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Talk Outline
 The Problem

 What is Operating System / Runtime (OS/R) interference
 Is it a problem?
 Measurement question

 The Solution
 KTAU and TAU performance systems
 Fine-grained OS/App performance correlation
 Noise-effect estimation technique

 Evaluation
 Demonstrating measurement and analysis of real OS noise
 Investigating accuracy of noise-estimation analysis at scale

 Conclusion
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Example of Noise and its Propagation
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Example of Noise and its Propagation

Phases of Alternating Computation & Collectives
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Is OS Noise a problem? How?
 Previous work has shown significant OS/R interference problems

 Large variability in point-point communication latency [Mraz SC’94] 
 Measurement mismatched performance model [Petrini et al. SC’03] 
 Poor scaling performance of collectives [Jones et al. SC’03]

 Nature of noise matters
 Theoretical modeling [Agarwal et al. HiPC’05]

 Heavy-tailed and Bernoulli noise most detrimental
 Noise Emulation [Beckman et al. CCJ’07]

 Effect of noise on collectives
 Maximum noise duration determines effects

 Large, rare noise-events are problematic
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Figure 8: Execution time magnification when injecting constant amounts of noise into a benchmark based

on allreduce (incomplete data sets on 32K nodes for noise ratios of 0.08% and 0.15% are due to time

constraints in our access to such a large machine configuration).

in particular 0.015% (Fig. 8, top left), execution times increase significantly only for the largest

process counts. More worrying, it appears as if, in that case, we will see the dreaded explosion

in run-time as the number of processes increases. We have included two more plots with interim

noise ratios of 0.08% and 0.15% to show that that is in fact not the case. As can be observed,

execution time magnification does not exponentially grow ad infinitum with an increasing process

count, but fairly quickly levels off or even slightly decreases. The larger the noise ratio, the sooner

this effect takes place—for 1% noise, it is not visible even for the smallest process count tested.

The leveling-off is due to noise saturation—with a fixed per-process noise ratio, the total amount

of noise in the system increases linearly with an increasing process count. It reaches a stage when

at any given point in time, a detour is almost guaranteed to be taking place somewhere—adding

more processes, and thus more detours, will simply force the latter to overlap in time, significantly

reducing their ability to do any (further) damage.

16

Beckman et al. CCJ’07
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Effect of Injected Noise on a Real Application (POP)

Total: 23% @ 1024 | 32% @ 2048
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Noise Effects are Complex
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Noise Effects are Complex
 Local noise dependent on the OS/R and its configuration, but global effects ...
 Depend on the underlying platform

 Interconnect latency, timer resolution, TLB ...
 Depend on the OS/R configuration and noise sources

 Scheduling policy, interrupt frequency, daemons ... 
 Depend on parallel application behavior

 Synchronous communications, computational grain, load balance ...

 Can we measure the global delay an application experiences due to specific 
noise sources? 

 Real application + real, existing noise => noise effect?
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Our Approach and Contribution
 General noise-effect estimation by direct measurement of application and OS

 Contribution
 Isolate OS noise in application performance data
 Quantify global effects of noise on application
 Attribute the effects to specific noise sources
 Analyze application sensitivity
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How do we measure?
 Application

 TAU Performance System
 Profiling and/or tracing of application events
 Execution time, h/w performance counters ...

 Operating System
 KTAU 
 Profiling and tracing of system-level events
 System calls, scheduling, interrupts, ...

 Integration 
 KTAU extended to allow fast access to system performance data
 TAU captures OS data as counters stored with application events

Application w/ TAU

OS w/ KTAU
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How do we measure?
 Application

 TAU Performance System
 Profiling and/or tracing of application events
 Execution time, h/w performance counters ...

 Operating System
 KTAU 
 Profiling and tracing of system-level events
 System calls, scheduling, interrupts, ...

 Integration 
 KTAU extended to allow fast access to system performance data
 TAU captures OS data as counters stored with application events

Application w/ TAU

OS w/ KTAU

Tight Integration



Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 9

How the integration works...
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How do we analyze?
 Trace information

 Application event trace with OS noise counters
 Presence of OS noise has affected the timing of events

 Timeline Approximation
 Reason about timing of events that may have occurred in the absence of noise
 Remove time-duration of noise and adjust event timestamps
 Must be careful to maintain constraints in event ordering

 E.g. A recv cannot end before the corresponding send
 Delay due to the global noise-effect (Accumulated Noise)

 Difference in end times between measured and approximated timeline
 Two main cases

 Noise Propagation; Noise Absorption
 See paper for other cases
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Global Noise Estimation - Noise Propagation
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Global Noise Estimation - Noise Propagation
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Global Noise Estimation - Noise Propagation
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Global Noise Estimation - Noise Absorption
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Global Noise Estimation - Noise Absorption
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Global Noise Estimation - Noise Absorption
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Global Noise Estimation - Noise Absorption
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Prior Work on Trace-based Timeline Approximation
 Wolf, Malony, Shende and Morris | HPCC’06

 Context: Measurement perturbation compensation.
 Sottile, Chandu and Bader | IPDPS’06

 Trace-based simulation
 Inject artificial noise into existing application traces and adjust timestamps
 Reverse of our current work - we remove existing, real noise effects from trace.
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Noise-Effect Estimation Demonstrated
 Demonstrate estimation of delay caused in application/benchmark by real noise
 Platform: 32 (2x2) Opterons (P=128); GigE; Linux w/ KTAU; SDSC
 Application : Sweep 3D (kernel representative of ASC applications)

 Repeating phases of Send/Recv followed by Allreduce
 Problem - 650^3, 15 iterations, MPI based

 Scaling
 Strong
 P=32, P=128

 Instrumentation / Measurement
 TAU Tracing of MPI events
 Associating KTAU OS Metrics with the events

 Analysis
 Run Trace analysis (described earlier) to calculate delay due to noise
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Noise Sources and Metrics
 OS Noise Sources

 global timer interrupt - keeps time & timers, intervals (10, 4, 1 msec)
 local timer interrupt - update process times (scheduling), every cpu/core
 preemptive schedule - duration preempted

 Metrics
 Accumulated Noise 

 Estimate of delay due to global noise effects, in secs 
 By how much time would the application have run faster w/o noise?

 Noise Amplification Ratio
 Accumulated Noise / Local Noise
 How much was noise amplified? How much was absorbed?

 Lesser means better for both metrics
 Metrics calculated seperately for each noise source and combined noise
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Overall Accumulated Noise - Effect of Scaling
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Overall Accumulated Noise - Effect of Scaling
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Overall Accumulated Noise - Effect of Scaling
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Overall Accumulated Noise - Effect of Scaling
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Overall Accumulated Noise - Effect of Scaling
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Overall Accumulated Noise - Effect of Scaling
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Overall Noise Amplification Ratio - Effect of Scaling
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Overall Noise Amplification Ratio - Effect of Scaling
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Overall Noise Amplification Ratio - Effect of Scaling
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Overall Noise Amplification Ratio - Effect of Scaling
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Confirms that scaling is increasing global noise-effect.
How do the noise sources contribute?
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Noise Sources -- Accumulated Noise -- P=128
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Noise Sources -- Accumulated Noise -- P=128
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Noise Sources -- Accumulated Noise -- P=128
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By just removing schedule() noise, 85% of noise can be removed. 
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Preemptive schedule is dominant source of noise.

By just removing schedule() noise, 85% of noise can be removed. 

Lets make a simple change that affects scheduling.
Pin the ranks to the processors.

What happens?
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Overall Accumulated Noise - Pinned - Effect of Strong Scaling
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Overall Accumulated Noise - Pinned - Effect of Strong Scaling
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Overall Accumulated Noise - Pinned - Effect of Strong Scaling
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Lets look at the different noise sources again...
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The Noise Sources -- Pinned -- P=128
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The Noise Sources -- Pinned -- P=128
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Preemptive schedule is not largest noise source anymore.
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Small Noise Effects
 Magnitude of the Accumulated Noise - 1.3 secs

 Represents approx. 1% of runtime (132 secs)

 Small cluster (32 nodes) + Slow interconnect (GigE)
 => Small global-noise effect

 For large OS noise related slowdowns
 Larger scales
 Fast interconnect

 Global-Noise Estimation still detected and revealed interesting noise features
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Accuracy of Noise-Estimation Analysis at Scale
 How accurate is the “Accumulated Noise” value provided by analysis?
 Methodology

 Take (relatively) noise-less platform (BG/L); Inject noise (Selfish Suite/ANL)
 Run parallel application without noise & then with injected noise
 Perform trace analysis to provide the accumulated noise estimate
 How far is calculated accumulated noise value from actual delay?

 Simple BSP Benchmark (Bulk Synchronous Processing)
 Repeated phases of computation & collective communication
 Inputs: Scaling type, No. of Phases, Type of Collective, No. of Nodes
 Used: Strong scaling, 10000 phases, Barrier, 32 to 2048 Nodes
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The Effect of Noise on the Benchmark
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The Effect of Noise on the Benchmark
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Perform Noise-Effect estimation for each trial.
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b. %Runtime-Estimation Error(%RE) c. %Noise-Estimation Error(%NE)

Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error
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Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

Error between 3% to 4.5%

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error
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Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

Error between 3% to 4.5%

Error less than 1%

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error
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Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.

Error between 3% to 4.5%

Error less than 1%

Noise-Estimation is Accurate
- At varying scales (N=32, 2048).
- At varying comp. grain
- At varying noise-levels

* 100Actual Noise - Acc. Noise
Actual Noise

%Noise-Estimation Error



 Compare access costs (in cycles) to
 PAPI counters
 no-op” /proc call 

 Metric Access order of magnitude faster than /proc access

 Metric Access comparable to PAPI h/w counter access
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How fast is access to KTAU OS Metrics?

# Metrics OS Metric Access /proc Access PAPI Access
1 192 1150 248
2 272 - 304
3 288 - -
4 400 - -
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 Measure Overall Perturbation of NPB LU under multiple configurations
 Configuration: base

 No instrumentation in application or OS

 Configuration: ktau-tau-metrics 
 TAU MPI tracing
 Tracking 4 OS metrics for each MPI event

 Performing OS Metric access + TAU MPI Tracing < 1% Perturbation

Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 26

What is the Measurement Perturbation?

NPB LU Class C on 16 Nodes

Configuration base ktau-tau-metrics
Minimum Exec. Time 475.04 479.66

% Min. Slowdown -- 0.97
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Conclusion
 General measurement technique that estimates the delay caused by direct OS 

noise effects on a parallel message passing application
 Integrated OS / Application performance measurement
 Trace timeline approximation

 Demonstrate its use on a Linux cluster to measure effects of real, existing noise
  Evaluate accuracy of analysis at scale (2048 nodes)

 0.5% to 4.5% estimation error over varying noise levels and computational grain
 Questions in the HPC community

 OS/R suites for large-scale platforms - Light-weight or Full-featured?
 Can applications be changed to be less noise-sensitive?
 DOE FAST-OS project created to investigate OS issues, including noise
 Integrated (OS/Application) measurement and noise analysis techniques can aid 

in answering some of the questions
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Combining Noise Sources -- Accumulated Noise -- P=128
Appendix A
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Combining Noise Sources -- Accumulated Noise -- P=128
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Combining Noise Sources -- Accumulated Noise -- P=128
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Global Noise Estimation - Noise Combination

Approximated Timeline

 

Process 1 Sends; Process 2 Receives

Appendix A
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Global Noise Estimation - Noise Combination

Approximated Timeline

 

Process 1 Sends; Process 2 Receives

Appendix A
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Global Noise Estimation - Noise Combination

Approximated Timeline

 

Process 1 Sends; Process 2 Receives

Appendix A

Measured Timeline time
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Global Noise Estimation - Noise Combination
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Appendix A
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Global Noise Estimation - Noise Combination

Approximated Timeline

 

Process 1 Sends; Process 2 Receives

Appendix A
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Global Noise Estimation - Noise Combination

Approximated Timeline

 

Process 1 Sends; Process 2 Receives

Appendix A
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The Noise Sources -- Accumulated Noise -- P=128
Appendix A
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The Noise Sources -- Accumulated Noise -- P=128
Appendix A
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Noise does not simply add (previous example).         

On combination, 42% of noise gets absorbed! 

By just removing schedule() noise, 85% of noise can be removed. 
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Related Work in Noise Measurement
 Petrini et al. SC’03 - Microbenchmark, simulation, modeling to close the loop

 Specific to application (SAGE). Accurate model difficult to produce.
 Gioiosa et al. ISSIPIT’04 - Microbenchmark & measurement

 Identify noise sources using OProfile sampling. Quantifies only local-noise.
 Agarwal et al. HiPC’05 - Theoretical Modeling under different distributions

 Assumptions include: Balanced Load, Stationary, Balanced Noise, Identical noise
 Beckman et al. CLUSTER’06 (Emulation), Sottile et al. IPDPS’06 (Simulation)

 Injected artificial noise at runtime into micro-benchmarks to understand effects
 Modify application traces by adding artificial noise.

Appendix B



Observing the Effects of Kernel Operation on Parallel Application PerformanceSC 2007 32

Profiling LU Application using KTAU OS Metrics

timer interrupt smp_apic_timer_interrupt schedule

schedule
global timer interrupt local timer interrupt schedule

global timer interrupt local timer interrupt schedule

Appendix C
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Profiling LU Application using KTAU OS Metrics

timer interrupt smp_apic_timer_interrupt schedule

schedule
global timer interrupt local timer interrupt schedule

global timer interrupt local timer interrupt schedule
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Profiling LU Application using KTAU OS Metrics

timer interrupt smp_apic_timer_interrupt schedule

schedule
global timer interrupt local timer interrupt schedule

global timer interrupt local timer interrupt schedule
Local noise is measured and

attributed to respective MPI ranks.

Appendix C
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Profiling CG using KTAU OS Metrics

u-secs

Functions

Ra
nk

s

Local noise is isolated from
application events.

schedule

Appendix C
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