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Abstract 

Important insights into program operation can be 
gained by observing dynamic execution behavior. Un- 
fortunately, many high-performance machines provide 
execution profile summaries as the only tool for per- 
formance investigation. We have developed a tracing 
library for the Cray X-MP and Cray 2 supercomput- 
ers that supports the low-overhead capture of execu- 
tion events for sequential and multitasked programs. 
This library has been extended to use the automatic 
instrumentation facilities on these machines, allowing 
trace data from routine entry and exit, and other pro- 
gram segments, to be captured. To assess the utility of 
the trace-based tools, three of the Perfect Benchmark 
codes have been tested in scalar and vector modes with 
the tracing instrumentation. In addition to computing 
summary execution statistics from the traces, interest- 
ing execution dynamics appear when studying the trace 
histories. It is also possible to compare codes across the 
two architectures by correlating the event traces. Our 

conclusion is that adding tracing support in Cray su- 
percomputers can have significant returns in improved 
performance characterization and evaluation. 

1 Introduction 

Typically, the performance of an application can vary 
greatly during execution. For supercomputers, this situ- 
ation is even more acute as, in general, the performance 
range is greater and performance variations among pro- 
gram segments can be more pronounced. The complex- 
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ity in the performance space surrounding the use and 
interactions of advanced architectural and software fea- 
tures of supercomputers often implies that minor al- 
terations in execution behavior are manifest as large 
changes in achieved performance. Simply put, appli- 
cation performance, especially for supercomputers, can 
be highly variable and depends significantly on the dy- 
namic interaction of the code with the high-performance 
features of the machine. 

The problem facing the performance analyst is how 
to characterize an application’s operation both in terms 
of its overall performance and its dynamic execution 
behavior - what code is executed when and how the 
machine resources are used. Profiling tools typically re- 
port application code performance as summaries of ex- 
ecution time across program code blocks [4]. Whereas 
summary performance statistics directly identify code 
segments that consume large fractions of total execution 
time, they do not provide insight into how the applica- 
tion executes over time nor its dynamic use of machine 
resources. 

In part, the goal of this paper is to present tech- 
niques for capturing and analyzing dynamic program 
execution and to show that performance measurements 
of execution behavior can provide greater insight than 
summary statistics. But this conclusion is not unex- 
pected - other research efforts have reported similar 
findings [13, 141. There has been a reluctance, how- 
ever, to capture dynamic execution state for fear that 
the measurement system will corrupt the execution be- 
havior being observed, particularly in the case of high- 
performance systems. In many cases, this fear is largely 
unfounded and simple perturbation models can be ap 
plied to recover true execution performance [lo]. To the 
extent that it does occur, the increased insight into ap 
plications operation offered by the trace data must be 
weighed against the perturbations, and therefore per- 
formance inaccuracies, in observed execution behavior. 

In this paper, we describe both a trace-based mea- 
surement zystem implemented for Cray supercomput- 
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ers and its use in characterizing the performance dy- 
namics of full application codes. The Cray supercom- 
puters provide a practical environment to test the mer- 
its of trace-based performance characterization. The 
Cray compilers support automatic instrumentation at 
the routine level to capture entry and exit events [2, 81. 
Moreover, the existence of a fast-access, high-resolution 
system clock allows fine-grained timing measurements. 
Furthermore, the Cray X-MP includes a hardware per- 
formance monitor for run-time capture of several hard- 
ware metrics. 

The remainder of the paper is oxganized as follows. In 
52, we briefly review the standard profiling tools avail- 
able on the Cray systems. In 53, we describe the trac- 
ing system developed for the Cray X-MP and Cray 2. 
We introduce the applications codes from the Perfect 
Benchmark set used for testing purposes iu 94. In 55, 
we compare the profiling results from the standard tools 
to those calculated from the application code traces. We 
use the comparison of these results as a measure of the 
reliability of the trace data. In $6, we analyze the exe- 
cution dynamics of the Perfect codes, primarily FL052, 
on the Cray X-MP and Cray 2. Finally, we present some 
conclusions and suggest directions for future research. 

2 Standard Cray Tools 

Two profiling tools are commonly used on Cray sys- 
tems: Flowtrace and Perftrace. The Flowtrace tool [2] 
is available on the Cray X-MP, Cray Y-MP, and Cray 2. 
It purpose is to measure where time is spent in a pro- 
gram’s execution and to generate a time profile based 
on program routines. Unlike sample-based, interrupt- 
driven profilers [5], FZowtrace calculates the profile dy- 
namically by inserting profiling code at the beginning 
and end of each routine. This instrumentation is pro- 
vided automatically by the Cray compilers. At the end 
of the program’s execution, the time profile is formatted 
and written to a file. The profile includes the number 
of calls to the routine, the time spent in each routine, 
and the average time per routine call. 

The Perftruce tool [8] is available only on Gray X- 
MP and Cray Y-MP systems. Perftrace computes all 
the Flowtrace statistics and generates a profile of hard- 
ware performance. Similar to the time profile measure- 
ment, Perjlrace samples the counters of the hardware 
performance monitor @PM) at routine entry and exit 
to determine the distribution of hardware performance 
across the program routines. Because the HPM allows 
only one of four hardware counter groups (each group 
contains eight counters) to be monitored at a time, Perf- 
trace reports only the statistics for the selected counter 
group. Multiple runs (up to four) must be made if hard- 
ware profiles spanning counter groups are desired. 

In addition to the time profile statistics, Perjlrace re- 

ports the counter value of each hardware mettic accu- 
mulated for each routine (e.g., floating point operations 
or memory references), this value shown in millions per 
second (e.g., millions of floating point operations per 
seconds), the percentage of the hardware metric total 
the routine counter values represent, and different de- 
rived statistics depending on the counter group (e.g., 
memory references per floating point operation). 

Both Flowtrace and Perftrace produce summary per- 
formance statistics - the statistics reflect performance 
totals accumulated for the entire program execution. 
Summary statistics reflect dynamic execution, but only 
in an averaged form. 

3 Tracing Environment 

We have developed a tracing system that can capture 
the history of a program’s performance behavior. We 
were able to use the existing Cray compiler support for 
Flowtrace and Perftrace to provide automatic instru- 
mentation for tracing measurement. The tracing envi- 
ronment included a low-level library for trace recording 
plus libraries that replaced the standard Flowtrace and 
Perjtrace routines. 

3.1 Software Event Tracing 

The basic function of a software event tracing facility is 
to record the occurrence of an event by writing a times- 
tamped event identifier, with optional data, to a trace 
buffer. For concurrent event tracing, a buffering scheme 
is needed that allows multiple tasks concurrent access 
without conflicts. In our tracing facility, we allocate 
trace buffers statically, one for each possible task. 

The routines in our Cray tracing library are described 
in Table 1. The event identifier and optional data are 
supplied by the user, and the high-resolution system 
clock is retrieved from the Cray library routine irtc().l 
Because the high-resolution system clock is a register 
shared by every processor in the machine, all tasks see 
a common, global time value. The side-effect of using 
the high-resolution cycle counter is that it is real-time 
and, therefore, timing measurements are susceptible to 
multiprogramming influences. Thus, our tracing library 
can generate accurate timing measurements only in ded- 
icated mode. 

The routine tezit() is called at the end of program 
execution to save the trace data in trace files. If, dur- 
ing execution, one or more trace buffers overflow, the 
trace data for the offending tasks are written out to the 
associated trace file before task execution continues. 

Although the tracing routines support the concurrent 
capture of trace events from multiple tasks, aJl the re- 

‘In hay’s Fortran compiler,CFT?‘Z, itk() is compiled as 8 
single machine instruction. 
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] Routine Description 

1 tevent(iid, e&f) writes a timestamp and the event eid to the trace buffer of task tid 
J 

tdatas( tid, eid, data) 
1 

writes a timestamp, the event eid, and the integer data item data 
to the trace buffer of task tid 

tdata(tid, eid, n, ptr) writes a timestamp, the event eid, and the first n integer data items 
pointed to by ptr to the trace buffer of the task ti4 tdatas() is faster 
for a single data item 

texit() writes the data currently in the trace buffers for each task to files 
task-i where i is the task id 

Table 1: Cray Tracing Library Routines 

sults reported in the paper are from scalar and vector 
executions. Analysis of concurrent traces is complicated 
by the inability to efficiently determine the processing 
resource where the event was recorded. We currently 
are pursuing solutions to this problem. 

In general, tracing routines should be implemented 
to minimize execution time overhead. The current im- 
plementation of the tracing routines is in Fortran to 
enhance portability across the Cray family.a The ex- 
ecution time overheads (mean, variance, and standard 
deviation) for the tracing routines on the Cray X-MP 
and Cray 2 are shown in Table 2. The tdata() numbers 
are for ten data items saved with the event identifier. 
In all cases, the subroutine invocation times constitute 
a significant portion of the total. The execution time 
overheads of the tracing routines are used during trace 
analysis to remove the intrusion due to instrumentation; 
see 95. 

3.2 TraceFlow and TracePerf 

We developed code that captures routine entry and exit 
events using the tracing library to record the trace data. 
The goal was to extend the existing, automatic Flow- 
truce and Perftmce instrumentation provided by the 
Cray compilers [2, 81. Our approach replaced the Flow- 
trace and Perftrace routines with versions that generate 
traces. 

We refer to the traced Flowtmce routines as the !&ace- 
Flow library. The traced Perftmce routines we refer to 
as the lhcePerf library. The routines in each library 
are described in Table 3. The principal difference be- 
tween the !l+acePerf and TkaceFlow libraries is that the 
ZhcePerf routines record current HPM counter values.’ 
Note that for both l%aceFlow and ZkacePerf, the routine 
name is saved in the trace only for “entry” events. We 

% fact, there are no differences in the tracing library for the 
Cray X-MP and the Cray 2, and the library should port without 
change to the Gray Y-MP system. 

3 We used the hardware performance monitor of the CRAY X- 
MP/48 running UNICOS at the National Center for Supercom- 
puting Applications in Urbana, Illinois. The HPM is a standard 
feature of all CRAY X-MP’s and CRAY Y-MP’s. For further 
information on the HPM, see [7, 81. 

‘As in Pwftzace, only one group of eight counters out of 32 are 
accessible during any execution. Thus, execution time overheads 
are listed for each of the four groups. 

5Because no hardware performance monitor exists on the Cray 
2, no TraccPerf library can be constructed. 
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TraceFlow 
Minimum 11 Auemge 

Table 5: Cray 2 TraceFlow Execution Time Overheads 

assume that entry/exit pairs can be determined from 
the trace during analysis. Because a frequently called 
routine can cause the trace to grow large, the jIowoff() 
and jIowon() routines have been implemented to control 
when trace data should be saved. 

There is a significant practical difference between the 
overheads for the l%aceFlow and DacePerf routines. 
Table 4 gives the mean execution time overheads for 
calling the l’baceFlow and ZhcePerf routines for the 
Cray X-MP.4 Table 5 shows the mean execution time 
overheads for ZhceFZow on the Cray 2.5 Although 
ZhcePerf records approximately five times the amount 
of data as l+aceFlow, the execution time difference is 
largely because fiscePerfroutines require an I/O oper- 
ation to retrieve HPM counter values. 

In addition to the execution time overheads for ‘l’ba- 
cePerf, there are also perturbations in the RPM coun- 
ters; calling the DucePerfroutines will affect the HPM 
counters. To accurately recover the HPM counts during 
trace analysis, we measured the counter “overheads” for 
the l+acePerf routines for each of the counter groups. 
These overheads for group zero are reported in Table 6. 
The overheads for the other groups can be found in [9]. 



Cray X-MP Cray 2 
Routine (cp = 8.5 ns) (cp = 4.1 ns) 

Standard Standard 
Mean Variance Deviation Mean Variance Deviation 

tevent() 
clock periods 142 33 6 335 728 27 
nanoseconds 1207 281 51 1374 2985 111 
tdatas() 
clock periods 155 64 8 351 923 30 
nanoseconds 1318 544 68 1439 3784 123 
tdata() 
clock periods 1102 428 20 2662 12427 111 
nanoseconds 9367 3638 170 10914 50951 455 

Table 2: Cray X-MP and 2 Tracing Execution Time Overheads 

Description 
Routine TraceFlow TracePerf 

flowentr() records the routine entry event in the records the routine entry event in the 
trace for the calling task; the routine trace for the calling task; the rou- 
identifier is saved tine identifier and HPM counters are 

saved 
flowexit records the routine exit event in the records the routine exit event in the 

trace for the calling task trace for the calling task; the HPM 
counters are saved 

flowin( blockid) records the block entry event in the records the block entry event in the 
trace for the calling task; the block trace for the calling task; the block 
identifier blockid is saved identifier blockid and HPM counters 

are saved 
flowout() records the block exit event in the records the block exit event in the 

trace for the calling task trace for the calling task; the RPM 
counters are saved 

perfon() not defined same as flowin() 

perfoff() not defined same as Aowout() 

flowstop() writes the trace files write the trace files 
flowoff() disable tracing disable tracing 
43--.--I\ -,,L,.. 1,-L-- ---L,- r--2-- 

Table 3: Cray TraceFlow and ‘I’racePerf Routines 

TracePerf 
Group 0 1 Group I Group 2 1 GFOU~ 3 

Table 4: Cray X-MP TraceFlow and TracePerf Execution Time Overheads 
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Counter 
4 

Table 6: Gray X-MP TracePerf HPM Counter Over- 
heads - Group 0 

4 Perfect Benchmarks 

The applications codes used in our study (FL052, 
OCEAN, and DYFESM) are benchmark programs from 
the Perfect Benchmark suite [l]. The baseline versions 
of the codes were compiled with default CFT77 com- 
piler options and executed on one processor. As such, 
our results differ slightly from those presented in [12]. 
In particular, no preprocessors were used, all codes were 
run on a single processor, and no hand optimizations 
were performed. 

The benchmark codes were chosen from different ap- 
plication areas. FL052 and OCEAN are fluid dynam- 
ics programs. FL052 is a two-dimensional analysis of 
the transonic inviscid flow past an airfoil and solves the 
unsteady Euler equations [S]. OCEAN solves the dy- 
namical equations of a two-dimensional Boussinesq fluid 
layer to study the chaotic behavior of free-slip Rayleigh- 
Benard convection [3]. DYFESM is a twedimensional 
finite element program for the analysis of symmetric 
anisotropic structures [ll]. An explicit leapfrog tem- 
poral method with substructuring is used to solve for 
the displacements and stresses, along with the veloci- 
ties and accelerations at each time step. 

5 Trace Verification 

The primary motivation behind tracing application pro- 
gram execution is to capture dynamic performance be- 
havior. The ‘i%aceFlow library can be used to under- 
stand the timing properties of routine execution. The 
BacePerf library can be used to obtain additional data 
on machine performance. However, with the use of these 
libraries comes perturbations in the program’s behavior, 
both in execution time and in the HPM counter data. 
The severity of these perturbations and our abiity to 
remove them will determine the reliability of the trace 
information. 

We have shown that perturbations due to trace-based 
monitoring can, in many cases, be modeled and, subse- 
quently, removed during trace analysis [lo]. We applied 
the perturbation analysis techniques from our previous 

work during the development of our trace analysis pro- 
grams. In particular, we developed trace analysis pro- 
grams that compute the same set of profile statistics 
generated by Flowtrace and Perftrace. We used the re- 
sults obtained from these programs as a measure of the 
reliability of the trace data after perturbation analysis 
has been applied. 

5.1 Flowtrace Profiling versus Trace- 
Flow Profiling 

The Flowtrace statistics summarize the distribution of 
execution time across an application’s routines. The 
total number of calls to a routine and the total execu- 
tion time within a routine are reported. Information is 
also provided about the execution call graph. Our pro- 
gram to analyze an application trace produces similar 
statistics, plus additional execution time profiles, for the 
parents and children of each routine. 

Table 7 shows the execution time in seconds for some 
of the routines in FL052 when executed in scalar mode, 
as calculated by Flowtrace and from a DaceFlow trace. 
As shown, the trace-generated statistics are very close 
to those produced by Flowtrace. The statistics from the 
vector execution of FL052, plus those from the scalar 
and vector execution of the other two Perfect codes, also 
match extremely welL6 

Two general conclusions can be drawn from this anal- 
ysis. First, we can accurately measure gross execu- 
tion performance characteristics, in the form of execu- 
tion time profiles, from traces of routine entry and exit 
by including perturbations introduced by the trace in- 
strumentation. Second, we believe the dynamic perfor- 
mance behavior, as represented by the full event trace, 
should also be credible. Although this second conclu- 
sion is difficult to prove in practice, other analysis [lo] 
supports this conclusion. 

5.2 Perftrace Profiling versus TracePerf 
Profiling 

An analysis similar to that used with Flowtrace and 
l+aceFlow can be applied to Perftrace and !l%acePerf. 
The results from the vector execution of FL052 are 
given in Table 8. In addition to the execution time mea- 
surements, some of the operation counts from counter 
data in group zero are shown; Madds represents millions 
of floating point additions, Mmult is millions of floating 
point multiplies, Mrecip is millions of floating point re- 
ciprocals, and Milop is millions of total floating point 
operations. 

The statistics generated from the ZhacePerf trace are 
very close to those reported by Perftrace. The impor- 
tance of the BacePerf data lies in its ability to associate 

‘These statistics can be found in [S]. 
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Routine 

ADDX 
BCFAR 
BCWALL 
COLLC 
CPLOT 
DFLUX 
DFLUXC 
EFLUX 
EULER 
MESH 
PRNTFF 
PSMOO 
STEP 
TOTAL 

Time 
1.002 
0.311 
0.918 
0.611 
0.128 

10.898 
1.566 

15.125 
7.726 
0.100 
0.113 

10.370 
2.593 

51.570 

Percent 
1.94 
0.60 
1.78 
1.18 
0.25 

21.13 
3.04 

29.33 
14.98 

0.19 
0.22 

20.11 
5.03 

99.78 

Time Percent Time Percent Time Percent 

1.010 1.94 1.175 1.98 1.177 2.00 
0.315 0.60 0.295 0.50 0.301 0.51 
0.925 1.77 0.815 1.38 0.809 1.37 
0.615 1.18 0.702 1.19 0.694 1.18 
0.129 0.25 0.297 0.50 0.282 0.49 

10.986 21.05 11.684 19.74 11.67 19.84 
1.584 3.04 1.573 2.66 1.578 2.68 

15.171 29.07 17.218 29.09 17.11 29.08 
7.800 14.95 8.603 14.54 8.534 14.51 
0.100 0.19 0.108 0.18 0.108 0.18 
0.119 0.23 0.223 0.38 0.266 0.45 

10.627 20.36 14.583 24.64 14.314 24.33 
2.617 5.01 1.749 2.96 1.756 2.98 

52.184 99.64 59.186 99.74 58.826 99.60 

Cl 
Flowtrace 

.2 
TraceFlow 

Table 7: Flowtrace and TraceFlow Statistics for Scalar FL052 

Routine 1 Measurement 11 Time Percent 1 Madds 1 Mmult. I Mrecip. 1 Mflop. 

Table 8: Perftrace and !t’racePerf Statistics for Vector FL052 - Cray X-MP, Group 0 
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dynamic machine operation with the sequence of appli- 
cation routine executions. The high reliability of this 
data implies that a finer degree of performance charac- 
terization can be obtained than with summary results 
of hardware performance. 

5.3 Caveats 

It should be mentioned that Flowtrace, Perftrace, D-ace- 
Flow, and BacePerf measures can be in error for rou- 
tines with small execution times. This is mainly the 
result of instrumentation overhead and not timer res- 
olution. Although the analysis programs attempt to 
remove the overhead, a few percent deviation in the 
overhead relative to the routine execution time could be 
significant.7 From the viewpoint of performance analy- 
sis, however, achieving high measurement accuracy for 
routines representing a small fraction of total program 
execution time is not of primary importance. 

6 Dynamic Execution Analysis 

As noted earlier, detailed event traces hold promise for 
characterizing dynamic execution performance if per- 
turbation effects can be understood and compensated. 
Earlier, we used the accuracy of execution profile statis- 
tics, calculated from an event trace, as a measure of the 
reliability of the trace data and the validity of the per- 
turbation analysis techniques. Below, we demonstrate 
some of the dynamic execution behavior analyses possi- 
ble by applying the !&aceFlow and DacePerf tools. Al- 
though we show results for the three Perfect codes, for 
brevity’s sake, we concentrate primarily on the FL052 
code. 

6.1 Subroutine Events 

Using !&aceFlow trace data, one can can analyze the 
dynamic characteristics of subroutine calls, beginning 
with a simple procedure event graph that shows the sub- 
routine and function transitions during application pro- 
gram execution. In such graphs, the axes represent, 
respectively, the currently executing application proce- 
dure and the procedure execution time. 

When the dynamic pattern of calls is correlated with 
application source code locations, these procedure event 
graphs can show the spatial and temporal patterns of 
control flow. More abstractly, the procedure event 
graphs show application execution stages (e.g., the func- 
tional combination of multiple application algorithms or 
the processing of multiple input data sets). 

‘The Gray tools do not report routine timings if the average 
time per call is less than 0.001 seconds because the results are 
considered untrustworthy. 

Routine 
FL052Q 
COORD 
GEOM 
MESH 
GRID 
XPAND 
METRIC 
INIT 

Event Routine Event 

1 STEP 9 
EULER 10 
COLLC 11 
ADDX 12 
PRNTFF 13 
CPLOT 14 
GRAPII 15 
RPLOT 16 

Table 9: FL052 Routine Names to Event Numbers 

Generally, the dynamic pattern of procedure calls is 
identical for both scalar and vector executions Clearly, 
vectorization compresses the event time scale and may 
change the relative execution times of individual pro- 
cedure invocations. These are seen as changes in the 
“shape” of the procedure event graph. 

Figures 1 and 2 show the procedure event graphs for 
FL052 executions on the Cray X-MP in both scalar and 
vector modes, respectively. To provide sufficient reso- 
lution to display all relevant calls, the procedure event 
graphs are drawn in eight sections. In each section, 
time increases from top to bottom and continues at the 
top of the next section. In the figures, each procedure 
invocation is marked by a horizontal line (i.e., a state 
transition). Vertical lines denote the amount of time 
spent in the currently executing procedure. To present 
an entire execution history, while avoiding event clut- 
ter, some of the more frequent procedure events have 
been elided. Finally, Table 9 shows the association of 
procedure names and event numbers used in Figures 1 
and 2. 

From Figures 1 and 2, one can identify five major 
execution phases: 

0 Initialization 

l Grid One 

l Grid Two 

l Grid Three 

l Termination 

In the three grid phases, event analysis reveals a pe- 
riodic sequence of procedure calls, where each phase 
contains forty-eight periods of the procedure invoca- 
tion sequence. Obviously, the application phases, the 
repetition of procedure event sequences, and the pro- 
cedure sequence itself are manifestations of the appli- 
cation program’s call graph and the input data. Each 
grid phase reflects a dynamic instantiation of the static 
procedure call graph for a particular grid. Here, each 

8Inline function substitution to increase vectorieation is one 
possible exception. 
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Figure 1: Event Graph for Scalar Execution of FL052 on Cray X-MP (52.188527 seconds) 
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“grid” phase represents a grid refinement of the FL052 
application’s multigrid algorithm. In addition to the 
procedure calling behavior, Figures 1 and 2 show the 
changes in procedure execution times across application 
algorithm phases (i.e., grid refinements). 

By comparing procedure event graphs for scalar and 
vector execution, one can quantify the interactions of 
vectorization, vector length, and grid size. For FL052, 
the lack of vectorization in the initialization and ter- 
mination phases increases their relative contribution to 
the vectorized version’s total execution time. More- 
over, grids two and three, with longer vectors, attain 
a substantially higher fraction of the Cray X-MP’s peak 
performance in vector mode. This illustrates the value 
of time-dependent information. The average megaflop 
rate for this application is the weighted average of the 
megaflop rates for the three grid computations and de- 
pends on both the degree of application code vectoriza- 
tion and the range of vector lengths. These interactions 
are best understood by direct examination of the time 
varying application behavior, rather than attempting to 
infer interactions from first and second moments. 

Although not shown, the procedure event graphs for 
the OCEAN and DYFESM Perfect applications show 
equally interesting, though different, procedure invoca- 
tion behavior. As with the FL052 code, these patterns 
of procedure calls can be correlated with the applica- 
tions’ algorithms and computation stages.’ Compar- 
ing procedure event graphs from the Cray 2 with those 
from the X-MP shows non-linear compressions of the 
event graph time scale. Although the general shapes of 
the graphs are similar, relative timing differences reflect 
architectural features, compiler optimizations, and the 
match of application code to the machines. 

6.2 Hardware Performance 

In addition to generation and analysis of procedure call 
data, the BacePerf traces permit analysis of dynamic 
machine performance, as captured by the HPM coun- 
ters, during a application program execution. Below, 
we discuss a series of plots that display the time-varying 
values of hardware performance metrics (in millions of 
events per second) for the entire execution of our exam- 
ple applications. 

To simplify analysis and presentation, we divided 
each application program execution into five hundred, 
fixed size intervals of time. In each interval, we com- 
puted the average value for each hardware performance 
metric. Thus, applications that generate larger event 
traces likely will show less variation across adjacent time 
intervals (e.g., a trace for OCEAN contains ten times as 
many events as FL052, and DYFESM contains twice as 

OSpace constraints preclude a complete discussion of the pro- 
cedure event graphs for the Gray 2 and for the other two Perfect 
codes. 

many as OCEAN). Also, because only one quarter of the 
HPM counters can be captured during a single program 
execution, we ran each application program eight times, 
once for each of the IIPM counter groups in scalar and 
vector mode, to capture a complete set of hardware per- 
formance data. In the interests of space, we analyze only 
a small subset of the captured data. 

Figures 3 and 4 show the data from HPM group zero 
for the scalar and vector execution of FL052, respec- 
tively. Similarly, Figures 5 and 6 show the vector exe- 
cution of OCEAN and DYFESM, respectively. In each 
figure’s graphs, the horizontal axis is program execu- 
tion time, and the vertical axis is the rate (in millions 
of events per second) of the associated hardware perfor- 
mance metric; except for the last graph, which shows 
the number of memory references per floating point op 
eration. Although the scalar and vector executions of 
FL052 show similar behavior, the differences among the 
FL052, OCEAN, and DYFESM codes are striking. The 
behavior of the vector DYFESM code is very regular; in 
contrast, the vector version of OCEAN code shows sub- 
stantial variations in the floating point execution rate 
and the number of issued instructions. On a vector ar- 
chitecture, instruction issue rate and vector operations 
are inversely related (i.e., as the number of vector op 
erations increases, the total number of issued instruc- 
tions~decreases - each instructions represents more use- 
ful computation). Thus, the behavior of the OCEAN 
code likely is attributable to frequent transitions to and 
from vector mode. 

Although the application source code embodies a set 
of application algorithms and an associated number of 
arithmetic operations, a program compilation poten- 
tially can produce many different executable versions 
that are not work conservation equivalent. For example, 
a vectorized version might introduce redundant arith- 
metic operations to increase the vectorization level and 
execution performance. Thus, when comparing the per- 
formance of an application program across scalar and 
vector modes, one must verify that work is conserved. 
For the FL052 code, the total number of floating point 
operations (6.43 x 10’) is the same for both the scalar 
and vectorized versions.” Below, we compare and con- 
trast the two versions of this code based on data ob- 
tained from the HPM counters. 

In Figures 3 and 4, the three phases of grid evalua- 
tion are clear. In the vector case, the successively larger 
grids have longer vectors. This is reflected in higher 
megaflop rates (the fifth graph) and a lower instruction 
issue rate (the first graph). In both figures, “clock peri- 
ods holding issue” measures conflicts for access to both 
registers and functional units that prevent release of an 
instruction to a functional unit. As vector length in- 

loThe fifth graph of Figures 3 and 4 shows the time varying 
rate of these floating point operations in millions per second (i.e., 
megaflops) . 
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creases, more time is spent waiting for vector registers 
and vector functional units. 

Because the Cray X-MP contains 8n instruction 
buffer, not every instruction fetch generates a memory 
reference. For example, if all code for a loop resides in 
the instruction buffer, instruction fetches from memory 
will ceaSe during loop execution. As the third graph of 
Figures 3 and 4 suggests, the rate of instruction buffer 
fetches from memory is low, and the interference with 
operand memory fetches is small. However, examining 
both the scalar and vector executions of FL052 shows 
that the number of instruction buffer fetches increases 
sharply during the transitions between grid sizes. In ad- 
dition, the instruction buffer fetch rate is inversely pro- 
portional to megaflop rate for vector execution. Simply 
put, as the vector length increases, fewer instructions 
are needed to realize the same number of floating point 
operations. 

Coupling our analysis of instruction buffer fetches 
with the graphs of CPU memory references confirms 
that most memory operations are for data access. In 
Figure 4, the memory reference rate is directly propor- 
tional to the megaflop rate. 

Although space permitted showing only the total 
floating point operation graph, we found that the float- 
ing point reciprocal, addition, and multiplication were 
directly proportional for the FL052 computation. 

Finally, the average number of memory references for 
each floating point operation is near one. Although this 
might suggest that a single memory port, as found in the 
Gray-1, might suffice, the small-scale variance is large.ll 
Without the Gray X-MP’s three memory ports, perfor- 
mance would degrade substantially. 

6.3 Megaflop Distributions 

Although hardware performance graphs show the time- 
varying behavior of critical hardware metrics, it is im- 
portant to correlate this behavior with the execution of 
particular application procedures. The Perftrace sum- 
mary statistics show hardware performance data for 
each procedure, averaged over the the computation life- 
time. However, variations in these metrics exist, and 
they depend both on each procedure’s computation and 
its input data. Fortunately, from the ThcePerf traces, 
one can calculate these per procedure statistics (e.g., 
see Table 8), and one also can determine performance 
variations. 

To understand the variations in measured megaflops 
for each procedure invocation, we generated megaflop 
&&$&ion graphs that show the percentage of all calls 
made to 8 procedure that executed at 8 given megaflop 

“RccaU that each graph point represents the average over 
1/500th of the computation. The siee of these intervals hides 
most of the smaU-scale variance. 
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rate. As an example, Figure 7 shows the megaflop diitri- 
bution graph for the FL052 code in both scalar and vec- 
tor execution modes. Although the figures do not show 
the frsction of application execution time attributable 
to each procedure call instance, the megaflop variations 
are clearly visible. For some procedures, the megaflop 
range is small. For others, such as PSMOO and EU- 
LER, the range is quite large. As before, much of this 
behavior can be explained based on knowledge of the 
application program. The PSMOO and EULER proce- 
dures are primary components of the FL052 grid com- 
putation, and the variations in megaflop rates reflect 
the changes in vector lengths across the three grids. 

In addition to the producing megaflop distributions, 
using the Z’bacePerf traces, it is possible to compare 
scalar and vector hardware performance for all instances 
of a procedure. For megaflops, this permits calculation 
of speedups for each procedure instantiation. In general, 
knowing the range of procedure’s vector performance, 
rather than just the mean, provides greater insight into 
optimization potential. 

7 Conclusions 

It is becoming increasingly apparent that to achieve 
high performance on supercomputers, the application 
programmer must have a better understanding of the 
dynamic execution characteristics of the computation 
and its interactions with the high-performance features 
of the machine. However, tools for capturing such data 
are not commonplace, and currently, users must instead 
rely on execution summary statistics provided mainly 
by routine-based profilers. We have developed a tracing 
facility for the Gray X-MP and Gray 2 supercomput- 
ers that has been demonstrated to provide important 
insight into time-dependent execution behavior while 
maintaining a high degree of accuracy. The tracing tools 
provided will port directly to the Gray Y-MP without 
change. The existence of a common tracing environ- 
ment across the Cray family will permit performance 
experiments across machines and will provide a basis 
for cross-architecture performance studies. 

In general, there are several potential advantages pro- 
vided by dynamic tracing over conventional execution 
profiling. As a framework for future applications of our 
tracing facilities, and for potential tracing implement8 
tions on other systems, we enumerate some of the more 
important advantages below. 

l A dynamic calling trace can be analyzed to show 
time-dependent calling relationships between pro- 
gram units. 

l Program execution phases can be identified, en- 
hancing the understanding of program function. 



l Different modes of execution (sequential, vector, or 
multitasking) can be compared at a finer level to 
show the effects of different source code optimiza- 
tions. 

l Parameters for execution models of certain pro- 
gram structures, such as DO loops, can be derived 
from the trace data. 

l A realistic evaluation of performance improvement 
potential can be made from a study of performance 
variability of routine execution. 

l Given access to hardware performance data, the 
high-performance features of the machine can be 
more accurately correlated with time-varying per- 
formance behavior. 

l In theory, decisions regarding future parallelism 
choices (vectorization and multitasking) can be 
made at run-time based on previous trace-based 
performance knowledge of a program and its cur- 
rent performance behavior. Thii allows the system 
to reconfigure the parallelism of the program to bet- 
ter match the parallelism of the hardware. 

l Comparisons between architectures based on spe- 
cific, local information can be made. Timing and 
performance characteristics deemed intrinsic to the 
program may be used to directly evaluate the in- 
teraction of program constructs with architecture 
features. 

l More appropriate selection of code characteristics 
for use in performance prediction model design can 
be made. 
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Figure 7: Megaflop Distribution for FL052 Subroutines on the Cray X-MP 
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