
P A R A L L E L  D I S C R E T E  E V E N T  
S I M U L A T I O N :  A S H A R E D  M E M O R Y  A P P R O A C H  

( E x t e n d e d  A b s t r a c t )  

• Daniel A. Reed 

Department of Computer Science 
University of Illinois 

Urbana, Illinois 61801 

Allen D. Malony 

Center for Supercomputing Research and Development 
University of Illinois 

Urbana, Illinois 61801 

Bradley D. McCredie 

Department of Electrical and Computer Engineering 
University of Illinois 

Urbana, nlinois 61801 

I n t r o d u c t i o n  

The inherently sequential nature of event list 
manipulation limits the potential parallelism of standard 
simulation models. Although techniques for performing event 
list manipulation and event simulation in parallel have been 
suggested, large scale performance increases seem unlikely. 
Only by eliminating the event list, in its traditional form, can 
additional parallelism be obtained; this is the goal of 
distributed simulation. 

Several distributed simulation techniques have been 
proposed. In the remainder of this abstract, we present the 
Chandy-~vfisra distributed simulation algorithm [ChM.i81] and 
the results of an extensive study of its performance on a shared 
memory parallel processor when simulating queueing network 
models. 

Dis t r ibu ted  S imula t ion  

Consider some physical system composed of independent, 
interacting entities. A natural, distributed simulation of the 
physical system creates a topologically equivalent system of 
logical nodes. Interactions between two physical nodes are 
modeled by exchange of timestamped messages. The 
timestamp is the simulated message arrival time at the 
receiving node. 

Each logical node is subject to some constraints. First, 
node interaction is only via message exchange; there are no 
shared variable~. Second, each node must maintain a clock, 
representing the local simulated time. Finally, the timestamps 
of the messages generated by each node must be non- 
decreasing• 
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Intuitively, the distributed simulation has no single 
"correct" simulation time; each node operates independently 
subject only to those restrictions necessary to insure that 
events happen in the correct simulated order (i.e., ea~ality is 
maintained). Independent events can be simulated in parallel 
even if they occur at different simulated times. For specificity's 
sake, we describe this simulation technique in the context of 
our RESQ implementation [SaMS80] for simulating queueing 
networks. 

In the RESQ scheme, there are five node types: service, 
fork~ merge, source, and sinl~ Service nodes correspond to the 
interacting entities of a physical system (e.g., servers in a 
queueing network}. In contrast, fork and merge nodes exist 
only to provide routing• Finally, source and sink nodes 
respectively create and destroy network messages. Thus, the 
central server model IBuse73] of Figure la would be 
represented, using the RESQ scheme, as shown in Figure lb. 

Many performance studies of traditional simulation 
algorithms have been conducted, and, based on these studies, 
new event list algorithms have been proposed. Only limited 
simulation studies of distributed simulation have been reported 
[Sect78, JeSo85, Reed85]; little or no empirical data are 
available. In the remaining sections we discuss our 
experimental environment, implementation, and experimental 
results. 

Exper imen ta l  E n v i r o n m e n t  

All simulation experiments were conducted on a Sequent 
Balance 21000 containing 20 processors and 16 Mbytes of 
memory. All processors are connected to a shared memory by 
a shared bus with a 80 Mbyte/s (maximum) transfer rate. 

Parallel programs consist of a group of Unix processes 
that interact using a library of primitives for shared memory 
allocation and process synchronization. Shared memory is 
implemented by mapping a region of physical memory into the 
virtual address space of each process. Once mapped, shared 
memory cart be allocated to specific variables as desired. 

Dis t r ibu ted  S imula t ion  wi th  Shared  Memory 

A shared memory multiprocessor, such as the Balance 
21000, provides a flexible testbed for studying the performance 
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of distributed simulation. The problems associated with 
mapping a node network onto a network of processors are 
removed; the shared memory processors are, effectively, 
completely connected. By implementing message passing using 
shared memory, communications costs are the same for all 
processors. However, a shared memory implementation of 
distributed simulation requires special consideration for 
synchronization of shared message queues and processor 
allocation. 

In a shared memory implementation of distributed 
simulation, all node state information, including input message 
queues, resides in shared memory. Message-based 
communication between nodes is implemented via shared access 
to the message queues of each node. Each message queue is 
protected by a synchronization lock to guarantee mutual 
exclusion. 

There are two basic approaches to processor allocation in 
a shared memory implementation of distributed simulation. 
The first approach, static node assignment, fixes the assignment 
of nodes to processors for the duration of the simulation. The 
second approach, dynamic node assignment, assigns nodes to 
processors during the simulation. Idle processors obtain work 
from a shared queue of unassigned network nodes. 

S imula t ion  E x p e r i m e n t s  

Experimental evaluation of distributed simulation requires 
not only an implementation but also a set of test cases. This is 
particularly important in light of earlier simulation studies 
[Sect78, Rsed85]r which showed that the performance of 
distributed simulation is extremely sensitive to the topology of 
the simulated network. As tests, we selected several simple 
queueing networks and a few complex ones. 

• tandem networks (1, 2, 4, 8, and 16 server nodes) 

• general, feed-forward networks (6, 10, and 14 nodes), 

• cyclic networks (2, 4, and 8 nodes) 

• central server networks (5 nodes), and 

• cluster networks (10 and 18 nodes). 

Each of these networks was simulated for a variety of 
workloads, (e.g., routing probabilities, arrival rates, and service 
times) using six variations of a Chandy-Misra implementation: 
static node assignment with deadlock avoidance, static node 
assignment with deadlock recovery, dynamic node assignment 
with deadlock avoidance, dynamic node assignment with 
deadlock recovery, dynamic node assignment with waiting and 
deadlock avoidance, and dynamic node assignment with waiting 
and deadlock recovery. Together, these simulations represent 
approximately two weeks of computation time on the Sequent 
Balance 21000. As an example of the results obtained, we 
consider the central server network of Figure 1. 

Central Server Networks 

Central server networks have long been used as models of 
computer systems [Buze73], and consequently have pragmatic 
importance. Because they contain nested cycles, central server 
networks are susceptible to deadlock in a distributed 
simulation. Figure 2 shows the speedup obtained for the 
central server network in Figure 1. Even with five processors, 
the speedup barely exceeds unity. Moreover, this is using the 
single processor, static node assignment cage as the basis for 
calculating speedup. As Table 1 shows, the parallel 
implementation rarely completes more quickly than the 
sequential implementation. Indeed, static node assignment with 

deadlock avoidance runs 16 times more slowly than the 
sequential implementation. Consequently, the speedups over 
an event-driven simulation are much lower than Figure 2 
suggests. 

These results are significantly more negative than earlier 
simulated results [Reed851. A sequential simulation of a 
network, by its nature, imposes some sequential ordering on the 
evaluation of network nodes. When those nodes are not being 
evaluated, they do not generate null messages, nor can they 
deadlock. In contrast, all nodes are always active in a fully 
parallel implementation. They continue to receive and 
generate null messages while awaiting receipt of real messages. 
Thus, the overhead is higher than suggested by a sequential 
simulation of distributed simulation. 

Summ~try 

Distributed simulation has been the subject of several 
simulated performance studies; little or no experimental data 
have heretofore been available. Using queueing networks as the 
simulation application, we simulated a variety of such networks 
with varying workloads using several variations of the 
Chandy-Misra algorithm on a shared memory machine. These 
experiments show that, with rare exception, the Chandy-Misra 
approach to distributed simulation is not a viable approach to 
parallel simulation of queueing network models. There are two 
primary reasons for this. First, a single processor 
implementation of the Chandy-Misra algorithm is sometimes 
slower than the equivalent sequential, event-driven simulation. 
Second, networks with cycles require deadlock avoidance or 
recovery techniques. These techniques are extremely costly, 
and there is little prospect that they can be reduced to 
acceptable levels. 
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Figure la 
Central Server Queueing Model 
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F i g u r e  l b  
RESQ Representation of Central  Server Model 
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Table  1 
Sequential and paraliel mean execution time 

for five node central server 
(time given in seconds) 

Popu- $ E Q U E N -  
ls.tion TIAL 

1 20.32 
2 42.80 
3 51.44 
4 56.96 
10 67.22 
20 74.42 
40 87.78 

S T A T I C  
PARALLEL 

Reeoserl Avoidance 

28.97 491.85 
44.67 510.71 
52.73 490.48 
56.92 477.92 
07.20 471.20 
70.58 450.91 
74.74 1419.22 

DYNAMIC 
PARALLEL 

Recovers Recovery Avoidance Avoidance 
w/ Waiting w/ Waitin~ 

33.62 35.47 
50.19 56.70 
59.89 61.95 
63.64 67.02 
76.06 82.09 

83.47 88.70 
88.08 93.38 

569.00 662.30 
619.56 655.15 
599.29 632.47 
580.51 623.12 
601.95 002.09 
8~8.48 820.91 
602.21 595.28 

Pa rame te r  Value 

Routing Probability (1) 0.10, (4) 0.45, (5) 0.45 

Clustering case (5 PEa) (1) (2) (3) (4) (5)" 

Node numbers refer to Figure 1. 
on one processor. 

Parenthesized node groups execute 
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