
Performance Analysis of GYRO: A Tool Evaluation

P Worley1, J Candy2, L Carrington3, K Huck4, T Kaiser3, G
Mahinthakumar5, A Malony4, S Moore6, D Reed7, P Roth1, H Shan8,
S Shende4, A Snavely3, S Sreepathi9, F Wolf6 and Y Zhang7

1 Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6016
2 General Atomics, P.O. Box 85608, San Diego, CA 92186-5608
3 San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive,
La Jolla, California 92093-0505
4 Computer and Information Science Dept., 1202 University of Oregon, Eugene, OR
97403-1202
5 Dept. of Civil Engineering, North Carolina State University, Raleigh, NC 27695-7908
6 Innovative Computing Laboratory, University of Tennessee, 1122 Volunteer Blvd., Suite 413,
Knoxville, TN 37996-3450
7 Renaissance Computing Institute, University of North Carolina at Chapel Hill, CB 7583,
Carr Building, Chapel Hill, NC 27599-7583
8 Lawrence Berkeley National Laboratory, Berkeley, CA 94720
9 Dept. of Computer Science, North Carolina State University, Raleigh, NC 27695-7908

E-mail: worleyph@ornl.gov

Abstract.
The performance of the Eulerian gyrokinetic-Maxwell solver code GYRO is analyzed on five

high performance computing systems. First, a manual approach is taken, using custom scripts
to analyze the output of embedded wallclock timers, floating point operation counts collected
using hardware performance counters, and traces of user and communication events collected
using the profiling interface to Message Passing Interface (MPI) libraries. Parts of the analysis
are then repeated or extended using a number of sophisticated performance analysis tools:
IPM, KOJAK, SvPablo, TAU, and the PMaC modeling tool suite. The paper briefly discusses
what has been discovered via this manual analysis process, what performance analyses are
inconvenient or infeasible to attempt manually, and to what extent the tools show promise in
accelerating or significantly extending the manual performance analyses.

1. Introduction
Performance tools are an active research area, driven by changing processor, memory, and
network technologies, increasing system size, increasing application code complexity, evolving
programming languages and paradigms, new messaging layers, etc. This paper is an overview
of an ongoing study on the benefits of using modern performance tools. The approach taken
is to perform detailed performance analyses of a number of scientific application codes. The
first code being examined is GYRO [2], an Eulerian gyrokinetic-Maxwell solver developed by J.
Candy and R.E. Waltz at General Atomics. GYRO is used by researchers worldwide to study
plasma microinstabilities and turbulence relevant to controlled fusion research. The first step
in the study was to establish a baseline, collecting and analyzing performance data using only
the most basic tools. In subsequent steps aspects of the baseline analysis were repeated using

more sophisticated tools, identifying what analysis activities could be accelerated and what
additional insights could be gained. As there are many tools, we currently focus on performance
tools developed by or used in the Performance Evaluation Research Center (PERC) project [12].

In this paper we use data collected on the Cray X1 at Oak Ridge National Laboratory
(ORNL) [8], the IBM p690 cluster at ORNL [8], the IBM SP at the National Energy Research
Scientific Computing Center (NERSC) [10], the SGI Altix 3700 at ORNL [8], and the TeraGrid
Linux cluster at the National Center for Supercomputing Applications (NCSA) [9] for the Waltz
standard case benchmark [15], which we refer to as B1-std. The B1-std grid is 16×140×8×8×20,
which is the same resolution used in many production runs, e.g.[1].

The GYRO baseline studies are of three types. First, GYRO comes with embedded wallclock
timers and both cumulative and sampled runtime data are collected automatically. The timers
surround events that characterize the developers’ view of the code. We analyzed these timing
data using custom PERL scripts and results were plotted with gnuplot. For the second baseline
study we instrumented the code with calls to HPMLIB [5] f hpmstart and f hpmstop routines at
the same locations as the embedded timers. Runs on the p690 cluster were used to collect floating
point operation counts for each user event for a number of different processor counts. These data
were combined with timing data to determine computational rates and to examine operation
count scaling, For the third study, we instrumented the code with calls to the MPICL [3, 17]
traceevent routine at the same locations as the embedded timers. Runs on the X1 and the
p690 cluster were used to collect trace data for both MPI calls and the user-defined events and
used to determine event-specific communication overhead. Visualizations using ParaGraph [4]
were used to look for performance bottlenecks.

After the baseline studies were complete, we began applying the following tools and techniques
to GYRO.

• Integrated Performance Monitor (IPM) [6]. IPM is a lightweight profiling tool for parallel
applications, automatically reporting runtime, communication time, computation rate
(GFlop/s), and memory requirements, both aggregate and per process, as well as detailed
profile data on MPI routine calls and data from system-supported hardware performance
counters.

• KOJAK [7, 16]. KOJAK is an automatic trace-analysis toolkit for parallel applications
using MPI and/or OpenMP, generating event traces during execution and searching them
offline for execution patterns indicating inefficient performance behavior.

• Performance Modeling and Characterization (PMaC) [13]. PMaC is a suite of tools for
characterizing system and application performance and for using these characterizations to
build performance models suitable for performance optimization and extrapolation.

• SvPablo [11]. SvPablo is a graphical environment for instrumenting application source code
and browsing dynamic performance data.

• Tuning and Analysis Utilities (TAU) [14]. TAU is framework and toolkit for performance
instrumentation, measurement, and analysis of parallel applications.

It is beyond the scope of this paper to describe the full capabilities of any of these tools, especially
PMaC, SvPablo and TAU. Rather we briefly relate what aspects of the baseline studies could
be improved or superceded by using these tools.

2. Results
The remainder of the paper is concerned with the following question. For which performance
analysis and optimization activities are the examined tools and methodologies (a) not needed,
(b) useful but not required, and (c) difficult to do without.

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200 250 300 350 400 450

Ti
m

es
te

ps
 p

er
 S

ec
on

d

Processors

GYRO performance for B1-std on the Cray X1

scratch file system
 direct nonlinear eval.
 FFT-based nonlinear eval.
dfs file system
 direct nonlinear eval.
 FFT-based nonlinear eval.

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

Ti
m

es
te

ps
 p

er
 S

ec
on

d

Processors

GYRO performance for B1-std

direct nonlinear eval.
 Cray X1
 TeraGrid cluster
 IBM p690 cluster
 SGI Altix
 IBM SP

Figure 1. GYRO runtime performance.

2.1. Analyses for which tools are not needed.
There are a number of standard analyses for which an in-depth understanding of the performance
is not needed. We mention two here.

Many codes have embedded tuning options that allow the algorithms or implementation to
be modified at compile- or runtime. The optimal choice is often a function of the computer
system, problem specification, or runtime configuration (e.g., number of processors). If the
search space is small, it is simplest to determine the optimum by measuring the performance of
each option directly. For example, GYRO supports two methods for evaluating nonlinear terms
in the underlying equations: direct and FFT-based. The FFT-based method is slower on small
grids, but faster on large grids. However, the direct method achieves higher computational rates
than the FFT-based method, and the crossover point varies from system to system. The left
graph in Figure 1 shows the performance differences in terms of timesteps per second on the
Cray X1 for the two methods, and for running out of two different file systems. Here the direct
method is approximately 10% faster than the FFT method, and the choice of file system makes a
30% difference in performance. Another example found to be important to GYRO is the choice
of system-specific environment variables that impact memory, OpenMP, or MPI performance.

Another standard activity is benchmarking. The benchmark timings should represent what
would be observed in a production run, i.e., without performance tools. The right graph in
Figure 1 is an interplatform comparison of GYRO performance. Note that even these “simple”
analyses were not inexpensive. Over 175 experiments were run, on processor counts up to 1024,
and the number of experiments on a given system was constrained by resource availability. We
were not able to collect all of the data that we would have liked on any of the target systems.

2.2. Analyses for which tools are useful.
A number of common performance analyses did not require sophisticated performance tools, but
were time consuming without them. Examples include (in order of increasing difficulty) (a) user
event profiling, (b) computational rate calculations (both whole code and per user event), and
(c) communication rates calculations (both whole code and per MPI command). To calculate
computational rates we ran 13 additional experiments, while to calculate communication rates
we ran 31 additional experiments and collected over 700 MB of trace data (compressed). Both
required writing scripts to combine timing data with the operation count and MPI data.

An example of user event profiling appears in the left graph of Figure 2, where the percentage
of runtime spent in each user event is plotted as a function of processor count (“phase diagram”)
on the Altix. These data indicate that performance scales poorly in Coll tr, a user event

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

Fr
ac

tio
n

of
 T

ot
al

 R
un

tim
e

Processors

GYRO phases for B1-std on the SGI Altix

NL

NL_tr

Coll

Coll_tr

lin_RHS

field

extras
I/O

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000

Tr
an

sp
os

e
Ti

m
e

/ T
ot

al
 R

un
tim

e

Processors

GYRO communication fraction for B1-std

direct nonlinear eval.
 Cray X1
 SGI Altix
 TeraGrid
 IBM p690 cluster
 IBM SP

Figure 2. Phase diagram for B1-std on the SGI Altix and interplatform comparison of time
spent in tranpose events

dominated by MPI communication, when increasing the number of processors from 128 to 192.
The analysis does not indicate why, however, and additional data are needed to determine
the reason for the poor performance. The right figure compares the fraction of time spent in
the two user events most dominated by MPI communication (Coll tr and NL tr) across the
platforms. The catastrophic scaling behavior is unique to the Altix, so even additional data on
the application characteristics is unlikely to be sufficient to diagnose the problem.

It is in the collection, analysis, and presentation of multiple related measurements that
performance tools begin to show their worth. All of the examined tools have capabilities in
this area. However, IPM was designed specifically for this level of analysis. The other tool of
particular interest is the performance database component of TAU, called PerfDMF. Loading
the manually collected baseline data into PerfDMF simplifies subsequent analyses.

2.3. Analyses for which tools are important.
The previous analyses address only implicitly the real question, i.e. whether performance is
acceptable, and, if not, why not. However, the tools KOJAK, SvPablo and TAU can be used for
(d) identifying critical paths (potential performance bottleneck) and (e) global view analysis, e.g.
examining load balancing or the impact of system noise. For example, KOJAK, by comparing
event traces for different runs, identified particular MPI AlltoAll calls as the location of the
Altix performance problem, though it has not yet led to a resolution. Comparative analysis of
trace files is clearly not a manual activity.

SvPablo and TAU can also be used for the iterative process of (f) detailed performance
debugging, i.e. identifying and tracking performance problems down to individual routines and
lines of code. When performed by hand, detailed performance debugging is time consuming
and fraught with problems due to instrumentation perturbation and global effects (e.g., load
imbalances) masking as local performance problems.

The performance questions mentioned previously were all concerned with understanding and
optimizing current performance. Another class of questions include (g) estimating performance
when changing the problem size, number of processors, or moving to a different system and (h)
finding the optimal tuning parameters within a large search space. Both of these questions can
be addressed by performance models, i.e. parameterized representations of application runtime.
Depending on the form of the model, it may be easily manipulated “manually”. The difficulty
with the model is its generation. There are a number of modeling methodologies described in
the literature, including the PMaC tools and methodology examined in these studies.

3. Conclusion
Our study indicates that there are a number of common performance analyses for which
sophisticated performance tools are not necessary. However, many of these analyses are
expensive, in both system resources and labor, and a number of useful analyses are simply
not practical to perform manually, thus requiring tool support. While not surprising, the
contribution of this work is in characterizing some of the costs for a real application code on
current parallel systems. One issue that has become obvious during the course of the study is
that performance tools need to be in the hands of developers. Too much time was spent by
the performance experts in discovering performance characteristics that the developer already
knew about. The difficulty arises in that most developers do not do performance analyses every
day, so it is difficult for them to be comfortable with any performance tool, much less a suite of
them. Similarly, while models are wonderful tools that a developer could use for many activities,
generating the model is something few people are willing to do currently, and efficient ways of
updating and maintaining models are still open questions. In conclusion, there is still more to do
in performance tool development, but tools make performance analysis and optimization feasible
in instances when it would not be otherwise, especially when running with many processors or
working with complex applications.

Acknowledgments
This research was sponsored by the Office of Mathematical, Information, and Computational
Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-FG03-
95ER54309 with General Atomics, No. DE-FC02-04ER25612 with the University of North
Carolina, No. DE-AC03-76SF00098 and No. DE-FC02-01ER25491 with the University of
California, No. DE-FG02-05ER23680 and No. DE-FG03-01ER25501 with the University of
Oregon, No. DE-FC02-01ER25490 with the University of Tennessee, and No. DE-AC05-
00OR22725 with UT-Batelle, LLC. Accordingly, the U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow
others to do so, for U.S. Government purposes.

References
[1] J. Candy, Beta scaling of transport in microturbulence simulations, Submitted to Phys. Plasmas.
[2] J. Candy and R. Waltz, An eulerian gyrokinetic-maxwell solver, J. Comput. Phys., 186 (2003), p. 545.
[3] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, A users’ guide to PICL: a portable

instrumented communication library, Tech. Rep. ORNL/TM-11616, Oak Ridge National Laboratory, Oak
Ridge, TN, August 1990.

[4] M. T. Heath and J. A. Etheridge, Visualizing the performance of parallel programs, IEEE Software, 8
(1991), pp. 29–39.

[5] IBM Advanced Computing Technology Center, Hardware Performance Monitor.
http://www.research.ibm.com/actc/projects/hardwareperf.shtml.

[6] Integrated Performance Monitor. http://www.nersc.gov/nusers/resources/SP/ipm/.
[7] KOJAK. http://www.fz-jeulick.de/zam/kojak/.
[8] National Center for Computational Sciences. http://www.ccs.ornl.gov/.
[9] National Center for Supercomputing Applications. http://www.ncsa.edu/.

[10] National Energy Research Scientific Computing Center. http://www.nersc.gov/.
[11] Pablo Research Projects. http://www.renci.unc.edu/Project/ResearchProjects.htm.
[12] Performance Evaluation Research Center. http://perc.nersc.org/.
[13] Performance Modeling and Characterization. http://www.sdsc.edu/PMaC.
[14] Tuning and Analysis Utilities. http://www.cs.uoregon.edu/research/paracomp/tau/tautools.
[15] R. Waltz, G. Kerbel, and J. Milovich, Toroidal gyro-landau fluid model turbulence simulations in a

nonlinear ballooning mode representation with radial modes, Phys. Plasmas, 1 (1994), p. 2229.
[16] F. Wolf and B. Mohr, Automatic performance analysis of hybrid MPI/OpenMP applications, Journal of

Systems Architecture, 49 (2003), pp. 421–439.
[17] P. H. Worley, MPICL. http://www.csm.ornl.gov/picl/.

