
Run-Time Monitoring of Concurrent Programs on the Cedar
Multiprocessor.*

Sanjay Sharma Allen D. Malony Michael W. Berry
Priyamvada Sinvhal-Sharma

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Abstract

The ability to understand the behavior of con-
current programs depends greatly on the facili-
ties available to monitor execution and present
the results to the user. Beyond the basic profil-
ing tools that collect data for post-mortem view-
ing, explorative use of multiprocessor computer
systems demands a dynamic monitoring environ-
ment capable of providing run-time access to pro-
gram performance. A prototype of such an envi-
ronment has been built for the Cedar multipro-
cessor. This paper describes the design of the in-
frastructure enabling run-time monitoring of par-
allel Cedar applications and the communication
of execution data among physically distributed
machines. An application for matrix visualira-
tion is used to highlight important aspects of the
system.

1 Introduction

The standard scenario for investigating the be-
havior of a parallel application is to run the pro-
gram with profiling enabled, look at the summary
statistics after the program completes, modify
the program code, and then repeat the cycle.
The problems with this approach are two-fold.
First, evaluating the behavior of parallel appli-
cations running on multiprocessor computer sys-
tems generally requires more comprehensive sup

*This work war supported by the National Science
Foundation under Grant No NSF MIP-88.07775, NSF
CCR.87179~2, NSF.ASC.8~.0~556, NASA Amer Rc.
rcarch Center under Grant No. NASA NCC 2.659 ,the
Air Force Ofice of Scientific under Grant No. AFOSR-
96.0044,ond the U.S. Department of Energy under Grant
No. US DOE.DE.FG02.85ER25001.

CH2916-5/90/0000/0784/$01.00 0 IEEE 784

port for monitoring program execution. Simple
profiling approaches that condense execution dy-
namics into summary statistics hide run-time be-
havior. Tools based on program event tracing are
needed to capture data about time-dependent op-
eration.

The second problem deals with the separation
of execution from analysis. That is, in the stan-
dard scenario, any execution data gathered at
run-time cannot be analyzed until after the pro-
gram terminates. Having the ability to interact
with the data as it is being generated makes pos-
sible several useful forms of program investiga,
tion. For instance, the user might be interested
only in certain execution parameters at specific
points during the program. This data could be
filtered on-the-fly and passed to the user at run-
time. Communications support, in addition to
the monitoring support, would allow run-time ex-
ecution data to be passed within a distributed
system enabling remote viewing of the data as it
is being produced. A feedback control path could
also be provided to give the user a level of inter-
active query capabilities for accessing execution
information or guidance control for selectively al-
tering program operation.

We have developed a prototype run-time per-
formance monitoring environment for the Cedar
multiprocessor [l, 2, 31 that addresses the two
problems discussed above. It has extended mon-
itoring capabilities based on software event trac-
ing with instrumentation support at the user, lan-
guage, and OS levels. The techniques also include
mechanisms for the dynamic off-loading and com-
munication of execution data to remote processes
for analysis and display.

In this paper, we describe how the Cedar per-

formance monitoring infrastructure is designed
to achieve run-time monitoring and distributed
communication of parallel program execution
data. The concepts discussed are general in na-
ture and would apply equally well to other shared
memory multiprocessor computer systems. Sec-
tion 3 briefly describes the underlying tracing
procedures used in Cedar to gather execution
data. Section 4 explains the procedures by which
traces are dynamically off-loaded from the Cedar
system and sent to remote processes. In Section
5, we apply the tools to capture and visualize
matrix data from an application at run-time. Fi-
nally, in Section 6, we present results regarding
the performance of the run-time monitoring sys-
tem in terms of execution data bandwidth and
program perturbation.

2 Related Research

Tracing software events has been an important
technique for monitoring programs with most of
the work has been focused on distributed sys-
tems [4, 5, 61. However, several different im-
plementation approaches exist. As an example,
the monitoring facility in IDD [4] forces the pro-
gram to run as a child process of a monitoring
process. The event-driven monitoring in [5] sup-
ports parallel program monitoring but does not
attempt to minimize overhead or intrusion that
may be caused by disk I/O, nor does the approach
support real-time monitoring capabilities. Mon-
itoring techniques developed for multiprocessor
systems [7, 8, 91 includes approaches for real-
time concurrent checkpointing. The technique
reported in [7] freezes the execution of threads
to record the state of the computation before the
threads can resume the execution.

Our approach resembles that of hybrid moni-
toring reported in [6], which includes hardware
support for real-time performance monitoring.
The difference lies in the advantage of using solely
software monitoring. Inherently, software moni-
toring is more portable than hardware monitor-
ing and has lower development costs. The hybrid
monitor developed in [6] uses a central hardware
station to interpret the logs, whereas our moni-
toring infrastructure is independent of any spe-
cial hardware , and is portable. Our technique
is transparent to the user and is capable of pro-

viding concurrent program execution details at
several levels. Furthermore, a user can take ad-
vantage of the standard tools provided as a part
of the run-time monitoring infrastructure or can
develop his/her own tools to analyze the program
behavior.

3 Event Tracing on Cedar

A parallel program running on the Cedar multi-
processor system uses the multitasking capabili-
ties of the XYLEM operating system [lo] to par-
tition itself into individual tasks. Each task can
take advantage of hardware concurrency support
on a cluster, an Alliant FX/8, to execute code in
parallel on as many as eight processors.

Programs executing on the Cedar machine are
monitored by tracing software events. In addition
to the events defined in Xylem and Cedar Fortran
[ll], the programmer can define events at the user
level. All events will be written to trace buffers
in the format shown below:

1 Event Identifier 1

A separate trace buffer is allocated for each ex-
ecution thread of each task in the program. The
user can either allocate large trace buffers at task
initialization (static buffer allocation) or have
trace buffers dynamically allocated and linked
during execution (dynamic bufler allocation). In
the latter case, trace buffers for all the tasks are
retrieved from a shared pool. The tracing facility
also allows the user to select between the place-
ment of trace buffers in a task’s private memory
(cluster memory) or in the shared global memory
of Cedar.

The control information for each tracing task
is stored in a separate structure called the iask
control block. Task control blocks are maintained
by the run-time trace buffer management soft-
ware. Whenever a tasks is created and initiates
event tracing , a task control block is added to a
global task control list. Figure 1 shows the orga-
nization of the task control blocks and dynamic
task buffers.

785

/I 7; Task Control Block List

Figure 1: Task Control Block Structure

4 Run-Time Monitoring
support

The run-time monitoring and communications
support is provided by a parasitic task called the
snooper tasL The snooper task serves two pur-
poses:

1. to off-load trace data from Cedar, and

2. to support network communication.

The snooper task is scheduled by Xylem like any
other user task, however, it is bound to a cluster
and cannot migrate. The main reason for wanting
the snooper task permanently bound to a partic-
ular cluster is to have direct access to disks and
network interfaces resident on that cluster.

When a user initiates the snooper task, he can
select a file as the destination for the trace data or
a network communication to a remote host. Ad-
ditionally, several parameters can be set to con-
trol the snooper task’s operation; see below.

4.1 Dynamic off-loading

As implied above, there can be four different
choices for how event tracing information is
recorded:

1. static tracing and buffers reside in shared
global memory,

2. static tracing and the buffers reside in pri-
vate cluster memory,

3. dynamic tracing and buffers reside in shared
global memory, and

4. dynamic tracing and the buffers reside in pri-
vate cluster memory.

However, in order to provide dynamic off-loading
of trace data, all trace buffers must reside in an
area of memory accessible by the snooper task.
The shared global memory is the only memory
in the Cedar system where the snooper task can
access all other task trace buffers. Thus, options
1 and 3 can only be used during dynamic off-
loading of trace data.

786

Initial Timestamp

Find Timestamp

Connection Identfier

1 Addrem of Host Cdlecting Traces I

Static Context Swwltch Buffer

Figure 2: Snooping Control Block Structure

The snooper task continually reads the global
task control block list during dynamic off-loading
to update its own %hadow* control block list; see
Figure 2. The snooper assigns a snooping con-
trol block for each task being snooped and copies
most of the information from the task control
block. It also allocates storage for maintaining
run-time parameters for each task, such as ini-
tial timestamp, final timestamp, and number of
events collected.

The snooper operates by periodically reading
task event traces and writing all events occur-
ring within a time window to a file or over the
network. The following actions are performed in
order by the snooper:

1. take a timestamp to establish the end of the
current time window,

2. take a snapshot of the current global control
list and update the control block list,

3. sort and write all the events for the currently
active tasks occurring before the timestamp
(i.e. all events within the current time win-

dow),

4. sleep for a user-specified period of time, and

5. repeat until no more events remain and trac-
ing is complete.

In addition, if dynamic trace buffer allocation is
selected, the snooper is also responsible for releas-
ing task trace buffers back to the shared pool.

The snooper task must continually update its
control block list because new tracing tasks can
be created at any time. During a time window,
the snooper only looks for the events from cur-
rently active tracing tasks registered in its con-
trol list. Because the timestamp is taken be-
fore the snooper’s control list is updated, the
snooper is guaranteed to see all events that occur
within the time window even though new tracing
tasks might have been created after the snooper’s
timestamp.

The timestamp is taken from a high-resolution,
real-time clock. Each of Cedar’s clusters has a 10
microsecond real-time clock which measures the
elapsed time since last boot. Considering that
all the clusters might not have booted simultane-
ously, two simultaneous events occurring concur-
rently on separate clusters might have different
timestamps. The snooper normalizes the times-
tamp by maintaining boot time differences be-
tween the cluster to correctly handle these timing
inconsistencies. These time differences are taken

into account when the snooper calculates its cur-
rent time window.

The snooper synchronizes the event collecting
operation with the event tracing performed by a
task. An event is timestamped only when the
event has been completely written to the trace
buffer. This avoids the conflict that may arise
from partially stored events. Only those events
with a timestamp within the current snooping
window will be accessed.

The snooper task sorts events collected during
a time window on per task basis. The traces from
the different task execution threads are merged
into a single time-ordered event stream. This
allows separate task trace files to be produced

or, with networked communications, separate re-
mote destinations to be supplied separate task
trace streams.

A sleeping factor parameter can be set by the
user to control how often the snooper checks for
new tasks and new events. Because the snooper
task iz competing for resources with other pro-
gram tasks, the user can reduce snooper over-
head by setting a long sleeping interval. However,
the user must assess the tradeoff between snooper
overhead and the degree of real-time access to the
trace data.

4.2 Network communication sup-

port

The network communication support allows the
execution behavior of parallel programs execut-
ing on Cedar to be analyzed in real-time on an-
other machine. This alternative is selected in-
stead of file I/O by providing the snooper with
a hostname address at the time it is initialized.
Once communication is established with the spec-
ified host, all events handled by the snooper will
be sent to that host.

The network support is built on top of the 4.2
BSD Unix network primitives [12]. As shown in
the Figure 3, the snooper first establishes com-
munications with a special daemon process (re-
ferred here as the tracer) on the destination ma-
chine and follows a client-server protocol. It is
important to note that a separate snooper task
and remote communications channel can be cre-
ated for each tracing application. Thus, multiple
applications can be tracing simultaneously with
each sending execution data to remote processes.

Once the tracer is established, it creates a child
process that will be the destination for the event
data streams. The child process typically per-
forms real-time event filtering and interpretation,
but the child process can be any application the
user chooses. The only requirement is that it sup
port the protocol for the snooper-to-child data
communications. The format of the data packet
passed between the snooper task and the chid
process is shown below:

I Checksum I

The snooper constructs a packet by specifying

the packet size, the task identifier of the task from
which the data was generated, the number of soft-
ware events in the packet, and a checksum. The
snooper off-loads all the merged events occurring
within the time window before collecting new
events. Primitive control commands from the
child process back to the snooper are supported
to specify, for instance, which trace streams are
to be sent over the channel.

5 User Instrumentation

A library of tracing and monitoring control rou-
tines are supported. The trace-event(eid) rou-
tine records the event, eid, in a trace buffer
determined by the calling task identifier where
the event occurred. The trace-data(eid,data,size)
routine stores size bytes of data in addition
to the information stored by the trace-event0
routine. The snooper task is invoked by the
iniLsnooper(host,sfactor,type) routine where host
is the destination of event streams for net-
work communication, ufactor controls how long
snooper task is sleeping before it checks for new
tasks and events, and type connects the event
streams to one of various deamon processes on
the destination host.

6 A Matrix Visualization
Example

The design of efficient yet robust numerical al-
gorithms for the complex architectures of super-

Unique c-unicaim channel ‘or

each snooper md tracer conncctim

Any Machine supporting 4.2 BSD Any Instrumented user program running
Socket abstraction under XYLEM OS

Figure 3: Snooper Communication Architecture

computers can be greatly expedited through the
use of color graphics. By visualizing the run-time
behavior of an algorithm through its most funda-
mental data structures (e.g. matrices), a numer-
ical analyst or scientific programmer can imme-
diately detect unknown phenomena or errors in
the algorithm’s logic. For example, the detection
of separable dataflows or independent (parallel)
subproblems is extremely desirable in order for
algorithms to exploit multiprocessor, multicluster
architectures such as Cedar. As discussed in [13],
the matrix visualization package, Mat Vu, can be
easily used to classify the convergence patterns
of classical iterative eigenvalue algorithms (Ja-
cobi) by assigning a logarithmically scaled color

table to the magnitudes of the off-diagonal ele-
ments in each sweep of the particular (Jacobi)
algorithm. A significant discovery from this ef-
fort has been the eventual convergence to a pre-
liminary block diagonal form for matrices having
clustered eigenvalues.

Figure 4 is a black-and-white illustration of
the numerical decoupling of a larger eigenvalue
problem having four (equal-sized) clusters (cen-

ter window) into distinct (parallel) subproblems
(the four corner windows) when an appropriate
context-switching criterion is satisfied. The run-
time monitoring support was used to allow a user
to instantly observe the separate convergence as-
sociated with these parallel subproblems. The
user interface to instrument the program is sim-
ple; see the Figure 5. The matrix-related com-
putations are stored in the buffer by trace,data()
calls. The snooper task is invoked as described
early in the section.

As shown is Figure 6, a child process is created
to collect matrix visualization data. The child
process creates a backing store for the data and
starts the Mat Vu application with a pointer to
this backing store. The Matuu process synchro-
nizes with the child process by a communications
pipe. When the child process receives the encap
sulated matrix data, it filters it into the format
required by Mat Vu and writes them to backing
store. A message is posted in the pipe when suf-
ficient data have been received. Mat Vu reads the
data from the backing store and interprets it to
visualize the current state of the matrix compo-

789

Figure 4: Viiualization of a numerical decoupling of one Cedar cluster task into four smaller independent
(parallel) Cedar cluster tasks via the snooper task and MatVu.

nents. In Figure 4, each of the four off-centered
windows displays matrix data generated by one of
the four Cedar cluster tasks which are executing
in parallel after the decoupling is made.

By interfacing M&Vu with run-time monitor-
ing, we can interactively study the robustness of
algorithms across several problem domains (e.g.,
various matrix orders and spectra). Also, high-
level debugging capabilities for interpreting run-
time errors not only in source code but also in an
algorithm’s logic are possible. The usual play-
back of massive trace outputs can be avoided by
easily identifying the time and location of the
error as revealed in the matrices displayed via
MatVu and communicated by the snooper task.
Another attractive feature is the ability to run an
application on the target supercomputer (Cedar

in this case) and observe its behavior in pseudo
real-time on a local desk-top workstation.

7 Timing Results

Because the run-time monitoring and remote
communications operate while the program ex-
ecutes, it is important to determine not only the
monitor’s performance, but also the perturbation
on the program’s behavior. Experiments were
performed to determine the following:

l program perturbation introduced by run-
time monitoring,

l snooper communications bandwidth as a
function of packet size, and

790

I c
C INFO ARRAY:
C (1) ITERATION NUMBER
C (2) ORDER OF ITERATION MATRIX
C (3) STARTING ROW INDEX FOR TRACEDATA
C (4) STARTING COL INDEX FOR TRACEDATA

MATVUl=l
MATVUZ=J
ISIZEl=S*N*N
ISIZE2=4*4
INFO(2)=N
INFO(3)=1
INFO(I)=1

C
CALL TRACEmDATA(MATVUZ,INFO(l),ISIZEZ)
CALL TRACEDATA(MATVUl,MATRIX(INFO(3),INFO(4)),ISIZEl)

Figure 5: Example of Fortran source code instrumentation for capturing iteration matrices which will
be rendered by MatVu.

Figure 6: Run-Time monitoring integration with
MatVu

l snooper behavior as a function of sleeping
factor.

The program perturbation was measured on a
simple problem containing nested DO-loops. The
number of iterations was varied in the inner loop,
and execution times for the inner loop were mea-
sured to determine the perturbation effects of
calling trace-data0 and off-loading trace data by
the snooper task. The outer loop count was kept
fixed at 10000 iterations. In order to measure the

maximum intrusion by snooper task, the problem
was divided equally on the four Cedar clusters.
The results are shown in Figure ‘7.

Figure 7: Variation in execution time by intro-
ducing the snooper task and doing remote I/O

Several interesting points are observed. The
snooper intrusion increases as the problem size
increases. This is mostly due to increased num-
ber of events. The increase in execution time was
greater when doing network I/O as opposed to
file I/O because of the additional protocol over-

791

maam,wa.z).~d

Nom- ' I 1
-s

.wom- _ .Kiwiiviiy,wis ---.-.

lam-
mm-
mm-
mm-
mm-
Yom-
am-
PDKO-
,am -
mm -
Mom -
lmm-
K0.m -
mm-
cum-
411)-
atIm-
om -

I I I m-d
laoI Iww. Iwa

Figure 9: Bandwidth Variations Figure 8: Program execution perturbation

head and the reduced bandwidth; a 10 Mbits/set
Ethernet is used as the network. Execution times
differed by as much as 20% with the snooper task
writing task traces to files but up to 24% with
network communications.

The file I/O experiments were performed in
dedicated mode. The network experiments, on
the other hand, were not, and could have been
impacted by other users on the network. This
will be the case in general, although we performed
the experiments during a time when the network
would have been lightly loaded. Even in dedi-
cated mode, the asynchronous nature of schedul-
ing program tasks under Xylem can have a non-
uniform influence when different snooper sleeping
values are selected.

Figure 8 shows the execution time for 10000 it-
eration of the do loop (no remote I/O) relative to
sleeping interval. The times shown are the best
observed of 5 runs. Although the minimum time
is within 18% of the maximum time, the ratio
does not follow a uniform pattern. This suggests
that different sleeping intervals might have differ-
ent effects on execution behavior.

We also measured trace data bandwidth for dif-
ferent combinations of networked machines to de-
termine what differences there might be on the
performance of run-time monitoring; see Figure

9. The data rate improves with increasing packet
size but peaks when the packet size reaches 2600
bytes. Beyond this point, the bandwidth falls off
dramatically because of limits in lower-level I/O
buffering by underlying socket implementation.
Notice that the packet size depends on the num-
ber of events collected in a snooper time inter-
val. We also see differences between server com-
binations, but only in the region of peak band-
width. Thus, to achieve the highest network
data rates possible during run-time monitoring,
we not only have to be cognizant of the packet
size and the limitations of the server, but also the
the variables affecting execution data production,
namely:

l the number of tasks created,

l the number of tracing calls performed, and

l the snooper task sleeping interval.

8 Conclusion

Performance evaluation environments for paral-
lel computer systems in the future should in-
clude some form of dynamic run-time monitor-
ing of concurrent program execution. There are

792

significant advantages to be gained from having
the ability to view program behavior interactively
during program execution. Many performance
and debugging problems can be determined by fil-
tering execution data in real-time for anomalous
conditions, avoiding storing potentially large ex-
ecution histories for port-mortem review. There
is also the interesting possibility of interacting
with a program’s execution either by selecting
different parameters for monitoring or through a
feedback path whereby certain execution-control
variables can be adjusted. The performance en-
vironment built for the Cedar machine is a pro-
totype of a dynamic run-time monitoring system.
Many of the design ideas implemented would ap-
ply equally well to other shared memory ma-
chines. Currently, we are extending the envi-
ronment to support interactive run-time visual-
ization of data structures used in scientific pro-
grams.

References

PI

PI

PI

PI

PI

PI

D. Gajski, D. L. Kuck, D. Lawrie, and A.
Sameh, Cedar - A Large Scale Multipro-
ce88or, Proceedings 1983 International con-
ference on Parallel Processing, Belaire, MI,
1983.

D. J. Kuck, A. II. Sameh, A Supercomputing
Performance Evaluation Plan, Proceedings
1987 Supercomputing Conference, Greece,
June, 1987.

K. Gallivan, W. JaIby, A. Malony and P.-
C. Yew, Performance haly8i8 on the Cedar
System, CSRD Report No. 680, University of
Illinois at Urbana-Champaign, June, 1988.

P.K. Harter, D.M.IIeimbigner and R.King,
IDD: An Interactive Distributed Debugger,
in Proc. of Distributed Computing Systems,
May, 1985, pp. 498 - 506.

T. J. LeBlanc and A D. Robbins, An Event-
Driven Monitoring of Distributed Program8,
in Proc. of Distributed Computing Systems,
May, 1985, pp. 515 - 522.

D. Wybranietz and D. Haban, A By-
brid Monitor for Behavior and Perfor-
mance Analysis of Distributed Systems,

VI

PI

PI

PO1

WI

P21

P31

P41

IEEE Transaction of Software Engineering,
Vol. 16, No.2 ,pp. 197 - 211.

Kai Lai, J.F.Naughton and James S. Plank,
Real- Time, Concurrent Checkpoint for Par-
allel Programa, in Second ACM SIGPLAN
Symposium on Principles & Practice of Par-
allel Programming, March 14-16, 1990, pp.
79-88.

R. J. Fowler, T. J. LeBlanc and J.M.
Melbr-Crummey, An Integrated Approach
to Parallel Program Debugging and Perfor-
mance Analysis on Large Scale Multiproces-
sor8, Proceedings of the workshop on Paral-
lel and Distributed Debugging, ACM SIG-
PLAN/SIGOPS, 163-173,1988.

T. Lehr, Z. SegaI, D. F. Vrsalovic, E. Ca-
plan, A. Chung, and C. E. Fineman, Visu-
alizing Performance Debugging, Computer,
October 1989, pp. 38-52.

P. Emrath, An Operating System for the
Cedar Multiprocessor, IEEE Software, Vol.
2, No. 4, 1985, pp. 30-37.

M. D. Guzzi, Cedar Fortran Programming
Handbook, CSRD Report No. 601, Univ.
of Illinois at Urbana-Champaign, Urbana,
1987.

University of California. Uniz User% Man-
ual, Reference Guide-d.2 Berkeley Software
Distribution, Computer Science Division,
University of California, Berkeley, California
1984.

A. Tuchman and M. Berry, Matriz Visu-
alization in the Design of Numerical Algo-
rithms, CSRD Report No. 826, Univ. of Illi-
nois at Urbana-Champaign, Urbana, 1989,
to appear in ORSA Journal of Computing
2:1(1990).

Allen D. Malony, Program Tracing in Cedar,
CSRD Report No. 660, University of Illinois
at Urbana-Champaign, April, 1987.

793

