Strong Scalability Analysis and Performance Evaluation of a SAMR CCA-based Reacting Flow Code

SAMR: Structured Adaptive Mesh Refinement

Multiscale algorithm for Cartesian meshes
Pros:

Less grid points, less compute time.

Preservation of numerical accuracy.

Cons:
Load Balancing problems.
Lack of scalability.

The Problem: Algorithms ensuring efficient
resolution and numerical accuracy may not be
scalable. Scaling analyses of SAMR simulations
are rare.

The Objective: 1dentify the non-scalability sources.

Methodology:

1. Choose a test problem where the initial and
final states of the computational domain are
vastly different so that:

i. It poses a challenge to domain partitioning.

ii. The quality of the partitioning affects
scalability.

2. Analyze timing measurements and domain
decomposition specifics to identify the causes
of lack of scalability.

Problem Statement:

 Global problem size is held constant.

« Virtual machine expanded in steps of two,
starting with 7 processors.
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For more than 28 processors experimental

results deviate a lot from the linear scale up

behavior. What are the possible causes?

» Excessive transfer times caused by network
saturation.

* Synchronization costs due to non-optimal
domain and load partitioning.
Results-Analysis:
We pick two processor topologies, 28 and 112,
and analyze.

We have a dynamically adaptive algorithm. Are
all intermediate states equally scalable or non
scalable? No they are not.
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Communication and Compute time distributions for the 28 processor run,
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On the lefi: Average compute time (T,,,,;) and standard deviation (). average communication time
(T ) fOr 7....112 processors at timestep 40. On the right: Snapshot of the mesh hierarchy at timestep 40.

Tomp dominates over Ty,

synchronization times).

We model communication time (transfer rate bound model)

as: T, m(model)~t,, where t, is the transfer data time:
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Linear scalability suffers for p 56. Why?
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Communication patterns for p=28 (left) and p=112 (right) at timestep 40,

(which includes data transfer and

On the left: Average communication time versus average communication radius for 5
different runs (min p=7, max p=112) at timestep 40. On the right: Clos network schematic.

The average communication radius is 3.2 for p=28 and 8.1
for p=112. By comparing their communication patterns we
see that as the number of processors increases they
communicate further in the virtual machine.

As the communication pattern radius approaches 8 nodes
and substantial communication occurs over tier-1 switches
the communication times increase.

Note: Ty >> T, so Timestep 40 is scalable.
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dominates over T (T, includes data transfer

TCOmm comp
and synchronization times).
Since the mesh has become visibly sparser the increase in
T omm is NOT due to data transfer times.

We model communication time (synchronization bound
model) as:

Teomm(model)~ty, ., where t, is the synchronization time:
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The synchronization bound model only holds for p=7 and
p=14.
For p > 28, 6/ Teomp > 0.25 and the non-linear effects of

Geomp dominate. This analysis will be part of future work.
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Communication patterns for p=28 (left) and p=112 (right) at timestep 80.
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