
Tracing Application Program Execution
on the Cray X-MP and Cray 2

Allen D. Malony’ John L. Larson+ Daniel A. Reed*

Center for Supercomputer Research and Development
University of Illinois

Urbana, Illinois 61801

Abstract

Important insights into program operation can be
gained by observing dynamic execution behavior. Un-
fortunately, many high-performance machines provide
execution profile summaries as the only tool for per-
formance investigation. We have developed a tracing
library for the Cray X-MP and Cray 2 supercomput-
ers that supports the low-overhead capture of execu-
tion events for sequential and multitasked programs.
This library has been extended to use the automatic
instrumentation facilities on these machines, allowing
trace data from routine entry and exit, and other pro-
gram segments, to be captured. To assess the utility of
the trace-based tools, three of the Perfect Benchmark
codes have been tested in scalar and vector modes with
the tracing instrumentation. In addition to computing
summary execution statistics from the traces, interest-
ing execution dynamics appear when studying the trace
histories. It is also possible to compare codes across the
two architectures by correlating the event traces. Our

conclusion is that adding tracing support in Cray su-
percomputers can have significant returns in improved
performance characterization and evaluation.

1 Introduction

Typically, the performance of an application can vary
greatly during execution. For supercomputers, this situ-
ation is even more acute as, in general, the performance
range is greater and performance variations among pro-
gram segments can be more pronounced. The complex-

*Supported in part by the National Science Foundation under
Grants No. NSF MIP-8807775 and No. NSF ASC-84-04556, and
the NASA Ames Research Center Grant No. NCC-2-559.

1s upported in part by the National Science Foundation under
grant NSF ASC-84-04556. Author’s current address is CSRD.

$Supported in part by the National Science Foundation under
grants NSF CCR-86-57696, NSF CCR87-06663 and NSF CDA-
87-22836 and by the National Aeronautics and Space Adminis-
tration under NASA Contract Number NAG-1-613.

ity in the performance space surrounding the use and
interactions of advanced architectural and software fea-
tures of supercomputers often implies that minor al-
terations in execution behavior are manifest as large
changes in achieved performance. Simply put, appli-
cation performance, especially for supercomputers, can
be highly variable and depends significantly on the dy-
namic interaction of the code with the high-performance
features of the machine.

The problem facing the performance analyst is how
to characterize an application’s operation both in terms
of its overall performance and its dynamic execution
behavior - what code is executed when and how the
machine resources are used. Profiling tools typically re-
port application code performance as summaries of ex-
ecution time across program code blocks [4]. Whereas
summary performance statistics directly identify code
segments that consume large fractions of total execution
time, they do not provide insight into how the applica-
tion executes over time nor its dynamic use of machine
resources.

In part, the goal of this paper is to present tech-
niques for capturing and analyzing dynamic program
execution and to show that performance measurements
of execution behavior can provide greater insight than
summary statistics. But this conclusion is not unex-
pected - other research efforts have reported similar
findings [13, 141. There has been a reluctance, how-
ever, to capture dynamic execution state for fear that
the measurement system will corrupt the execution be-
havior being observed, particularly in the case of high-
performance systems. In many cases, this fear is largely
unfounded and simple perturbation models can be ap
plied to recover true execution performance [lo]. To the
extent that it does occur, the increased insight into ap
plications operation offered by the trace data must be
weighed against the perturbations, and therefore per-
formance inaccuracies, in observed execution behavior.

In this paper, we describe both a trace-based mea-
surement zystem implemented for Cray supercomput-

CH2916-5/90/0000/0060/$01.00 0 IEEE 60

ers and its use in characterizing the performance dy-
namics of full application codes. The Cray supercom-
puters provide a practical environment to test the mer-
its of trace-based performance characterization. The
Cray compilers support automatic instrumentation at
the routine level to capture entry and exit events [2, 81.
Moreover, the existence of a fast-access, high-resolution
system clock allows fine-grained timing measurements.
Furthermore, the Cray X-MP includes a hardware per-
formance monitor for run-time capture of several hard-
ware metrics.

The remainder of the paper is oxganized as follows. In
52, we briefly review the standard profiling tools avail-
able on the Cray systems. In 53, we describe the trac-
ing system developed for the Cray X-MP and Cray 2.
We introduce the applications codes from the Perfect
Benchmark set used for testing purposes iu 94. In 55,
we compare the profiling results from the standard tools
to those calculated from the application code traces. We
use the comparison of these results as a measure of the
reliability of the trace data. In $6, we analyze the exe-
cution dynamics of the Perfect codes, primarily FL052,
on the Cray X-MP and Cray 2. Finally, we present some
conclusions and suggest directions for future research.

2 Standard Cray Tools

Two profiling tools are commonly used on Cray sys-
tems: Flowtrace and Perftrace. The Flowtrace tool [2]
is available on the Cray X-MP, Cray Y-MP, and Cray 2.
It purpose is to measure where time is spent in a pro-
gram’s execution and to generate a time profile based
on program routines. Unlike sample-based, interrupt-
driven profilers [5], FZowtrace calculates the profile dy-
namically by inserting profiling code at the beginning
and end of each routine. This instrumentation is pro-
vided automatically by the Cray compilers. At the end
of the program’s execution, the time profile is formatted
and written to a file. The profile includes the number
of calls to the routine, the time spent in each routine,
and the average time per routine call.

The Perftruce tool [8] is available only on Gray X-
MP and Cray Y-MP systems. Perftrace computes all
the Flowtrace statistics and generates a profile of hard-
ware performance. Similar to the time profile measure-
ment, Perjlrace samples the counters of the hardware
performance monitor @PM) at routine entry and exit
to determine the distribution of hardware performance
across the program routines. Because the HPM allows
only one of four hardware counter groups (each group
contains eight counters) to be monitored at a time, Perf-
trace reports only the statistics for the selected counter
group. Multiple runs (up to four) must be made if hard-
ware profiles spanning counter groups are desired.

In addition to the time profile statistics, Perjlrace re-

ports the counter value of each hardware mettic accu-
mulated for each routine (e.g., floating point operations
or memory references), this value shown in millions per
second (e.g., millions of floating point operations per
seconds), the percentage of the hardware metric total
the routine counter values represent, and different de-
rived statistics depending on the counter group (e.g.,
memory references per floating point operation).

Both Flowtrace and Perftrace produce summary per-
formance statistics - the statistics reflect performance
totals accumulated for the entire program execution.
Summary statistics reflect dynamic execution, but only
in an averaged form.

3 Tracing Environment

We have developed a tracing system that can capture
the history of a program’s performance behavior. We
were able to use the existing Cray compiler support for
Flowtrace and Perftrace to provide automatic instru-
mentation for tracing measurement. The tracing envi-
ronment included a low-level library for trace recording
plus libraries that replaced the standard Flowtrace and
Perjtrace routines.

3.1 Software Event Tracing

The basic function of a software event tracing facility is
to record the occurrence of an event by writing a times-
tamped event identifier, with optional data, to a trace
buffer. For concurrent event tracing, a buffering scheme
is needed that allows multiple tasks concurrent access
without conflicts. In our tracing facility, we allocate
trace buffers statically, one for each possible task.

The routines in our Cray tracing library are described
in Table 1. The event identifier and optional data are
supplied by the user, and the high-resolution system
clock is retrieved from the Cray library routine irtc().l
Because the high-resolution system clock is a register
shared by every processor in the machine, all tasks see
a common, global time value. The side-effect of using
the high-resolution cycle counter is that it is real-time
and, therefore, timing measurements are susceptible to
multiprogramming influences. Thus, our tracing library
can generate accurate timing measurements only in ded-
icated mode.

The routine tezit() is called at the end of program
execution to save the trace data in trace files. If, dur-
ing execution, one or more trace buffers overflow, the
trace data for the offending tasks are written out to the
associated trace file before task execution continues.

Although the tracing routines support the concurrent
capture of trace events from multiple tasks, aJl the re-

‘In hay’s Fortran compiler,CFT?‘Z, itk() is compiled as 8
single machine instruction.

61

] Routine Description

1 tevent(iid, e&f) writes a timestamp and the event eid to the trace buffer of task tid
J

tdatas(tid, eid, data)
1

writes a timestamp, the event eid, and the integer data item data
to the trace buffer of task tid

tdata(tid, eid, n, ptr) writes a timestamp, the event eid, and the first n integer data items
pointed to by ptr to the trace buffer of the task ti4 tdatas() is faster
for a single data item

texit() writes the data currently in the trace buffers for each task to files
task-i where i is the task id

Table 1: Cray Tracing Library Routines

sults reported in the paper are from scalar and vector
executions. Analysis of concurrent traces is complicated
by the inability to efficiently determine the processing
resource where the event was recorded. We currently
are pursuing solutions to this problem.

In general, tracing routines should be implemented
to minimize execution time overhead. The current im-
plementation of the tracing routines is in Fortran to
enhance portability across the Cray family.a The ex-
ecution time overheads (mean, variance, and standard
deviation) for the tracing routines on the Cray X-MP
and Cray 2 are shown in Table 2. The tdata() numbers
are for ten data items saved with the event identifier.
In all cases, the subroutine invocation times constitute
a significant portion of the total. The execution time
overheads of the tracing routines are used during trace
analysis to remove the intrusion due to instrumentation;
see 95.

3.2 TraceFlow and TracePerf

We developed code that captures routine entry and exit
events using the tracing library to record the trace data.
The goal was to extend the existing, automatic Flow-
truce and Perftmce instrumentation provided by the
Cray compilers [2, 81. Our approach replaced the Flow-
trace and Perftrace routines with versions that generate
traces.

We refer to the traced Flowtmce routines as the !&ace-
Flow library. The traced Perftmce routines we refer to
as the lhcePerf library. The routines in each library
are described in Table 3. The principal difference be-
tween the !l+acePerf and TkaceFlow libraries is that the
ZhcePerf routines record current HPM counter values.’
Note that for both l%aceFlow and ZkacePerf, the routine
name is saved in the trace only for “entry” events. We

% fact, there are no differences in the tracing library for the
Cray X-MP and the Cray 2, and the library should port without
change to the Gray Y-MP system.

3 We used the hardware performance monitor of the CRAY X-
MP/48 running UNICOS at the National Center for Supercom-
puting Applications in Urbana, Illinois. The HPM is a standard
feature of all CRAY X-MP’s and CRAY Y-MP’s. For further
information on the HPM, see [7, 81.

‘As in Pwftzace, only one group of eight counters out of 32 are
accessible during any execution. Thus, execution time overheads
are listed for each of the four groups.

5Because no hardware performance monitor exists on the Cray
2, no TraccPerf library can be constructed.

62

TraceFlow
Minimum 11 Auemge

Table 5: Cray 2 TraceFlow Execution Time Overheads

assume that entry/exit pairs can be determined from
the trace during analysis. Because a frequently called
routine can cause the trace to grow large, the jIowoff()
and jIowon() routines have been implemented to control
when trace data should be saved.

There is a significant practical difference between the
overheads for the l%aceFlow and DacePerf routines.
Table 4 gives the mean execution time overheads for
calling the l’baceFlow and ZhcePerf routines for the
Cray X-MP.4 Table 5 shows the mean execution time
overheads for ZhceFZow on the Cray 2.5 Although
ZhcePerf records approximately five times the amount
of data as l+aceFlow, the execution time difference is
largely because fiscePerfroutines require an I/O oper-
ation to retrieve HPM counter values.

In addition to the execution time overheads for ‘l’ba-
cePerf, there are also perturbations in the RPM coun-
ters; calling the DucePerfroutines will affect the HPM
counters. To accurately recover the HPM counts during
trace analysis, we measured the counter “overheads” for
the l+acePerf routines for each of the counter groups.
These overheads for group zero are reported in Table 6.
The overheads for the other groups can be found in [9].

Cray X-MP Cray 2
Routine (cp = 8.5 ns) (cp = 4.1 ns)

Standard Standard
Mean Variance Deviation Mean Variance Deviation

tevent()
clock periods 142 33 6 335 728 27
nanoseconds 1207 281 51 1374 2985 111
tdatas()
clock periods 155 64 8 351 923 30
nanoseconds 1318 544 68 1439 3784 123
tdata()
clock periods 1102 428 20 2662 12427 111
nanoseconds 9367 3638 170 10914 50951 455

Table 2: Cray X-MP and 2 Tracing Execution Time Overheads

Description
Routine TraceFlow TracePerf

flowentr() records the routine entry event in the records the routine entry event in the
trace for the calling task; the routine trace for the calling task; the rou-
identifier is saved tine identifier and HPM counters are

saved
flowexit records the routine exit event in the records the routine exit event in the

trace for the calling task trace for the calling task; the HPM
counters are saved

flowin(blockid) records the block entry event in the records the block entry event in the
trace for the calling task; the block trace for the calling task; the block
identifier blockid is saved identifier blockid and HPM counters

are saved
flowout() records the block exit event in the records the block exit event in the

trace for the calling task trace for the calling task; the RPM
counters are saved

perfon() not defined same as flowin()

perfoff() not defined same as Aowout()

flowstop() writes the trace files write the trace files
flowoff() disable tracing disable tracing
43--.--I\ -,,L,.. 1,-L-- ---L,- r--2--

Table 3: Cray TraceFlow and ‘I’racePerf Routines

TracePerf
Group 0 1 Group I Group 2 1 GFOU~ 3

Table 4: Cray X-MP TraceFlow and TracePerf Execution Time Overheads

63

Counter
4

Table 6: Gray X-MP TracePerf HPM Counter Over-
heads - Group 0

4 Perfect Benchmarks

The applications codes used in our study (FL052,
OCEAN, and DYFESM) are benchmark programs from
the Perfect Benchmark suite [l]. The baseline versions
of the codes were compiled with default CFT77 com-
piler options and executed on one processor. As such,
our results differ slightly from those presented in [12].
In particular, no preprocessors were used, all codes were
run on a single processor, and no hand optimizations
were performed.

The benchmark codes were chosen from different ap-
plication areas. FL052 and OCEAN are fluid dynam-
ics programs. FL052 is a two-dimensional analysis of
the transonic inviscid flow past an airfoil and solves the
unsteady Euler equations [S]. OCEAN solves the dy-
namical equations of a two-dimensional Boussinesq fluid
layer to study the chaotic behavior of free-slip Rayleigh-
Benard convection [3]. DYFESM is a twedimensional
finite element program for the analysis of symmetric
anisotropic structures [ll]. An explicit leapfrog tem-
poral method with substructuring is used to solve for
the displacements and stresses, along with the veloci-
ties and accelerations at each time step.

5 Trace Verification

The primary motivation behind tracing application pro-
gram execution is to capture dynamic performance be-
havior. The ‘i%aceFlow library can be used to under-
stand the timing properties of routine execution. The
BacePerf library can be used to obtain additional data
on machine performance. However, with the use of these
libraries comes perturbations in the program’s behavior,
both in execution time and in the HPM counter data.
The severity of these perturbations and our abiity to
remove them will determine the reliability of the trace
information.

We have shown that perturbations due to trace-based
monitoring can, in many cases, be modeled and, subse-
quently, removed during trace analysis [lo]. We applied
the perturbation analysis techniques from our previous

work during the development of our trace analysis pro-
grams. In particular, we developed trace analysis pro-
grams that compute the same set of profile statistics
generated by Flowtrace and Perftrace. We used the re-
sults obtained from these programs as a measure of the
reliability of the trace data after perturbation analysis
has been applied.

5.1 Flowtrace Profiling versus Trace-
Flow Profiling

The Flowtrace statistics summarize the distribution of
execution time across an application’s routines. The
total number of calls to a routine and the total execu-
tion time within a routine are reported. Information is
also provided about the execution call graph. Our pro-
gram to analyze an application trace produces similar
statistics, plus additional execution time profiles, for the
parents and children of each routine.

Table 7 shows the execution time in seconds for some
of the routines in FL052 when executed in scalar mode,
as calculated by Flowtrace and from a DaceFlow trace.
As shown, the trace-generated statistics are very close
to those produced by Flowtrace. The statistics from the
vector execution of FL052, plus those from the scalar
and vector execution of the other two Perfect codes, also
match extremely welL6

Two general conclusions can be drawn from this anal-
ysis. First, we can accurately measure gross execu-
tion performance characteristics, in the form of execu-
tion time profiles, from traces of routine entry and exit
by including perturbations introduced by the trace in-
strumentation. Second, we believe the dynamic perfor-
mance behavior, as represented by the full event trace,
should also be credible. Although this second conclu-
sion is difficult to prove in practice, other analysis [lo]
supports this conclusion.

5.2 Perftrace Profiling versus TracePerf
Profiling

An analysis similar to that used with Flowtrace and
l+aceFlow can be applied to Perftrace and !l%acePerf.
The results from the vector execution of FL052 are
given in Table 8. In addition to the execution time mea-
surements, some of the operation counts from counter
data in group zero are shown; Madds represents millions
of floating point additions, Mmult is millions of floating
point multiplies, Mrecip is millions of floating point re-
ciprocals, and Milop is millions of total floating point
operations.

The statistics generated from the ZhacePerf trace are
very close to those reported by Perftrace. The impor-
tance of the BacePerf data lies in its ability to associate

‘These statistics can be found in [S].

64

Routine

ADDX
BCFAR
BCWALL
COLLC
CPLOT
DFLUX
DFLUXC
EFLUX
EULER
MESH
PRNTFF
PSMOO
STEP
TOTAL

Time
1.002
0.311
0.918
0.611
0.128

10.898
1.566

15.125
7.726
0.100
0.113

10.370
2.593

51.570

Percent
1.94
0.60
1.78
1.18
0.25

21.13
3.04

29.33
14.98

0.19
0.22

20.11
5.03

99.78

Time Percent Time Percent Time Percent

1.010 1.94 1.175 1.98 1.177 2.00
0.315 0.60 0.295 0.50 0.301 0.51
0.925 1.77 0.815 1.38 0.809 1.37
0.615 1.18 0.702 1.19 0.694 1.18
0.129 0.25 0.297 0.50 0.282 0.49

10.986 21.05 11.684 19.74 11.67 19.84
1.584 3.04 1.573 2.66 1.578 2.68

15.171 29.07 17.218 29.09 17.11 29.08
7.800 14.95 8.603 14.54 8.534 14.51
0.100 0.19 0.108 0.18 0.108 0.18
0.119 0.23 0.223 0.38 0.266 0.45

10.627 20.36 14.583 24.64 14.314 24.33
2.617 5.01 1.749 2.96 1.756 2.98

52.184 99.64 59.186 99.74 58.826 99.60

Cl
Flowtrace

.2
TraceFlow

Table 7: Flowtrace and TraceFlow Statistics for Scalar FL052

Routine 1 Measurement 11 Time Percent 1 Madds 1 Mmult. I Mrecip. 1 Mflop.

Table 8: Perftrace and !t’racePerf Statistics for Vector FL052 - Cray X-MP, Group 0

65

dynamic machine operation with the sequence of appli-
cation routine executions. The high reliability of this
data implies that a finer degree of performance charac-
terization can be obtained than with summary results
of hardware performance.

5.3 Caveats

It should be mentioned that Flowtrace, Perftrace, D-ace-
Flow, and BacePerf measures can be in error for rou-
tines with small execution times. This is mainly the
result of instrumentation overhead and not timer res-
olution. Although the analysis programs attempt to
remove the overhead, a few percent deviation in the
overhead relative to the routine execution time could be
significant.7 From the viewpoint of performance analy-
sis, however, achieving high measurement accuracy for
routines representing a small fraction of total program
execution time is not of primary importance.

6 Dynamic Execution Analysis

As noted earlier, detailed event traces hold promise for
characterizing dynamic execution performance if per-
turbation effects can be understood and compensated.
Earlier, we used the accuracy of execution profile statis-
tics, calculated from an event trace, as a measure of the
reliability of the trace data and the validity of the per-
turbation analysis techniques. Below, we demonstrate
some of the dynamic execution behavior analyses possi-
ble by applying the !&aceFlow and DacePerf tools. Al-
though we show results for the three Perfect codes, for
brevity’s sake, we concentrate primarily on the FL052
code.

6.1 Subroutine Events

Using !&aceFlow trace data, one can can analyze the
dynamic characteristics of subroutine calls, beginning
with a simple procedure event graph that shows the sub-
routine and function transitions during application pro-
gram execution. In such graphs, the axes represent,
respectively, the currently executing application proce-
dure and the procedure execution time.

When the dynamic pattern of calls is correlated with
application source code locations, these procedure event
graphs can show the spatial and temporal patterns of
control flow. More abstractly, the procedure event
graphs show application execution stages (e.g., the func-
tional combination of multiple application algorithms or
the processing of multiple input data sets).

‘The Gray tools do not report routine timings if the average
time per call is less than 0.001 seconds because the results are
considered untrustworthy.

Routine
FL052Q
COORD
GEOM
MESH
GRID
XPAND
METRIC
INIT

Event Routine Event

1 STEP 9
EULER 10
COLLC 11
ADDX 12
PRNTFF 13
CPLOT 14
GRAPII 15
RPLOT 16

Table 9: FL052 Routine Names to Event Numbers

Generally, the dynamic pattern of procedure calls is
identical for both scalar and vector executions Clearly,
vectorization compresses the event time scale and may
change the relative execution times of individual pro-
cedure invocations. These are seen as changes in the
“shape” of the procedure event graph.

Figures 1 and 2 show the procedure event graphs for
FL052 executions on the Cray X-MP in both scalar and
vector modes, respectively. To provide sufficient reso-
lution to display all relevant calls, the procedure event
graphs are drawn in eight sections. In each section,
time increases from top to bottom and continues at the
top of the next section. In the figures, each procedure
invocation is marked by a horizontal line (i.e., a state
transition). Vertical lines denote the amount of time
spent in the currently executing procedure. To present
an entire execution history, while avoiding event clut-
ter, some of the more frequent procedure events have
been elided. Finally, Table 9 shows the association of
procedure names and event numbers used in Figures 1
and 2.

From Figures 1 and 2, one can identify five major
execution phases:

0 Initialization

l Grid One

l Grid Two

l Grid Three

l Termination

In the three grid phases, event analysis reveals a pe-
riodic sequence of procedure calls, where each phase
contains forty-eight periods of the procedure invoca-
tion sequence. Obviously, the application phases, the
repetition of procedure event sequences, and the pro-
cedure sequence itself are manifestations of the appli-
cation program’s call graph and the input data. Each
grid phase reflects a dynamic instantiation of the static
procedure call graph for a particular grid. Here, each

8Inline function substitution to increase vectorieation is one
possible exception.

2nd 3rd
Eighth Eighth

5th
Eighth

8th
Eighth

0 4 8121

pvuh&e

1st
Eighth

I I I I

4th
Eighth

I I I I

6th
Eighth

7th
Eighth

I I I

--

--
--

--
--

--
--

--
--

--
--

--
--

--

I I I I I I

0 4 812

Rcvudi-tse Jhd~~e

0 4 iii:
~
04812

T
i -

m
e

i
4 8 12.

ii
0 4 8 12:

I I I I

0 4 812:

Rghidise

IIll

0 4 8 121

Rovhi~se

Figure 1: Event Graph for Scalar Execution of FL052 on Cray X-MP (52.188527 seconds)

1st 2nd 3rd 4th
Eighth Eighth Eighth Eighth

6th
Eighth

5th
Eighth

0 4 8 12:

Rovuti-ke

7th 8th
Eighth Eighth

I I I III

--

I-

--

--

--

--

--

--

I’
I I I I

0 4 812'
I I I

0 4 8 121

Rgdifse Rgv:urse

T
i

m
e

I
I I

0 4 8 121

Rovud$e

Figure 2: Event Graph for Vector Execution of FL052 on Cray X-MP (6.749813 seconds)

67

“grid” phase represents a grid refinement of the FL052
application’s multigrid algorithm. In addition to the
procedure calling behavior, Figures 1 and 2 show the
changes in procedure execution times across application
algorithm phases (i.e., grid refinements).

By comparing procedure event graphs for scalar and
vector execution, one can quantify the interactions of
vectorization, vector length, and grid size. For FL052,
the lack of vectorization in the initialization and ter-
mination phases increases their relative contribution to
the vectorized version’s total execution time. More-
over, grids two and three, with longer vectors, attain
a substantially higher fraction of the Cray X-MP’s peak
performance in vector mode. This illustrates the value
of time-dependent information. The average megaflop
rate for this application is the weighted average of the
megaflop rates for the three grid computations and de-
pends on both the degree of application code vectoriza-
tion and the range of vector lengths. These interactions
are best understood by direct examination of the time
varying application behavior, rather than attempting to
infer interactions from first and second moments.

Although not shown, the procedure event graphs for
the OCEAN and DYFESM Perfect applications show
equally interesting, though different, procedure invoca-
tion behavior. As with the FL052 code, these patterns
of procedure calls can be correlated with the applica-
tions’ algorithms and computation stages.’ Compar-
ing procedure event graphs from the Cray 2 with those
from the X-MP shows non-linear compressions of the
event graph time scale. Although the general shapes of
the graphs are similar, relative timing differences reflect
architectural features, compiler optimizations, and the
match of application code to the machines.

6.2 Hardware Performance

In addition to generation and analysis of procedure call
data, the BacePerf traces permit analysis of dynamic
machine performance, as captured by the HPM coun-
ters, during a application program execution. Below,
we discuss a series of plots that display the time-varying
values of hardware performance metrics (in millions of
events per second) for the entire execution of our exam-
ple applications.

To simplify analysis and presentation, we divided
each application program execution into five hundred,
fixed size intervals of time. In each interval, we com-
puted the average value for each hardware performance
metric. Thus, applications that generate larger event
traces likely will show less variation across adjacent time
intervals (e.g., a trace for OCEAN contains ten times as
many events as FL052, and DYFESM contains twice as

OSpace constraints preclude a complete discussion of the pro-
cedure event graphs for the Gray 2 and for the other two Perfect
codes.

many as OCEAN). Also, because only one quarter of the
HPM counters can be captured during a single program
execution, we ran each application program eight times,
once for each of the IIPM counter groups in scalar and
vector mode, to capture a complete set of hardware per-
formance data. In the interests of space, we analyze only
a small subset of the captured data.

Figures 3 and 4 show the data from HPM group zero
for the scalar and vector execution of FL052, respec-
tively. Similarly, Figures 5 and 6 show the vector exe-
cution of OCEAN and DYFESM, respectively. In each
figure’s graphs, the horizontal axis is program execu-
tion time, and the vertical axis is the rate (in millions
of events per second) of the associated hardware perfor-
mance metric; except for the last graph, which shows
the number of memory references per floating point op
eration. Although the scalar and vector executions of
FL052 show similar behavior, the differences among the
FL052, OCEAN, and DYFESM codes are striking. The
behavior of the vector DYFESM code is very regular; in
contrast, the vector version of OCEAN code shows sub-
stantial variations in the floating point execution rate
and the number of issued instructions. On a vector ar-
chitecture, instruction issue rate and vector operations
are inversely related (i.e., as the number of vector op
erations increases, the total number of issued instruc-
tions~decreases - each instructions represents more use-
ful computation). Thus, the behavior of the OCEAN
code likely is attributable to frequent transitions to and
from vector mode.

Although the application source code embodies a set
of application algorithms and an associated number of
arithmetic operations, a program compilation poten-
tially can produce many different executable versions
that are not work conservation equivalent. For example,
a vectorized version might introduce redundant arith-
metic operations to increase the vectorization level and
execution performance. Thus, when comparing the per-
formance of an application program across scalar and
vector modes, one must verify that work is conserved.
For the FL052 code, the total number of floating point
operations (6.43 x 10’) is the same for both the scalar
and vectorized versions.” Below, we compare and con-
trast the two versions of this code based on data ob-
tained from the HPM counters.

In Figures 3 and 4, the three phases of grid evalua-
tion are clear. In the vector case, the successively larger
grids have longer vectors. This is reflected in higher
megaflop rates (the fifth graph) and a lower instruction
issue rate (the first graph). In both figures, “clock peri-
ods holding issue” measures conflicts for access to both
registers and functional units that prevent release of an
instruction to a functional unit. As vector length in-

loThe fifth graph of Figures 3 and 4 shows the time varying
rate of these floating point operations in millions per second (i.e.,
megaflops) .

68

Instructions
Issued

Clock
Periods

Holding Issue

Instruction
B&C1

Fetches

CPU
Memory

References

Floating
Point

Operations

Memory
References l& ’
per Flop ,, 1

I I I I I I I I I I I

0 5 10 15 20 25 30 35 40 45 50

Seconds

Figure 3: TracePerf Data for FL052 Scalar Execution - Counter Group 0

Instructions
Issued

Clock
Periods

Holding Issue

Instruction
Buffer

Fetches

CPU
Memory

References

Floating
point

Operations

Memory
References
per Flop

94
74 -
54 -
94
“= I I I I I I I I

” I

0 ; 1 ; B ;

Seconds

Figure 4: TracePerf Data for FL052 Vector Execution - Counter Group 0

69

Clock
Periods ii

Holding Issue ;;

Instruction Oe3
Buffer 0.2 -*

Fetches o 1 . I I I I I I I I I

Memory 3

References 2- 1-r - W’ -
per Flop o

I I I I I I I I I

0 6 12 18 24 30 36 42 48 54 60

Seconds

Figure 5: TracePerf Data for OCEAN Vector Execution - Counter Group 0

35 I I I I I I I

Clock E-
Periods

Holding Issue ii -
I I I I I I I

Instruction ~‘~~ -1
Buffer 0:50 -

Fetches 0.25 -
0.00 I I I I I I I

CPU
Memory

St -

x: - References 16
I I I I I I I

Floating
37 -

point E-
Operations 1: -

I I I I I I I

Memory
3

References
2

1

per Flop
1

0 I I I I I I I

0 2 4 6 8 10 12 14 16

Seconds

Figure 6: TracePerf Data for DYFESM Vector Execution - Counter Group 0

70

creases, more time is spent waiting for vector registers
and vector functional units.

Because the Cray X-MP contains 8n instruction
buffer, not every instruction fetch generates a memory
reference. For example, if all code for a loop resides in
the instruction buffer, instruction fetches from memory
will ceaSe during loop execution. As the third graph of
Figures 3 and 4 suggests, the rate of instruction buffer
fetches from memory is low, and the interference with
operand memory fetches is small. However, examining
both the scalar and vector executions of FL052 shows
that the number of instruction buffer fetches increases
sharply during the transitions between grid sizes. In ad-
dition, the instruction buffer fetch rate is inversely pro-
portional to megaflop rate for vector execution. Simply
put, as the vector length increases, fewer instructions
are needed to realize the same number of floating point
operations.

Coupling our analysis of instruction buffer fetches
with the graphs of CPU memory references confirms
that most memory operations are for data access. In
Figure 4, the memory reference rate is directly propor-
tional to the megaflop rate.

Although space permitted showing only the total
floating point operation graph, we found that the float-
ing point reciprocal, addition, and multiplication were
directly proportional for the FL052 computation.

Finally, the average number of memory references for
each floating point operation is near one. Although this
might suggest that a single memory port, as found in the
Gray-1, might suffice, the small-scale variance is large.ll
Without the Gray X-MP’s three memory ports, perfor-
mance would degrade substantially.

6.3 Megaflop Distributions

Although hardware performance graphs show the time-
varying behavior of critical hardware metrics, it is im-
portant to correlate this behavior with the execution of
particular application procedures. The Perftrace sum-
mary statistics show hardware performance data for
each procedure, averaged over the the computation life-
time. However, variations in these metrics exist, and
they depend both on each procedure’s computation and
its input data. Fortunately, from the ThcePerf traces,
one can calculate these per procedure statistics (e.g.,
see Table 8), and one also can determine performance
variations.

To understand the variations in measured megaflops
for each procedure invocation, we generated megaflop
&&$&ion graphs that show the percentage of all calls
made to 8 procedure that executed at 8 given megaflop

“RccaU that each graph point represents the average over
1/500th of the computation. The siee of these intervals hides
most of the smaU-scale variance.

71

rate. As an example, Figure 7 shows the megaflop diitri-
bution graph for the FL052 code in both scalar and vec-
tor execution modes. Although the figures do not show
the frsction of application execution time attributable
to each procedure call instance, the megaflop variations
are clearly visible. For some procedures, the megaflop
range is small. For others, such as PSMOO and EU-
LER, the range is quite large. As before, much of this
behavior can be explained based on knowledge of the
application program. The PSMOO and EULER proce-
dures are primary components of the FL052 grid com-
putation, and the variations in megaflop rates reflect
the changes in vector lengths across the three grids.

In addition to the producing megaflop distributions,
using the Z’bacePerf traces, it is possible to compare
scalar and vector hardware performance for all instances
of a procedure. For megaflops, this permits calculation
of speedups for each procedure instantiation. In general,
knowing the range of procedure’s vector performance,
rather than just the mean, provides greater insight into
optimization potential.

7 Conclusions

It is becoming increasingly apparent that to achieve
high performance on supercomputers, the application
programmer must have a better understanding of the
dynamic execution characteristics of the computation
and its interactions with the high-performance features
of the machine. However, tools for capturing such data
are not commonplace, and currently, users must instead
rely on execution summary statistics provided mainly
by routine-based profilers. We have developed a tracing
facility for the Gray X-MP and Gray 2 supercomput-
ers that has been demonstrated to provide important
insight into time-dependent execution behavior while
maintaining a high degree of accuracy. The tracing tools
provided will port directly to the Gray Y-MP without
change. The existence of a common tracing environ-
ment across the Cray family will permit performance
experiments across machines and will provide a basis
for cross-architecture performance studies.

In general, there are several potential advantages pro-
vided by dynamic tracing over conventional execution
profiling. As a framework for future applications of our
tracing facilities, and for potential tracing implement8
tions on other systems, we enumerate some of the more
important advantages below.

l A dynamic calling trace can be analyzed to show
time-dependent calling relationships between pro-
gram units.

l Program execution phases can be identified, en-
hancing the understanding of program function.

l Different modes of execution (sequential, vector, or
multitasking) can be compared at a finer level to
show the effects of different source code optimiza-
tions.

l Parameters for execution models of certain pro-
gram structures, such as DO loops, can be derived
from the trace data.

l A realistic evaluation of performance improvement
potential can be made from a study of performance
variability of routine execution.

l Given access to hardware performance data, the
high-performance features of the machine can be
more accurately correlated with time-varying per-
formance behavior.

l In theory, decisions regarding future parallelism
choices (vectorization and multitasking) can be
made at run-time based on previous trace-based
performance knowledge of a program and its cur-
rent performance behavior. Thii allows the system
to reconfigure the parallelism of the program to bet-
ter match the parallelism of the hardware.

l Comparisons between architectures based on spe-
cific, local information can be made. Timing and
performance characteristics deemed intrinsic to the
program may be used to directly evaluate the in-
teraction of program constructs with architecture
features.

l More appropriate selection of code characteristics
for use in performance prediction model design can
be made.

References

[l] M. Berry. The Perfect Club Benchmarks: Effective
performance evaluation of supercomputers. The In-
ternational Journal of Supercomputer Applications,
3(3):5-40, Fall 1989.

[2] Cray Research Inc. UNICOS Performance Utilities
Reference Manual, May 1989.

PI J* Curry, J. Herring, J. Loncaric,
and S. Orszag. Order and Disorder in Two- and
Three-Dimensional Benard Convection. Journal of
Fluid Mechanics, 1’74: 1, 1984.

[4] S. L. Graham, P. B. Kessler, and M. K. McKusik.
An Execution Profiler for Modular Programs. Soft-
ware - Practice and Ezperience, 13:671-685,1983.

[5] S.L. Graham, P.B. Kessler, and M.K. McKusick.
gprof: A Call Graph Execution Profiler. In Proceed-
ings of the SIGPLAN ‘82 Symposium on Compiler

Construction, pages 120-126, Boston, MA, June
1982. Association for Computing Machinery.

[6] A. Jameson. Solution of the Euler Equations for
a Two-Dimensional Transonic Flow by a Multigrid
Method. Applied Mathematics and Computation,
13:327, 1983.

[7] J. Larson. CRAY X-MP Hardware Performance
Monitor. Cray Channels, 1985.

[8] J. Larson and R. Lutz. Perftrace User Guide. Tech-
nical report, Cray Research Inc., August 1985.

[9] A.D. Malony, J.L. L arson, and D.A. Reed. Tracing
Application Program Execution on the Cray X-MP
and Cray 2. Technical Report CSRD No. 985, Uni-
versity of Illinois at Urbana-Champaign, Center for
Supercomputing Research and Development, May
1990.

[lo] A.D. Malony, D.A. Reed, and II. Wijshoff. Per-
formance Measurement Intrusion and Perturbation
Analysis. Technical Report CSRD No. 923, Univer-
sity of Illinois at Urbana-Champaign, Center for
Supercomputing Research and Development, Oc-
tober 1989. submitted to IEEE Transactions on
Parallel and Distributed Systems.

[ll] A. Noor and J. Peters. Model-Size Reduction Tech-
niques for the Analysis of Symmetric Anisotropic
Structures. Engineering Computations, 2(4):285,
1985.

[12] L. Pointer. Perfect: Performance Evaluation for
Cost-Effective Transformations - report 2. Tech-
nical Report CSRD No. 964, University of Illinois
at Urbana-Champaign, Center for Supercomputing
Research and Development, 1990.

[13] R. Snodgrass. A Relational Approach to Monitor-
ing Complex Systems. ACM Dansactions on Com-
puter Systems, 6(2):157-196, May 1988.

[14] C.-Q. Yang and B. P. Miller. Performance Mea-
surement for Parallel and Distributed Programs: A
Structured and Automatic Approach. IEEE Bans-
actions on Software Engineering, 15(12):1615-
1629, December 1989.

72

METRIC
100%

75% - I,

50% -
3 l l

25% - l

0% I I I

8 40 72 104 136

DFL UX

100%

75%

50%

25%

0%
12 45 78 111 14 43 72 101 130

BCWALL BCFAR

50%-j I

25% 4
l l

l
I

0%
13 42 71 100 129

DFL UXC

1OOYo

75% -
3

50% -
> l l

25% -

0% I’ 1
I I- I *

11 33 55 77 9

STEP

loo% 7

50%

25%
l 0

l

O%I
13 47 81 115 149

EFL UX
100% -71

75% 75%

50% 50%
l l

25% 25% l l
l l

0% 0% i i

75%

50%

25%

l--J

l e

0%

100% =

75% -

50% -

25% -
l e

0% I I 1
Ih 43 72 101 130

0 Scalar

l Vector

EULER
100%

75%

50%

7 33 59 85

PSMOO

100%

75%

5OYo
I----

25% ’ l l

0%10

100%

75%

50%

25%

0%

8 33 58 83 108

COLLC

-41 l

3 l

0 4

I I I- 9

11 34 57 80 103

ADDX
100%

75%

50% I l

25%
i

l

0% I,,,.
18 46 74 102 130

Figure 7: Megaflop Distribution for FL052 Subroutines on the Cray X-MP

73

