
P A R A L L E L D I S C R E T E E V E N T
S I M U L A T I O N : A S H A R E D M E M O R Y A P P R O A C H

(E x t e n d e d A b s t r a c t)

• Daniel A. Reed

Department of Computer Science
University of Illinois

Urbana, Illinois 61801

Allen D. Malony

Center for Supercomputing Research and Development
University of Illinois

Urbana, Illinois 61801

Bradley D. McCredie

Department of Electrical and Computer Engineering
University of Illinois

Urbana, nlinois 61801

I n t r o d u c t i o n

The inherently sequential nature of event list
manipulation limits the potential parallelism of standard
simulation models. Although techniques for performing event
list manipulation and event simulation in parallel have been
suggested, large scale performance increases seem unlikely.
Only by eliminating the event list, in its traditional form, can
additional parallelism be obtained; this is the goal of
distributed simulation.

Several distributed simulation techniques have been
proposed. In the remainder of this abstract, we present the
Chandy-~vfisra distributed simulation algorithm [ChM.i81] and
the results of an extensive study of its performance on a shared
memory parallel processor when simulating queueing network
models.

Dis t r ibu ted S imula t ion

Consider some physical system composed of independent,
interacting entities. A natural, distributed simulation of the
physical system creates a topologically equivalent system of
logical nodes. Interactions between two physical nodes are
modeled by exchange of timestamped messages. The
timestamp is the simulated message arrival time at the
receiving node.

Each logical node is subject to some constraints. First,
node interaction is only via message exchange; there are no
shared variable~. Second, each node must maintain a clock,
representing the local simulated time. Finally, the timestamps
of the messages generated by each node must be non-
decreasing•

ThiJt work w u lupport~:l in part by NSF Grant Numbs" DCR 84-17948 and
NASA Contract Number NAG--I-613.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantas~, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Associ-
ation for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

@ 1987 ACM 0-89791-225-x/87/0005/0036 75¢

Intuitively, the distributed simulation has no single
"correct" simulation time; each node operates independently
subject only to those restrictions necessary to insure that
events happen in the correct simulated order (i.e., ea~ality is
maintained). Independent events can be simulated in parallel
even if they occur at different simulated times. For specificity's
sake, we describe this simulation technique in the context of
our RESQ implementation [SaMS80] for simulating queueing
networks.

In the RESQ scheme, there are five node types: service,
fork~ merge, source, and sinl~ Service nodes correspond to the
interacting entities of a physical system (e.g., servers in a
queueing network}. In contrast, fork and merge nodes exist
only to provide routing• Finally, source and sink nodes
respectively create and destroy network messages. Thus, the
central server model IBuse73] of Figure la would be
represented, using the RESQ scheme, as shown in Figure lb.

Many performance studies of traditional simulation
algorithms have been conducted, and, based on these studies,
new event list algorithms have been proposed. Only limited
simulation studies of distributed simulation have been reported
[Sect78, JeSo85, Reed85]; little or no empirical data are
available. In the remaining sections we discuss our
experimental environment, implementation, and experimental
results.

Exper imen ta l E n v i r o n m e n t

All simulation experiments were conducted on a Sequent
Balance 21000 containing 20 processors and 16 Mbytes of
memory. All processors are connected to a shared memory by
a shared bus with a 80 Mbyte/s (maximum) transfer rate.

Parallel programs consist of a group of Unix processes
that interact using a library of primitives for shared memory
allocation and process synchronization. Shared memory is
implemented by mapping a region of physical memory into the
virtual address space of each process. Once mapped, shared
memory cart be allocated to specific variables as desired.

Dis t r ibu ted S imula t ion wi th Shared Memory

A shared memory multiprocessor, such as the Balance
21000, provides a flexible testbed for studying the performance

56

of distributed simulation. The problems associated with
mapping a node network onto a network of processors are
removed; the shared memory processors are, effectively,
completely connected. By implementing message passing using
shared memory, communications costs are the same for all
processors. However, a shared memory implementation of
distributed simulation requires special consideration for
synchronization of shared message queues and processor
allocation.

In a shared memory implementation of distributed
simulation, all node state information, including input message
queues, resides in shared memory. Message-based
communication between nodes is implemented via shared access
to the message queues of each node. Each message queue is
protected by a synchronization lock to guarantee mutual
exclusion.

There are two basic approaches to processor allocation in
a shared memory implementation of distributed simulation.
The first approach, static node assignment, fixes the assignment
of nodes to processors for the duration of the simulation. The
second approach, dynamic node assignment, assigns nodes to
processors during the simulation. Idle processors obtain work
from a shared queue of unassigned network nodes.

S imula t ion E x p e r i m e n t s

Experimental evaluation of distributed simulation requires
not only an implementation but also a set of test cases. This is
particularly important in light of earlier simulation studies
[Sect78, Rsed85]r which showed that the performance of
distributed simulation is extremely sensitive to the topology of
the simulated network. As tests, we selected several simple
queueing networks and a few complex ones.

• tandem networks (1, 2, 4, 8, and 16 server nodes)

• general, feed-forward networks (6, 10, and 14 nodes),

• cyclic networks (2, 4, and 8 nodes)

• central server networks (5 nodes), and

• cluster networks (10 and 18 nodes).

Each of these networks was simulated for a variety of
workloads, (e.g., routing probabilities, arrival rates, and service
times) using six variations of a Chandy-Misra implementation:
static node assignment with deadlock avoidance, static node
assignment with deadlock recovery, dynamic node assignment
with deadlock avoidance, dynamic node assignment with
deadlock recovery, dynamic node assignment with waiting and
deadlock avoidance, and dynamic node assignment with waiting
and deadlock recovery. Together, these simulations represent
approximately two weeks of computation time on the Sequent
Balance 21000. As an example of the results obtained, we
consider the central server network of Figure 1.

Central Server Networks

Central server networks have long been used as models of
computer systems [Buze73], and consequently have pragmatic
importance. Because they contain nested cycles, central server
networks are susceptible to deadlock in a distributed
simulation. Figure 2 shows the speedup obtained for the
central server network in Figure 1. Even with five processors,
the speedup barely exceeds unity. Moreover, this is using the
single processor, static node assignment cage as the basis for
calculating speedup. As Table 1 shows, the parallel
implementation rarely completes more quickly than the
sequential implementation. Indeed, static node assignment with

deadlock avoidance runs 16 times more slowly than the
sequential implementation. Consequently, the speedups over
an event-driven simulation are much lower than Figure 2
suggests.

These results are significantly more negative than earlier
simulated results [Reed851. A sequential simulation of a
network, by its nature, imposes some sequential ordering on the
evaluation of network nodes. When those nodes are not being
evaluated, they do not generate null messages, nor can they
deadlock. In contrast, all nodes are always active in a fully
parallel implementation. They continue to receive and
generate null messages while awaiting receipt of real messages.
Thus, the overhead is higher than suggested by a sequential
simulation of distributed simulation.

Summ~try

Distributed simulation has been the subject of several
simulated performance studies; little or no experimental data
have heretofore been available. Using queueing networks as the
simulation application, we simulated a variety of such networks
with varying workloads using several variations of the
Chandy-Misra algorithm on a shared memory machine. These
experiments show that, with rare exception, the Chandy-Misra
approach to distributed simulation is not a viable approach to
parallel simulation of queueing network models. There are two
primary reasons for this. First, a single processor
implementation of the Chandy-Misra algorithm is sometimes
slower than the equivalent sequential, event-driven simulation.
Second, networks with cycles require deadlock avoidance or
recovery techniques. These techniques are extremely costly,
and there is little prospect that they can be reduced to
acceptable levels.

Acknowledgmen t s

Jack Dongarra and the Advanced Computing Research
Facility of Argonne National Laboratory graciously provided
both advice and access to the Sequent Balance 21000.

References

[Buse73] J. P. Busen, "Computational Algorithms for Closed
Queueing Networks with Exponential Servers,"
Communications of the ACM, Vol. 16, No. 9, September
1973, pp. 527-631.

(ChHM79] K. M. Chsndy, V. Holmes, and J. l~/fisra, "Distributed
Simulation of Networks," Computer Networks, Vol. 3, No.
1, February 1979, pp. 105-113.

[ChM]79] K.M. Chandy and J. Misra, "Distributed Simulation: A
Case Study in Design and Verification of Distributed
Programs," [EEE Transactions on Software Engineering,
Vol. SF.,-5, No. 5, September 1979, pp. 440-452.

[ChMi81] K.M. Chandy and J. M'mra, "Asynchronous Distributed
Simulation via a Sequence of Parallel Computations,"
Communications of the ACM, Vol. 24, No. 4, April 1981,
pp. 198-206.

[Reed85] D.A. Reed, "Parallel Discrete Event Simulation: A Case
Study," Record of Proceedin¢s: 18th Annual Simulation
Sllmposium, March 1985, pp. 95-107, indeed paper.

[SaMS80] C.H. Saner, E. A. MacNalr, and S. Salsa, "A Language
for Extended Queueing Networks," IBM Journal o/
Research and Deeelopment, Vol. 24, No. 6, November
1980, pp. 747-755.

[Sect78] M. Seethalakshmi, ''Performance Analysis of Distributed
Simulation," M.S. Report, Computer Science Department,
University of Texes, Austin, Texas, 1978.

57

Server 2

$2

•• Server 1
St

P l

Server 3

$3

Figure la
Central Server Queueing Model

P

Pt

F i g u r e l b
RESQ Representation of Central Server Model

Speedup

F i g u r e 2
Speedup for five node central server

(static node assignment)

1.25, , _ _____._.L_----~ ,

0.75-

0.50-

0.25-

0.00

i Deadlock Recovery/Clustering: (1)(2)(3)(4)(5)
Deadlock Recovery/Clustering: (1 2)(3)(4 5)
Deadlock Recovery/Clustering: (1 2)(3 4 5)
Deadlock Avoidance/Clustering: (1)(2)(3)(4)(5)
De~.dlock Avoidance/Clustering: (1 2)(3)(4 5)

, Deadlock Avoidance/Clustering: (1 2)(3 4 5)

_El

0 8 16 24 32 40

Population

Table 1
Sequential and paraliel mean execution time

for five node central server
(time given in seconds)

Popu- $ E Q U E N -
ls.tion TIAL

1 20.32
2 42.80
3 51.44
4 56.96
10 67.22
20 74.42
40 87.78

S T A T I C
PARALLEL

Reeoserl Avoidance

28.97 491.85
44.67 510.71
52.73 490.48
56.92 477.92
07.20 471.20
70.58 450.91
74.74 1419.22

DYNAMIC
PARALLEL

Recovers Recovery Avoidance Avoidance
w/ Waiting w/ Waitin~

33.62 35.47
50.19 56.70
59.89 61.95
63.64 67.02
76.06 82.09

83.47 88.70
88.08 93.38

569.00 662.30
619.56 655.15
599.29 632.47
580.51 623.12
601.95 002.09
8~8.48 820.91
602.21 595.28

Pa rame te r Value

Routing Probability (1) 0.10, (4) 0.45, (5) 0.45

Clustering case (5 PEa) (1) (2) (3) (4) (5)"

Node numbers refer to Figure 1.
on one processor.

Parenthesized node groups execute

38

