1.30 sec

Noise does not simply add (previous example).

On combination, 42% of noise gets absorbed!

By just removing schedule() noise, 85% of noise can be removed.

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 31

Related Work in Noise Measurement
 Petrini et al. SC’03 - Microbenchmark, simulation, modeling to close the loop

 Specific to application (SAGE). Accurate model difficult to produce.
 Gioiosa et al. ISSIPIT’04 - Microbenchmark & measurement

 Identify noise sources using OProfile sampling. Quantifies only local-noise.
 Agarwal et al. HiPC’05 - Theoretical Modeling under different distributions

 Assumptions include: Balanced Load, Stationary, Balanced Noise, Identical noise
 Beckman et al. CLUSTER’06 (Emulation), Sottile et al. IPDPS’06 (Simulation)

 Injected artificial noise at runtime into micro-benchmarks to understand effects
 Modify application traces by adding artificial noise.

Appendix B

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 32

Profiling LU Application using KTAU OS Metrics

timer interrupt smp_apic_timer_interrupt schedule

schedule
global timer interrupt local timer interrupt schedule

global timer interrupt local timer interrupt schedule

Appendix C

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 32

Profiling LU Application using KTAU OS Metrics

timer interrupt smp_apic_timer_interrupt schedule

schedule
global timer interrupt local timer interrupt schedule

global timer interrupt local timer interrupt schedule

Appendix C

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 32

Profiling LU Application using KTAU OS Metrics

timer interrupt smp_apic_timer_interrupt schedule

schedule
global timer interrupt local timer interrupt schedule

global timer interrupt local timer interrupt schedule
Local noise is measured and

attributed to respective MPI ranks.

Appendix C

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 33

Profiling CG using KTAU OS Metrics

u-secs

Functions

Ra
nk

s

Local noise is isolated from
application events.

schedule

Appendix C

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 34

Acknowledgments
 San Diego Supercomputing Center (SDSC) & Don Thorp

 Access to Opteron cluster
 Argonne National Laboratory

 Access to BG/L and other compute resources
 DOE FAST-OS Project

 Funding as part of the joint ZeptoOS project between ANL and UO

