
Strong Scalability Analysis and Performance Evaluation of a SAMR CCA-based Reacting Flow Code

Sophia Lefantzi, Jaideep Ray and Sameer Shende

SAMR: Structured Adaptive Mesh Refinement

Multiscale algorithm for Cartesian meshes
Pros:

Less grid points, less compute time.

Preservation of numerical accuracy.

The Problem: Algorithms ensuring efficient
resolution and numerical accuracy may not be
scalable. Scaling analyses of SAMR simulations
are rare.

The Objective: Identify the non-scalability sources.

Methodology:

1. Choose a test problem where the initial and
final states of the computational domain are
vastly different so that:

i. It poses a challenge to domain partitioning.

ii. The quality of the partitioning affects
scalability.

2. Analyze timing measurements and domain
decomposition specifics to identify the causes
of lack of scalability.

Cons:

Load Balancing problems.

Lack of scalability.

Problem Statement:

• Global problem size is held constant.

• Virtual machine expanded in steps of two,
starting with 7 processors.

For more than 28 processors experimental
results deviate a lot from the linear scale up
behavior. What are the possible causes?

• Excessive transfer times caused by network
saturation.

• Synchronization costs due to non-optimal
domain and load partitioning.

We pick two processor topologies, 28 and 112,
and analyze.

We have a dynamically adaptive algorithm. Are
all intermediate states equally scalable or non
scalable? No they are not.

Results-Analysis:

Communication and Compute time distributions for the 28 processor run.

Timestep 40 Timestep 80

Scalable State (Timestep 40)

On the left: Average compute time (Tcomp) and standard deviation (σcomp), average communication time
(Tcomm) for 7…112 processors at timestep 40. On the right: Snapshot of the mesh hierarchy at timestep 40.

Tcomp dominates over Tcomm (which includes data transfer and
synchronization times).
We model communication time (transfer rate bound model)
as: Tcomm(model)~ttr, where ttr is the transfer data time:

2

1

1

2

)(

)(
..,

1

p

p

T

T
ei

p
t

pcomm

pcomm
tr =∝

Linear scalability suffers for p 56. Why?

Communication patterns for p=28 (left) and p=112 (right) at timestep 40.

On the left: Average communication time versus average communication radius for 5
different runs (min p=7, max p=112) at timestep 40. On the right: Clos network schematic.

The average communication radius is 3.2 for p=28 and 8.1
for p=112. By comparing their communication patterns we
see that as the number of processors increases they
communicate further in the virtual machine.
As the communication pattern radius approaches 8 nodes
and substantial communication occurs over tier-1 switches
the communication times increase.
Note: Tcomp >> Tcomm, so Timestep 40 is scalable.

Unscalable State (Timestep 80)

On the left: Average compute time (Tcomp) and standard deviation (σcomp), average communication time
(Tcomm) for 7…112 processors at timestep 80. On the right: Snapshot of the mesh hierarchy at timestep 80.

Tcomm dominates over Tcomp (Tcomm includes data transfer
and synchronization times).
Since the mesh has become visibly sparser the increase in
Tcomm is NOT due to data transfer times.
We model communication time (synchronization bound
model) as:
Tcomm(model)~tsync, where tsync is the synchronization time:

1

2

1

2

)(

)(

)(

)(
..,

pcomp

pcomp

pcomm

pcomm
compsync T

T
eit

σ
σ

σ =∝

The synchronization bound model only holds for p=7 and
p=14.
For p > 28, σcomp/Tcomp > 0.25 and the non-linear effects of
σcomp dominate. This analysis will be part of future work.

Communication patterns for p=28 (left) and p=112 (right) at timestep 80.

