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Abstract

In this paper we give an overview of SCALEA, which is a
new performance analysis tool for OpenMP, MPI, HPF,
and mixed parallel/distributed programs. SCALEA in-
struments, executes and measures programs and com-
putes a variety of performance overheads based on a
novel overhead classification. Source code and HW-
profiling is combined in a single system which signifi-
cantly extends the scope of possible overheads that can
be measured and examined, ranging from HW-counters,
such as the number of cache misses or floating point
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operations, to more complex performance metrics, such
as control or loss of parallelism. Moreover, SCALEA
uses a new representation of code regions, called the
dynamic code region call graph, which enables detailed
overhead analysis for arbitrary code regions.An instru-
mentation description file is used to relate performance
information to code regions of the input program and to
reduce instrumentation overhead. Several experiments
with realistic codes that cover MPI, OpenMP, HPF, and
mixed OpenMP/MPI codes demonstrate the usefulness
of SCALEA.

Keywords: performance analysis, performance over-
head classification, distributed and parallel systems

1 Introduction

As hybrid architectures (e.g., SMP clusters) become the
mainstay of distributed and parallel processing in the
market, the computing community is busily developing
languages and software tools for such machines. Besides



OpenMP [27], MPI [13], and HPF [15], mixed program-
ming paradigms such as OpenMP/MPI are increasingly
being evaluated.

In this paper we introduce a new performance anal-
ysis system, SCALEA, for distributed and parallel pro-
grams that covers all of the above mentioned program-
ming paradigms. SCALEA is based on a novel classifica-
tion of performance overheads for shared and distributed
memory parallel programs which includes data move-
ment, synchronization, control of parallelism, additional
computation, loss of parallelism, and unidentified over-
heads. SCALEA is among the first performance anal-
ysis tools that combines source code and HW profiling
in a single system, significantly extending the scope of
possible overheads that can be measured and examined.
These include the use of HW counters for cache analysis
to more complex performance metrics such as control or
loss of parallelism. Specific instrumentation and perfor-
mance analysis is conducted to determine each category
of overhead for individual code regions. Instrumenta-
tion can be done fully automatically or user-controlled
through directives. Post-execution performance analy-
sis is done based on performance trace-files and a novel
representation for code regions named dynamic code re-
gion call graph (DRG). The DRG reflects the dynamic
relationship between code regions and its subregions and
enables a detailed overhead analysis for every code re-
gion. The DRG is not restricted to function calls but
also covers loops, I/O and communication statements,
etc. Moreover, it allows arbitrary code regions to be an-
alyzed. These code regions can vary from a single state-
ment to an entire program unit. This is in contrast to ex-
isting approaches that frequently use a call graph which
considers only function calls.

A prototype of SCALEA has been implemented. We
will present several experiments with realistic programs
including a molecular dynamics application (OpenMP
version), a financial modeling (HPF, and OpenMP/MPI
versions) and a material science code (MPI version) that
demonstrate the usefulness of SCALEA.

The rest of this paper is structured as follows: Sec-
tion 2 describes an overview of SCALEA [24]. In Section
3 we present a novel classification of performance over-
heads based on which SCALEA instruments a code and
analyses its performance. The dynamic code region call
graph is described in the next section. Experiments are
shown in Section 5. Related work is outlined in Section 6.
Conclusions and future work are discussed in Section 7.

2 SCALEA Overview

SCALEA is a post-execution performance tool that in-
struments, measures, and analyses the performance be-
havior of distributed memory, shared memory, and mixed
parallel programs.

Figure 1 shows the architecture of SCALEA which con-
sists of two main components: SCALEA instrumentation
system (SIS) and a post execution performance analy-
sis tool set. SIS is integrated with VFC [3] which is a
compiler that translates Fortran programs (Fortran90,
MPI, OpenMP, HPF, and mixed programs) into For-
tran90/MPI or mixed OpenMP/MPI programs. The
input programs of SCALEA are processed by the com-
piler front-end which generates an abstract syntax tree
(AST). SIS enables the user to select (by directives or
command-line options) code regions of interest. Based
on pre-selected code regions, SIS automatically inserts
probes in the code which will collect all relevant perfor-
mance information in a set of profile/trace files during
execution of the program on a target architecture. SIS
also generates an instrumentation description file (see
Section 2.2) that enables all gathered performance data
to be related back to the input program and to reduce
instrumentation overhead.

SIS [25] targets a performance measurement system
based on the TAU performance framework. TAU is an
integrated toolkit for performance instrumentation, mea-
surement, and analysis for parallel, multi-threaded pro-
grams. The TAU measurement library provides portable
profiling and tracing capabilities, and supports access to
hardware counters. SIS automatically instruments par-
allel programs under VFC by using the TAU instrumen-
tation library and builds on the abstract syntax tree of
VFC and on the TAU measurement system to create the
dynamic code region call graph (see Section 4). The main
functionality of SIS is given as follows:

e Automatic instrumentation of pre-defined code re-
gions (loops, procedures, I/O statements, HPF IN-
DEPENDENT loops, OpenMP PARALLEL loops,
OpenMP SECTIONS, MPI send/receive, etc.) for
various performance overheads by using command-
line options.

e Manual instrumentation through SIS directives
which are inserted in the program. These directives
also allow to define user defined code regions for in-
strumentation and to control the instrumentation
overhead and the size of performance data gathered
during execution of the program.
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e Manual instrumentation to turn on/off profiling for
a given code region.

A pre-processing phase of SCALEA filters and extracts
all relevant performance information from profiles/trace
files which yields filtered performance data and the dy-
namic code region call graph (DRG). The DRG reflects
the dynamic relationship between code regions and its
subregions and is used for a precise overhead analysis
for every individual sub-region. This is in contrast to
existing approaches that are based on the conventional
call graph which considers only function calls but not
other code regions. Post-execution performance analysis
also employs a training set method to determine specific
information (e.g. time penalty for every cache miss over-
head, overhead of probes, time to access a lock, etc.)
for every target machine of interest. In the following we
describe the SCALEA instrumentation system and the
instrumentation description file. More details about SIS
and SCALEA’s post-execution performance analysis can
be found in [24, 25].
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2.1 SCALEA Instrumentation System

Based on user-provided command-line options or di-
rectives, SIS inserts instrumentation code in the pro-
gram which will collect all performance data of inter-
est. SIS supports the programmer to control profil-
ing/tracing and to generate performance data through
selective instrumentation of specific code region types
(loops, procedures, I/O statements, HPF INDEPEN-
DENT loops, OpenMP PARALLEL loops, OpenMP
SECTIONS, OpenMP CRITICAL, MPI barrier state-
ments, etc.). SIS also enables instrumentation of ar-
bitrary code regions. Finally, instrumentation can be
turned on and off by a specific instrumentation directive.

In order to measure arbitrary code regions SIS provides
the following instrumentation:

!SIS$ CR_BEGIN
code region
!SIS$ CR_END

The directive !SIS§ CR_.BEGIN and !SIS$ CR_END
must be, respectively, inserted by the programmer be-
fore and after the region starts and finishes. Note that
there can be several entry and exit nodes for a code re-
gion. Appropriate directives must be inserted by the



Description

IDF Entry

id code region identifier

type code region types

file source file identifier

unit program unit identifier that encloses this region
line_start line number where this region starts
column_start column number where this starts

line_end line number where this ends

column_end

column number where this ends

performance_data

performance data collected or
computed for this region

aux

auxiliary information

Table 1: Contents of the instrumentation description file (IDF)

programmer in every entry and exit node of a given code
region. Alternatively, compiler analysis can be used to
automatically determine these entry and exit nodes.

Furthermore, SIS provides specific directives in or-
der to control tracing/profiling. The directives MEA-
SURE_ENABLE and MEASURE_DISABLE allow the
programmer to turn on and off tracing/profiling of a pro-
gram.

!SIS$ MEASURE_ENABLE
code region
!SIS$ MEASURE_DISABLE

For instance, the following example instruments a por-
tion of an OpenMP pricing code version (see Section 5.2),
where for the sake of demonstration, the call to function
RANDOM_PATH is not measured by using the facilities
to control profiling/tracing as mentioned above.

1SIS$ CR_BEGIN
'$0MP DO PARALLEL PRIVATE(PATH) REDUCTION (+:V)
DOI=1, N
MEASURE_DISABLE
PATH = RANDOM_PATH(0,0,N)
MEASURE_ENABLE
V = V + DISCOUNT(O,CASH_FLOW(B,1,N),
FACTORS_AT (PATH))

151S$

1S1S$

END DO
PRICE = V/N
1SIS$ CR_END

Note that SIS directives are inserted by the program-
mer based on which SCALEA automatically instruments
the code.

2.2 Instrumentation Description File
(IDF)

A crucial aspect of performance analysis is to relate per-
formance information back to the original input program.
During instrumented of a program, SIS generates an
instrumentation description file (IDF) which correlates
profiling, trace and overhead information with the cor-
responding code regions. The IDF maintains for every
instrumented code region a variety of information (see
Table 1).

A code region type describes the type of the code re-
gion, for instance, entire program, outermost loop, read
statement, OpenMP SECTION, OpenMP parallel loop,
MPI barrier, etc. The program unit corresponds to a
subroutine or function which encloses the code region.
The IDF entry for performance data is actually a link to
a separate repository that stores this information. Note
that the information stored in the IDF can actually be
made a runtime data structure to compute performance
overheads or properties during execution of the program.
IDF also helps to keep instrumentation code minimal, as
for every probe we insert only a single identifier that al-
lows to relate the associated probe timer or counter to
the corresponding code region.

3 Classification of Temporal
Overheads

According to Amdahl’s law [1], theoretically the best se-
quential algorithm takes time T to finish the program,
and T}, is the time required to execute the parallel version
with p processors. The temporal overhead of a parallel
program is defined by T, = T, — T,/p and reflects the



difference between achieved and optimal parallelization.
T, can be divided into T; and T, such that T, = T; + T,
where T; is the overhead that can be identified and T,
is the overhead fraction which could not be analyzed in
detail. In theory T, can never be negative, which implies
that the speedup T,/T, can never exceed p [16]. How-
ever, in practice it occurs that temporal overhead can
become negative due to super linear speedup of applica-
tions. This effect is commonly caused by an increased
available cache size. In Figure 2 we give a classification
of temporal overheads based on which the performance
analysis of SCALEA is conducted:
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e Data movement corresponds to any data transfer
within a single address space of a process (local
memory access) or between processes (remote mem-
ory access).

e Synchronization (e.g. barriers and locks) is used
to coordinate processes and threads when access-
ing data, maintaining consistent computations and
data, etc.

o Control of parallelism (e.g. fork/join operations and
loop scheduling) is used to control and manage the
parallelism of a program and can be caused by run-
time library, user, and compiler operations.

e Additional computation reflects any change of the
original sequential program including algorithmic or
compiler changes to increase parallelism (e.g. by
eliminating data dependences) or data locality (e.g.
through changing data access patterns).

e Loss of parallelism is due to imperfect paralleliza-
tion of a program which can be further classified as
follows: unparallelized code (executed by only one
processor), replicated code (executed by all proces-
sors), and partially parallelized code (executed by
more than one but not all processors).

o Unidentified overhead corresponds to the overhead
that is not covered by the above categories.

Note that the above mentioned classification has been
stimulated by [6] but differs in several respects. In [6],
synchronization is part of information movement, load
imbalance is a separate overhead, local and remote mem-
ory accesses are merged in a single overhead class, loss
of parallelism is split into two classes, and unidentified
overhead is not considered at all. Load imbalance in our
opinion is not an overhead but represents a performance
property that is caused by one or more overheads.

4 Dynamic Code Region
Call Graph

Every program consists of a set of code regions which can
range from a single statement to the entire program unit.
A code region can be, respectively, entered and exited by
multiple entry and exit control flow points (see Figure 3).
In most cases, however, code regions are single-entry-
single-exit code regions.

In order to measure the execution behavior of a code
region, the instrumentation system has to detect all en-
try and ezit nodes of a code region and insert probes
at these nodes. Basically, this task can be done with the
support of a compiler or guided through manual insertion
of directives. Figure 3 shows an example of a code re-
gion with its entry and exit nodes. To select an arbitrary
code region, the user, respectively, marks two statements
as the entry and exit statements — which are at the same
time entry and exit nodes — of the code region (e.g., by
using SIS directives [25]). Through a compiler analysis,



SIS then automatically tries to determine all other entry
and exit nodes of the code region. Each node represents
a statement in the program. Figure 3 shows an exam-
ple code region with multiple entry and exit nodes. The
instrumentation tries to detect all these nodes and au-
tomatically inserts probes before and after all entry and
exit nodes, respectively.

Code regions can be overlapping. SCALEA currently
does not support instrumentation of overlapped code re-
gions. The current implementation of SCALEA supports
mainly instrumentation of single-entry multiple-exit code
regions. We are about to enhance SIS to support also
multiple-entry multiple-exit code regions.

4.1 Dynamic Code Region Call Graph

SCALEA has a set of predefined code regions which are
classified into common (e.g. program, procedure, loop,
function call, statement) and programming paradigm
specific code regions (MPI_calls, HPF INDEPENDENT
loops, OpenMP parallel regions, loops, and sections,
etc.). Moreover, SIS provides directives to define arbi-
trary code regions (see Section 2.1) in the input program.

Based on code regions we can define a new data struc-
ture called dynamic code region call graph (DRG):

A dynamic code region call graph (DRG) of a
program () is defined by a directed flow graph
G = (R, E, s) with a set of nodes R and a set of
edges E. A node r € R represents a code region
which is executed at least once during runtime
of Q. An edge (r1,72) € E indicates that a code
region 75 is called inside of r; during execution
of ) and 73 is a dynamic sub-region of r;. The
first code region executed during execution of
@ is defined by s.

The DRG is used as a key data structure to conduct a
detailed performance overhead analysis under SCALEA.
Notice that the timing overhead of a code region r with
n explicitly instrumented sub-regions r1, ..., 7, is given by

T(r) = T(Start,)+T (r1)+...+T (rn)+T(Remain)+T(End,)

where T'(r;) is the timing overhead for an explicitly
instrumented code region r; (1 <1 <n). T(Start,) and
T(End,) correspond to the overhead at the beginning
(e.g. fork threads, redistribute data, etc.) and at the end
(join threads, barrier synchronization, process reduction
operation, etc.) of r. T(Remain) corresponds to the
code regions that have not been explicitly instrumented.
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Figure 3: A code region with several entry and exit points

However, we can easily compute T(Remain) as region r
is instrumented as well.

Figure 4 shows an excerpt of an OpenMP code together
with its associated DRG.

Call graph techniques have been widely used in perfor-
mance analysis. Tools such as Vampir [20], gprof [11, 10],
CXperf [14] support a call graph which shows how much
time was spent in each function and its children. In [7] a
call graph is used to improve the search strategy for auto-
mated performance diagnosis. However, nodes of the call
graph in these tools represent function calls [10, 14]. In
contrast our DRG defines a node as an arbitrary code re-
gion (e.g. function, function call, loop, statement, etc.).



PROGRAM EXAMPLE;
INTEGER::X, AN

PRINT *, "Input N="
READ *N

X=0

call SISF_START(3
ISOMP PARALLEL SHARED(X,N),
DEFAULT(PRIVATE)

A=0

call SISF_START(4)
I$SOMP DO

DO I=1,N

A =A+1

END DO
ISOMP END DO NOWAIT

call SISF_STOP(4)

call SISF_START(H
ISOMP CRITICAL

X =X+A
1I$SOMP END CRITICAL

call SISF_STOP(5)
ISOMP END PARALLEL

call SISF_STOP(3

-

Ry

S

END PROGRAM

o6

Figure 4: OpenMP code excerpt with DRG

4.2 Generating and Building the

Dynamic Code Region Call Graph

Calling code region r; inside a code region r; during ex-
ecution of a program establishes a parent-children rela-
tionship between r; and ry. The instrumentation library
will capture these relationships and maintain them dur-
ing the execution of the program. If code region rq is
called inside r; then a data entry representing the rela-
tionship between r; and r, is generated and stored in
appropriate profiles/trace files. If a code region r is en-
countered that isn’t child of any other code region (e.g.,
the code region that is executed first), an abstract code
region is assigned as its parent. Every code region has a
unique identifier which is included in the probe inserted
by SIS and stored in the instrumentation description file.

The DRG data structure maintains the information of
code regions that are instrumented and executed. Every
thread of each process will build and maintain its own
sub-DRG when executing.

In the pre-processing phase (cf. Figure 1) the DRG
of the application will be built based on the individual
sub-DRGs of all threads. A sub-DRG of each thread is
computed by processing the profiles/trace files that con-
tain the performance data of this thread. The algorithm
for generating DRGs is described in detail in [24].

Execution time of MD application

300
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Figure 5: Execution time(s) of the MD application

5 Experiments

We have implemented a prototype of SCALEA which is
controlled by command-line options and user directives.
Code regions including arbitrary code regions can be se-
lected through specific SIS directives that are inserted
in the input program. Temporal performance overheads
according to the classification shown in Figure 2 can be
selected through command-line options. Our visualiza-



tion capabilities are currently restricted to textual out-
put. We plan to build a graphical user interface by the
end of 2001. The graphical output except for tables of the
following experiments have all been generated manually.
More information of how to use SIS and post-execution
analysis can be found in [25, 24].

Overhead 2CPUs | 3CPUs | 4CPUs
Loss of parallelism 0.025 0.059 0.066
Control of parallelism 1.013 0.676 0.517
Synchronization 1.572 1.27 0.942
T; 2.61 2.009 1.527
T, 0.855 0.903 0.908
T, 3.466 2.913 2.435

Total execution time | 146.754 | 98.438 74.079

The ratio of cache missesicache accesses in OMP DD
regions of MD application

04 O OMP DO in COMPUTE
Subroutine
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Subroutine
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Table 2: Overheads (sec) of the MD application. T;
T., T, are identified, unidentified and total overhead,
respectively.

In this section, we present several experiments to
demonstrate the usefulness of SCALEA. Our experi-
ments have been conducted on Gescher [23] which is an
SMP cluster with 6 SMP nodes (connected by FastEth-
ernet) each of which comprises 4 Intel Pentium III
Xeon 700 MHz CPUs with 1IMB full-speed L2 cache,
2Gbyte ECC RAM, Intel Pro/100+Fast Ethernet, Ul-
tral60 36GB hard disk is run with Linux 2.2.18-SMP
patched with perfctr for hardware counters performance.
We use MPICH [12] and pgf90 compiler version 3.3. from
the Portland Group Inc.

5.1 Molecular Dynamics (MD) Applica-

tion

The MD program implements a simple molecular dynam-
ics simulation in continuous real space. This program ob-
tained from [27] has been implemented as an OpenMP
program which was written by Bill Magro of Kuck and
Associates, Inc. (KAI).

The performance of the MD application has been mea-
sured on a single SMP node of Gescher. Figure 5 and
Table 2 show the execution time behavior and measured
overheads, respectively. The results demonstrate a good
speedup behavior (nearly linear). As we can see from Ta-
ble 2, the total overhead is very small and large portions
of the temporal overhead can be identified.

The time of the sequential code regions (unparal-
lelized) doesn’t change as it is always executed by only

Figure 6: The L2 cache misses/cache accesses ratio of
OMP DO regions in the MD application

one processor. Loss of parallelism for an unparallelized
code region r in a program ¢ is defined as t, — %" if p
processors are used to execute g and ¢, is the sequential
execution time of r. By increasing p it can be easily
shown that the loss of parallelism increases as well which
is also confirmed by the measurements shown in Table

2.

Control of parallelism — mostly caused by loop
scheduling — actually decreases for increasing number of
processors. A possible explanation for this effect can be
that for larger number of processors the master thread
processes less loop scheduling phases than for a smaller
number of processors. The load balancing improves by
increasing the number of processors/threads in one SMP
node which at the same time decreases synchronization
time.

We then examine the cache miss ratio — defined by the
number of L2 cache misses divided by the number of L2
cache accesses — of the two most important OMP DO
code regions namely OMP DO COMPUTE and OMP
DO UPDATE as shown in Figure 6. This ratio is nearly
0 when using only a single processor which implies very
good cache behavior for the sequential execution of this
code. All data seem to fit in the L2 cache for this
case. However, in a parallel version, the cache miss ra-
tio increases substantially as all threads process data of
global arrays that are kept in private L2 caches. The
cache coherency protocol causes many cache lines to be
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exchanged between these private caches which induces
cache misses. It is unclear, however, why the master
thread has a considerably higher cache miss ratio then
all other threads. Overall, the cache behavior has very
little impact on the speedup of this code.

5.2 Backward Pricing Application

The backward pricing code [8] implements the backward
induction algorithm to compute the price of an interest
rate dependent financial product, such as a variable
coupon bond. Two parallel code versions have been
created. First, an HPF+ version that exploits only
data parallelism and is compiled to an MPI program,
and second, a mixed version that combines HPF+ with
OpenMP. For the latter version, VFC generates an
OpenMP /MPI program. HPF+ directives are used to
distribute data onto a set of SMP nodes. Within each
node an OpenMP program is executed. Communication
among SMP nodes is realized by MPI calls.

The execution times for both versions are shown
in Figure 7. The term “all” in the legend denotes
the entire program, whereas “loop” refers to the main
computational loops (HPF INDEPENDENT loop and
an OpenMP parallel loop for version 1 and 2, re-
spectively). The HPF+ version performs worse than
the OpenMP/MPI version which shows almost linear
speedup for up to 2 nodes (overall 8 processors). Ta-
bles 3 and 5 display the overheads for the HPF+ and
mixed OpenMP /MPI version, respectively. In both cases

the largest overhead is caused by the control of paral-
lelism overhead which rises significantly for the HPF+
version with increasing number of nodes. This effect is
less severe for the OpenMP/MPI version. In order to
find the cause for the high control of parallelism over-
head we use SCALEA to determine the individual com-
ponents of this overhead (see Tables 4 and 6). Two rou-
tines (Update_ HALO and MPI Init) are mainly respon-
sible for the high control of parallelism overhead of the
HPF+ version. Update. HALO updates the overlap ar-
eas of distributed arrays which causes communication if
one process requires data that is owned by another pro-
cess in a different node. MPI Init initializes the MPI
runtime system which also involves communication. The
HPF+ version implies a much higher overhead for these
two routines compared to the OpenMP /MPI reason be-
cause it employs a separate process on every CPU of each
SMP node. Whereas the OpenMP /MPI version uses one
process per node.

5.3 LAPWO

LAPWO [4] is a material science program that calcu-
lates the effective potential of the Kohn-Sham eigen-
value problem. LAPWO0 has been implemented as a For-
tran MPI code which can be run across several SMP
nodes. The pgf90 compiler takes care of exchanging data
between processors both within and across SMP nodes.
We used SCALEA to localize the most important code
regions of LAPWO which can be further subdivided into

e sequentialized code

regions: FFT_REANU,



FFT_REANS, FFT.REAN)

e parallelized code regions: Interstitial Potential,
Loop_50, ENERGY, OUTPUT

The execution time behavior and speedups (based on
the sequential execution time of each code region) for
each of these code regions are shown in Figures 8 and 9,
respectively. LAPWO has been examined for a problem
size of 36 atoms which are distributed onto the processors
of a set of SMP nodes. Clearly when using 8, 16, and 24
processors we can’t reach optimal load balance, whereas
1, 2, 4, 6, 12 and 18 processors display a much better
load imbalance. This effect is confirmed by SCALEA
(see Figure 9) for the the most computationally intensive
routines of LAPWO (Interstitial Potential and Loop_50).

Overall, LAPWO scales poorly due to load imbalances
and large overheads due to loss of parallelism, data move-
ment, and synchronization; see Table 7. LAPWO uses
many BLAS and SCALAPACK library calls that are cur-
rently not instrumented by SCALEA which is the reason
for the large fraction of unidentified overhead (see Table
7). The main sources of the control of parallelism over-
head is caused by MPI Init (see Figure 10). SCALEA
also discovered the main subroutines that cause the loss
of parallelism overhead: FFT_REAN(O, FFT_REANS,
and FFTP_REAN/ all of which are sequentialized.

6 Related Work

Paraver [26] is a performance analysis tool for
OpenMP /MPI tools which dynamically instruments bi-
nary codes and determines various performance param-
eters. This tool does not cover the same range of per-
formance overheads supported by SCALEA. Moreover,
tools that use dynamic interception mechanisms com-
monly have problems to relate performance data back to
the input program.

Ovaltine [2] measures and analyses a variety of per-
formance overheads for Fortran77 OpenMP programs.
Paradyn [18] is an automatic performance analysis tool
that uses dynamic instrumentation and searches for per-
formance bottlenecks based on a specification language.
A function call graph is employed to improve perfor-
mance tuning [7].

Recent work on an OpenMP performance interface [19]
based on directive rewriting has similarities to the SIS in-
strumentation approach in SCALEA and to SCALA [9]
— the predecessor system of SCALEA. Implementation

10

of the interface (e.g., in a performance measurement li-
brary such as TAU) allows profiling and tracing to be per-
formed. Conceivably, such an interface could be used to
generate performance data that the rest of the SCALEA
system could analyze.

The TAU [22, 17] performance framework is an in-
tegrated toolkit for performance instrumentation, mea-
surement, and analysis for parallel, multithreaded pro-
grams. SCALEA uses TAU instrumentation library as
one of its tracing libraries.

PAPI [5] specifies a standard API for accessing hard-
ware performance counters available on most modern mi-
croprocessors. SCALEA uses the PAPI library for mea-
suring hardware counters.

gprof [11, 10] is a compiler-based profiling framework
that mostly analyses the execution behavior and counts
of functions and function calls.

VAMPIR, [20] is a performance analysis tool that pro-
cesses trace files generated by VAMPIRtrace [21]. It sup-
ports various performance displays including time-lines
and statics that are visualized together with call graphs
and the source code.

7 Conclusions and Future Work

In this paper, we described SCALEA which is a perfor-
mance analysis system for distributed and parallel pro-
grams. SCALEA currently supports performance analy-
sis for OpenMP, MPI, HPF and mixed parallel programs
(e.g. OpenMP/MPI).

SCALEA is based on a novel classification of per-
formance overheads for shared and distributed memory
parallel programs. SCALEA is among the first perfor-
mance analysis tools that combines source code and HW-
profiling in a single system which significantly extends
the scope of possible overheads that can be measured and
examined. Specific instrumentation and performance
analysis is conducted to determine each category of over-
head for individual code regions. Instrumentation can
be done fully automatically or user-controlled through
directives. Post-execution performance analysis is done
based on performance trace-files and a novel represen-
tation for code regions named dynamic code region call
graph (DRG). The DRG reflects the dynamic relation-
ship between code regions and its subregions and enables
a detailed overhead analysis for every code region. The
DRG is not restricted to function calls but also covers
loops, I/O and communication statements, etc. More-
over, it allows to analyze arbitrary code regions that can
vary from a single statement to an entire program unit.



Processors Sequential | 1IN, 1P | 1N, 4P | 2N, 4P | 3N, 4P | 4N, 4P | 5N,4P 6IN,4P
Data movement 0 0 0.012 0.03 0.0207 0.0233 0.03028 0.0353
Control of parallelism 0 0.244258 | 6.59928 17.2419 28.9781 | 41.4966 | 56.4554 70.7302
T; 0.244258 | 6.611285 | 17.2719 28.9988 | 41.5199 | 56.48576 | 70.76559
Ty 3.139742 | 1.726465 | 1.835957 | 2.047059 | 2.3549 2.99739 2.5173
To 3.384 8.33775 | 19.10787 | 31.0459 | 43.8749 | 59.48315 | 73.2829
Total execution time 316.417 319.801 87.442 58.66 57.414 63.651 75.304 86.467

Table 3: Overheads of the HPF+ version for the backward pricing application. T}, T, T, are identified, unidentified
and total overhead, respectively. IN, 4P means 1 SMP node with 4 processors.

Processors 1IN, 1P | 1N, 4P | 2N, 4P | 3N, 4P 4N,4P 5N,4P 6NN, 4P
Inspector 0.089 0.022 0.0116 0.00798 0.00643 | 0.00489 | 0.00415
Work distribution | 0.000258 | 0.000285 | 0.000318 | 0.000161 | 0.000204 | 0.01059 | 0.000142
Update HALO 0.149 3.114 9.110 16.170 24.060 33.868 43.830
MPI Init 0.005 3.462 8.113 12.784 17.420 22.568 26.860
Other 0 0.001 0.007 0.016 0.010 0.004 0.036

Table 4: Control of parallelism overheads for the HPF+

This is in contrast to existing approaches that frequently
use a call graph which considers only function calls.
Based on a prototype implementation of SCALEA we
presented several experiments for realistic codes imple-
mented in MPI, HPF, and mixed OpenMP/MPI. These
experiments demonstrated the usefulness of SCALEA to
find performance problems and their causes.

We are currently integrating SCALEA with a database
to store all derived performance data. Moreover, we plan
to enhance SCALEA with a performance specification
language in order to support automatic performance bot-
tleneck analysis.

The SISPROFILING measurement library for DRG
and overhead profiling is an extension of TAU’s profil-
ing capabilities. Our hope is to integrate these features
into the future releases of the TAU performance system
so that these features can be offered more portably and
other instrumentation tools can have access to the API.
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