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Abstract 

The ability to understand the behavior of con- 
current programs depends greatly on the facili- 
ties available to monitor execution and present 
the results to the user. Beyond the basic profil- 
ing tools that collect data for post-mortem view- 
ing, explorative use of multiprocessor computer 
systems demands a dynamic monitoring environ- 
ment capable of providing run-time access to pro- 
gram performance. A prototype of such an envi- 
ronment has been built for the Cedar multipro- 
cessor. This paper describes the design of the in- 
frastructure enabling run-time monitoring of par- 
allel Cedar applications and the communication 
of execution data among physically distributed 
machines. An application for matrix visualira- 
tion is used to highlight important aspects of the 
system. 

1 Introduction 

The standard scenario for investigating the be- 
havior of a parallel application is to run the pro- 
gram with profiling enabled, look at the summary 
statistics after the program completes, modify 
the program code, and then repeat the cycle. 
The problems with this approach are two-fold. 
First, evaluating the behavior of parallel appli- 
cations running on multiprocessor computer sys- 
tems generally requires more comprehensive sup 
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port for monitoring program execution. Simple 
profiling approaches that condense execution dy- 
namics into summary statistics hide run-time be- 
havior. Tools based on program event tracing are 
needed to capture data about time-dependent op- 
eration. 

The second problem deals with the separation 
of execution from analysis. That is, in the stan- 
dard scenario, any execution data gathered at 
run-time cannot be analyzed until after the pro- 
gram terminates. Having the ability to interact 
with the data as it is being generated makes pos- 
sible several useful forms of program investiga, 
tion. For instance, the user might be interested 
only in certain execution parameters at specific 
points during the program. This data could be 
filtered on-the-fly and passed to the user at run- 
time. Communications support, in addition to 
the monitoring support, would allow run-time ex- 
ecution data to be passed within a distributed 
system enabling remote viewing of the data as it 
is being produced. A feedback control path could 
also be provided to give the user a level of inter- 
active query capabilities for accessing execution 
information or guidance control for selectively al- 
tering program operation. 

We have developed a prototype run-time per- 
formance monitoring environment for the Cedar 
multiprocessor [l, 2, 31 that addresses the two 
problems discussed above. It has extended mon- 
itoring capabilities based on software event trac- 
ing with instrumentation support at the user, lan- 
guage, and OS levels. The techniques also include 
mechanisms for the dynamic off-loading and com- 
munication of execution data to remote processes 
for analysis and display. 

In this paper, we describe how the Cedar per- 



formance monitoring infrastructure is designed 
to achieve run-time monitoring and distributed 
communication of parallel program execution 
data. The concepts discussed are general in na- 
ture and would apply equally well to other shared 
memory multiprocessor computer systems. Sec- 
tion 3 briefly describes the underlying tracing 
procedures used in Cedar to gather execution 
data. Section 4 explains the procedures by which 
traces are dynamically off-loaded from the Cedar 
system and sent to remote processes. In Section 
5, we apply the tools to capture and visualize 
matrix data from an application at run-time. Fi- 
nally, in Section 6, we present results regarding 
the performance of the run-time monitoring sys- 
tem in terms of execution data bandwidth and 
program perturbation. 

2 Related Research 

Tracing software events has been an important 
technique for monitoring programs with most of 
the work has been focused on distributed sys- 
tems [4, 5, 61. However, several different im- 
plementation approaches exist. As an example, 
the monitoring facility in IDD [4] forces the pro- 
gram to run as a child process of a monitoring 
process. The event-driven monitoring in [5] sup- 
ports parallel program monitoring but does not 
attempt to minimize overhead or intrusion that 
may be caused by disk I/O, nor does the approach 
support real-time monitoring capabilities. Mon- 
itoring techniques developed for multiprocessor 
systems [7, 8, 91 includes approaches for real- 
time concurrent checkpointing. The technique 
reported in [7] freezes the execution of threads 
to record the state of the computation before the 
threads can resume the execution. 

Our approach resembles that of hybrid moni- 
toring reported in [6], which includes hardware 
support for real-time performance monitoring. 
The difference lies in the advantage of using solely 
software monitoring. Inherently, software moni- 
toring is more portable than hardware monitor- 
ing and has lower development costs. The hybrid 
monitor developed in [6] uses a central hardware 
station to interpret the logs, whereas our moni- 
toring infrastructure is independent of any spe- 
cial hardware , and is portable. Our technique 
is transparent to the user and is capable of pro- 

viding concurrent program execution details at 
several levels. Furthermore, a user can take ad- 
vantage of the standard tools provided as a part 
of the run-time monitoring infrastructure or can 
develop his/her own tools to analyze the program 
behavior. 

3 Event Tracing on Cedar 

A parallel program running on the Cedar multi- 
processor system uses the multitasking capabili- 
ties of the XYLEM operating system [lo] to par- 
tition itself into individual tasks. Each task can 
take advantage of hardware concurrency support 
on a cluster, an Alliant FX/8, to execute code in 
parallel on as many as eight processors. 

Programs executing on the Cedar machine are 
monitored by tracing software events. In addition 
to the events defined in Xylem and Cedar Fortran 
[ll], the programmer can define events at the user 
level. All events will be written to trace buffers 
in the format shown below: 

1 Event Identifier 1 

A separate trace buffer is allocated for each ex- 
ecution thread of each task in the program. The 
user can either allocate large trace buffers at task 
initialization (static buffer allocation) or have 
trace buffers dynamically allocated and linked 
during execution (dynamic bufler allocation). In 
the latter case, trace buffers for all the tasks are 
retrieved from a shared pool. The tracing facility 
also allows the user to select between the place- 
ment of trace buffers in a task’s private memory 
(cluster memory) or in the shared global memory 
of Cedar. 

The control information for each tracing task 
is stored in a separate structure called the iask 
control block. Task control blocks are maintained 
by the run-time trace buffer management soft- 
ware. Whenever a tasks is created and initiates 
event tracing , a task control block is added to a 
global task control list. Figure 1 shows the orga- 
nization of the task control blocks and dynamic 
task buffers. 
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Figure 1: Task Control Block Structure 

4 Run-Time Monitoring 
support 

The run-time monitoring and communications 
support is provided by a parasitic task called the 
snooper tasL The snooper task serves two pur- 
poses: 

1. to off-load trace data from Cedar, and 

2. to support network communication. 

The snooper task is scheduled by Xylem like any 
other user task, however, it is bound to a cluster 
and cannot migrate. The main reason for wanting 
the snooper task permanently bound to a partic- 
ular cluster is to have direct access to disks and 
network interfaces resident on that cluster. 

When a user initiates the snooper task, he can 
select a file as the destination for the trace data or 
a network communication to a remote host. Ad- 
ditionally, several parameters can be set to con- 
trol the snooper task’s operation; see below. 

4.1 Dynamic off-loading 

As implied above, there can be four different 
choices for how event tracing information is 
recorded: 

1. static tracing and buffers reside in shared 
global memory, 

2. static tracing and the buffers reside in pri- 
vate cluster memory, 

3. dynamic tracing and buffers reside in shared 
global memory, and 

4. dynamic tracing and the buffers reside in pri- 
vate cluster memory. 

However, in order to provide dynamic off-loading 
of trace data, all trace buffers must reside in an 
area of memory accessible by the snooper task. 
The shared global memory is the only memory 
in the Cedar system where the snooper task can 
access all other task trace buffers. Thus, options 
1 and 3 can only be used during dynamic off- 
loading of trace data. 
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Figure 2: Snooping Control Block Structure 

The snooper task continually reads the global 
task control block list during dynamic off-loading 
to update its own %hadow* control block list; see 
Figure 2. The snooper assigns a snooping con- 
trol block for each task being snooped and copies 
most of the information from the task control 
block. It also allocates storage for maintaining 
run-time parameters for each task, such as ini- 
tial timestamp, final timestamp, and number of 
events collected. 

The snooper operates by periodically reading 
task event traces and writing all events occur- 
ring within a time window to a file or over the 
network. The following actions are performed in 
order by the snooper: 

1. take a timestamp to establish the end of the 
current time window, 

2. take a snapshot of the current global control 
list and update the control block list, 

3. sort and write all the events for the currently 
active tasks occurring before the timestamp 
( i.e. all events within the current time win- 

dow), 

4. sleep for a user-specified period of time, and 

5. repeat until no more events remain and trac- 
ing is complete. 

In addition, if dynamic trace buffer allocation is 
selected, the snooper is also responsible for releas- 
ing task trace buffers back to the shared pool. 

The snooper task must continually update its 
control block list because new tracing tasks can 
be created at any time. During a time window, 
the snooper only looks for the events from cur- 
rently active tracing tasks registered in its con- 
trol list. Because the timestamp is taken be- 
fore the snooper’s control list is updated, the 
snooper is guaranteed to see all events that occur 
within the time window even though new tracing 
tasks might have been created after the snooper’s 
timestamp. 

The timestamp is taken from a high-resolution, 
real-time clock. Each of Cedar’s clusters has a 10 
microsecond real-time clock which measures the 
elapsed time since last boot. Considering that 
all the clusters might not have booted simultane- 
ously, two simultaneous events occurring concur- 
rently on separate clusters might have different 
timestamps. The snooper normalizes the times- 
tamp by maintaining boot time differences be- 
tween the cluster to correctly handle these timing 
inconsistencies. These time differences are taken 



into account when the snooper calculates its cur- 
rent time window. 

The snooper synchronizes the event collecting 
operation with the event tracing performed by a 
task. An event is timestamped only when the 
event has been completely written to the trace 
buffer. This avoids the conflict that may arise 
from partially stored events. Only those events 
with a timestamp within the current snooping 
window will be accessed. 

The snooper task sorts events collected during 
a time window on per task basis. The traces from 
the different task execution threads are merged 
into a single time-ordered event stream. This 
allows separate task trace files to be produced 

or, with networked communications, separate re- 
mote destinations to be supplied separate task 
trace streams. 

A sleeping factor parameter can be set by the 
user to control how often the snooper checks for 
new tasks and new events. Because the snooper 
task iz competing for resources with other pro- 
gram tasks, the user can reduce snooper over- 
head by setting a long sleeping interval. However, 
the user must assess the tradeoff between snooper 
overhead and the degree of real-time access to the 
trace data. 

4.2 Network communication sup- 

port 

The network communication support allows the 
execution behavior of parallel programs execut- 
ing on Cedar to be analyzed in real-time on an- 
other machine. This alternative is selected in- 
stead of file I/O by providing the snooper with 
a hostname address at the time it is initialized. 
Once communication is established with the spec- 
ified host, all events handled by the snooper will 
be sent to that host. 

The network support is built on top of the 4.2 
BSD Unix network primitives [12]. As shown in 
the Figure 3, the snooper first establishes com- 
munications with a special daemon process (re- 
ferred here as the tracer) on the destination ma- 
chine and follows a client-server protocol. It is 
important to note that a separate snooper task 
and remote communications channel can be cre- 
ated for each tracing application. Thus, multiple 
applications can be tracing simultaneously with 
each sending execution data to remote processes. 

Once the tracer is established, it creates a child 
process that will be the destination for the event 
data streams. The child process typically per- 
forms real-time event filtering and interpretation, 
but the child process can be any application the 
user chooses. The only requirement is that it sup 
port the protocol for the snooper-to-child data 
communications. The format of the data packet 
passed between the snooper task and the chid 
process is shown below: 

I Checksum I 

The snooper constructs a packet by specifying 

the packet size, the task identifier of the task from 
which the data was generated, the number of soft- 
ware events in the packet, and a checksum. The 
snooper off-loads all the merged events occurring 
within the time window before collecting new 
events. Primitive control commands from the 
child process back to the snooper are supported 
to specify, for instance, which trace streams are 
to be sent over the channel. 

5 User Instrumentation 

A library of tracing and monitoring control rou- 
tines are supported. The trace-event(eid) rou- 
tine records the event, eid, in a trace buffer 
determined by the calling task identifier where 
the event occurred. The trace-data(eid,data,size) 
routine stores size bytes of data in addition 
to the information stored by the trace-event0 
routine. The snooper task is invoked by the 
iniLsnooper(host,sfactor,type) routine where host 
is the destination of event streams for net- 
work communication, ufactor controls how long 
snooper task is sleeping before it checks for new 
tasks and events, and type connects the event 
streams to one of various deamon processes on 
the destination host. 

6 A Matrix Visualization 
Example 

The design of efficient yet robust numerical al- 
gorithms for the complex architectures of super- 
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Figure 3: Snooper Communication Architecture 

computers can be greatly expedited through the 
use of color graphics. By visualizing the run-time 
behavior of an algorithm through its most funda- 
mental data structures (e.g. matrices), a numer- 
ical analyst or scientific programmer can imme- 
diately detect unknown phenomena or errors in 
the algorithm’s logic. For example, the detection 
of separable dataflows or independent (parallel) 
subproblems is extremely desirable in order for 
algorithms to exploit multiprocessor, multicluster 
architectures such as Cedar. As discussed in [13], 
the matrix visualization package, Mat Vu, can be 
easily used to classify the convergence patterns 
of classical iterative eigenvalue algorithms (Ja- 
cobi) by assigning a logarithmically scaled color 

table to the magnitudes of the off-diagonal ele- 
ments in each sweep of the particular (Jacobi) 
algorithm. A significant discovery from this ef- 
fort has been the eventual convergence to a pre- 
liminary block diagonal form for matrices having 
clustered eigenvalues. 

Figure 4 is a black-and-white illustration of 
the numerical decoupling of a larger eigenvalue 
problem having four (equal-sized) clusters (cen- 

ter window) into distinct (parallel) subproblems 
(the four corner windows) when an appropriate 
context-switching criterion is satisfied. The run- 
time monitoring support was used to allow a user 
to instantly observe the separate convergence as- 
sociated with these parallel subproblems. The 
user interface to instrument the program is sim- 
ple; see the Figure 5. The matrix-related com- 
putations are stored in the buffer by trace,data() 
calls. The snooper task is invoked as described 
early in the section. 

As shown is Figure 6, a child process is created 
to collect matrix visualization data. The child 
process creates a backing store for the data and 
starts the Mat Vu application with a pointer to 
this backing store. The Matuu process synchro- 
nizes with the child process by a communications 
pipe. When the child process receives the encap 
sulated matrix data, it filters it into the format 
required by Mat Vu and writes them to backing 
store. A message is posted in the pipe when suf- 
ficient data have been received. Mat Vu reads the 
data from the backing store and interprets it to 
visualize the current state of the matrix compo- 
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Figure 4: Viiualization of a numerical decoupling of one Cedar cluster task into four smaller independent 
(parallel) Cedar cluster tasks via the snooper task and MatVu. 

nents. In Figure 4, each of the four off-centered 
windows displays matrix data generated by one of 
the four Cedar cluster tasks which are executing 
in parallel after the decoupling is made. 

By interfacing M&Vu with run-time monitor- 
ing, we can interactively study the robustness of 
algorithms across several problem domains (e.g., 
various matrix orders and spectra). Also, high- 
level debugging capabilities for interpreting run- 
time errors not only in source code but also in an 
algorithm’s logic are possible. The usual play- 
back of massive trace outputs can be avoided by 
easily identifying the time and location of the 
error as revealed in the matrices displayed via 
MatVu and communicated by the snooper task. 
Another attractive feature is the ability to run an 
application on the target supercomputer (Cedar 

in this case) and observe its behavior in pseudo 
real-time on a local desk-top workstation. 

7 Timing Results 

Because the run-time monitoring and remote 
communications operate while the program ex- 
ecutes, it is important to determine not only the 
monitor’s performance, but also the perturbation 
on the program’s behavior. Experiments were 
performed to determine the following: 

l program perturbation introduced by run- 
time monitoring, 

l snooper communications bandwidth as a 
function of packet size, and 
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I c 
C INFO ARRAY: 
C (1) ITERATION NUMBER 
C (2) ORDER OF ITERATION MATRIX 
C (3) STARTING ROW INDEX FOR TRACEDATA 
C (4) STARTING COL INDEX FOR TRACEDATA 

MATVUl=l 
MATVUZ=J 
ISIZEl=S*N*N 
ISIZE2=4*4 
INFO( 2)=N 
INFO(3)=1 
INFO(I)=1 

C 
CALL TRACEmDATA(MATVUZ,INFO(l),ISIZEZ) 
CALL TRACEDATA(MATVUl,MATRIX(INFO(3),INFO(4)),ISIZEl) 

Figure 5: Example of Fortran source code instrumentation for capturing iteration matrices which will 
be rendered by MatVu. 

Figure 6: Run-Time monitoring integration with 
MatVu 

l snooper behavior as a function of sleeping 
factor. 

The program perturbation was measured on a 
simple problem containing nested DO-loops. The 
number of iterations was varied in the inner loop, 
and execution times for the inner loop were mea- 
sured to determine the perturbation effects of 
calling trace-data0 and off-loading trace data by 
the snooper task. The outer loop count was kept 
fixed at 10000 iterations. In order to measure the 

maximum intrusion by snooper task, the problem 
was divided equally on the four Cedar clusters. 
The results are shown in Figure ‘7. 

Figure 7: Variation in execution time by intro- 
ducing the snooper task and doing remote I/O 

Several interesting points are observed. The 
snooper intrusion increases as the problem size 
increases. This is mostly due to increased num- 
ber of events. The increase in execution time was 
greater when doing network I/O as opposed to 
file I/O because of the additional protocol over- 
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Figure 9: Bandwidth Variations Figure 8: Program execution perturbation 

head and the reduced bandwidth; a 10 Mbits/set 
Ethernet is used as the network. Execution times 
differed by as much as 20% with the snooper task 
writing task traces to files but up to 24% with 
network communications. 

The file I/O experiments were performed in 
dedicated mode. The network experiments, on 
the other hand, were not, and could have been 
impacted by other users on the network. This 
will be the case in general, although we performed 
the experiments during a time when the network 
would have been lightly loaded. Even in dedi- 
cated mode, the asynchronous nature of schedul- 
ing program tasks under Xylem can have a non- 
uniform influence when different snooper sleeping 
values are selected. 

Figure 8 shows the execution time for 10000 it- 
eration of the do loop (no remote I/O) relative to 
sleeping interval. The times shown are the best 
observed of 5 runs. Although the minimum time 
is within 18% of the maximum time, the ratio 
does not follow a uniform pattern. This suggests 
that different sleeping intervals might have differ- 
ent effects on execution behavior. 

We also measured trace data bandwidth for dif- 
ferent combinations of networked machines to de- 
termine what differences there might be on the 
performance of run-time monitoring; see Figure 

9. The data rate improves with increasing packet 
size but peaks when the packet size reaches 2600 
bytes. Beyond this point, the bandwidth falls off 
dramatically because of limits in lower-level I/O 
buffering by underlying socket implementation. 
Notice that the packet size depends on the num- 
ber of events collected in a snooper time inter- 
val. We also see differences between server com- 
binations, but only in the region of peak band- 
width. Thus, to achieve the highest network 
data rates possible during run-time monitoring, 
we not only have to be cognizant of the packet 
size and the limitations of the server, but also the 
the variables affecting execution data production, 
namely: 

l the number of tasks created, 

l the number of tracing calls performed, and 

l the snooper task sleeping interval. 

8 Conclusion 

Performance evaluation environments for paral- 
lel computer systems in the future should in- 
clude some form of dynamic run-time monitor- 
ing of concurrent program execution. There are 
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significant advantages to be gained from having 
the ability to view program behavior interactively 
during program execution. Many performance 
and debugging problems can be determined by fil- 
tering execution data in real-time for anomalous 
conditions, avoiding storing potentially large ex- 
ecution histories for port-mortem review. There 
is also the interesting possibility of interacting 
with a program’s execution either by selecting 
different parameters for monitoring or through a 
feedback path whereby certain execution-control 
variables can be adjusted. The performance en- 
vironment built for the Cedar machine is a pro- 
totype of a dynamic run-time monitoring system. 
Many of the design ideas implemented would ap- 
ply equally well to other shared memory ma- 
chines. Currently, we are extending the envi- 
ronment to support interactive run-time visual- 
ization of data structures used in scientific pro- 
grams. 
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