
Behavioral Characterization of Multiprocessor Memory
Systems: A Case Study

Kyle Gallivan Dennis Gannon William Jalby
Allen Malony Harry Wijshoff

Center for Supercomputing Research and Development

University of Illinois at Urbana Champaign, Urbana, Illinois 61801

Abstract

The speed and efficiency of the memory system is a key

limiting factor in the performance of supercomputers.

Consequently, one of the major concerns when develop-

ing a high-performance code, either manually or auto-

matically, is deter mining and characterizing the influence

of the memory system on performance in terms of algo-

rithmic parameters. Unfortunately, the performance data

available to an algorithm designer such as various bench-

marks and, occasionally, manufacturer-supplied informa-

tion, e.g. instruction timings and architecture compo-

nent characteristics, are rarely suflicient for this task. In

this paper, we discuss a systematic methodology for prob-

ing the performance characteristics of a memory system

via a hierarchy of data-movement kernels. We present

and analyze the results obtained by such a methodology

on a cache-based multi-vector processor (Alliant FX/8).

Finally, we indicate how these experimental results can

be used for predicting the performance of simple Fortran

codes by a combination of empirical observations, archi-

tectural models and analytical techniques.

1 Introduction

The speed and efficiency of the memory system is of-
ten the main limiting factor of supercomputer per-
formance. Several architectural solutions are cur-

This work was supported by the National Science Foundation

under grant US NSF MIP-8410110, the Department of Energy

under grant US DOE-DE-FG02-85ER25001, the Air Force Of-

fice of Scientific Research under grants AFOSR-85-0211 and

AFOSR 86-0147, and an IBM Donation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish. requires a fee and/
or specific permission.

0 1989 ACM 0-89791-315-9/89/0005/0079 $1.50

rently used to improve the data access rate: pipelining
and parallelization of the memory system, distributed
memory systems, and hierarchical memory systems.
Although these solutions result in a substantial per-
formance improvement, they make the task of code
performance optimization more difficult. Due to their
increased complexity, such memory organizations are
hard to model, making performance prediction diEi-
cult. Furthermore, the performance of such systems is
highly dependent upon the characteristics of address
streams. For example, pipelining or parallelization
works well if successive memory references are uni-
formly distributed among the memory banks; on the
other hand, vector strides which are a multiple of the
degree of interleaving or of the number of memory
modules can result in dismal performance. Similarly,
hierarchical memory systems will be efficient only if

the amount of data locality in an algorithm is suffi-
cient and exploitable.

Most studies of memory performance have been
hardware oriented; the goal was to study the im-
pact on performance of specific architecture charac-
teristics. Two main approaches were used: queuing
theory-based modeling which can produce results at
the price of oversimplifying the code structure (espe-
cially the pattern of its memory pattern references);
and simulation-based modeling which provides more
accurate information using a set of benchmark codes
[l]. Neither approach provides enough insight in the
interaction between the code and the memory sys-
tem in order to predict and tune performance. Re-
cently, more attention has been paid to the study of
characteristics of the code and their interaction with
the memory: impact of registers [3], effects of strides
[2,4,5] and hot spot contention [8]. Their interest is
more in the analysis of worst case or pathological be-
havior and again the focus is too limited for predicting
performance for more genera3 codes.

Our primary goal in this paper is to develop a sys-

79 Performance Evaluation Review Vol. 17 #l May1 989

tematic methodology for investigating the interaction
between a cache based memory system and the vari-
ous address streams generated in loop constructs typ-
ically found in scientific numerical computations. We
first define a family of kernels parameterized for sys-
tematically exploring the behavior of the system (Sec-
tion 1). The experimental set up used in our study
is described in Section 2. In Section 3, performance
data from the Alliant FX/8 are presented and ana-
lyzed. Finally, we indicate how the data produced
by these kernels can be used for performance predic-
tion and how these techniques can be integrated into
a static or dynamic performance tuning system for
cache based multiprocessor systems.

2 Target architecture and
load/store kernels

In this section, we describe the global framework in
which our performance study is integrated as well as
the main guidelines for developing the family of ker-
nels. The target architecture and the kernel set are
described.

2.1 Motivations of load/store kernels

The goal of our work is to propose a methodology
for characterizing and predicting the performance of
basic Fortran multiply-nested loops. For simplicity,
we assume that the loop body contains neither condi-
tional statements nor call statements and that the ar-
rays are referenced through linear subscript functions.
The presence of conditional statements prevents ac-
curate prediction; in such cases we can only predict
a range of performance. The presence of calls can be
easily overcome by in-line subroutine expansion. The
choice of multiply-nested loops is motivated first by
the fact that they account for a large part of numer-
ical programs and second because due to the nature
of subscripts, the sequence of memory locations ac-
cessed is extremely regular and can be analyzed by
techniques similar to the ones used for automatic vec-
torization.

As noted above, it has been observed that the mem-
ory system is often the architectural feature which
determines performance of a code. As a result, our
approach was to develop a set of elementary param-
eterized kernels. The choice of these kernels was
guided by three major constraints. First, the ker-
nels must be able to mimic the access patterns of
the loop structures of interest using different param-
eter combinations. Second, the kernels should be el-
ementary enough to provide the ability of studying

the impact of only one code characteristic at a time.
Third, we must be able to “decompose’ a given loop
under study in terms of these elementary kernels and
then reconstruct the performance of the loop using
the performance data obtained for the kernels. The
following describes the Load/Store method and dis-
cuss its ability to satisfy these requirements. Since,
in this paper, we are restricting the application of the
methodology to an Alliant FX/8, the discussion of the
motivation of the use of the load/store model is based
on the characteristics of this machine. The general-
ization to other machines is considered in turn.

2.2 Target architecture

The memory system of the Alliant FX/8 combines
parallel data access with a hierarchical memory struc-
ture (see Figure 1). It is organized in three lev-
els, a large main memory built of modules deliver-
ing data by blocks (32 bytes), a cache organized as
four independent modules (32 Kbytes each) simulta-
neously accessible by eight computational elements
(CE’s) through a crossbar, and scalar and vector reg-
isters private to each CE. The cache is direct mapped
and the main memory is updated by a write back
policy. The vector registers are 32 double precision
words long and can be operated on via the vector
processing capabilities of each CE. Since we are inter-
ested in multiply-nested Fortran loops which exploit
both the concurrent and vector processing capabih-
ties of the Alliant, we will concentrate on exploring
the memory system’s influence on code for which the
execution time of the iteration sent to each processor
is dominated by vector instructions.

The Alliant vector instructions can be grouped into
two categories:

0 Internal (register-register): All operands for
these instructions are contained in vector and
scalar registers.

l External: For these instructions one operand
comes from (or goes to) memory.

Most of the vector instructions in each class have sim-
ilar timing characteristics typically differing only in
startup costs. Since the internal instructions do not
depend on conditions external to the CE, their tim-
ings are deterministic and can be derived from hard-
ware specifications. The timings of external vector
instructions can also be determined from hardware
specifications. The problem in this case is that these
timings depend heavily on runtime conditions such as
the location of the operands (cache or memory) and
degree of contention. Due to the complexity of the de-
pendence on conditions external to the CE, carefully

80 Performance Evaluation Review Vol. 17 tl May1 989

designed empirical probing of the memory system is
necessary for generating the behavioral characteris-
tics of these instructions (although in some cases cycle
count predictions are possible).

Since all the external vector instructions issue mem-
ory requests at the same rate (one operand per cy-
cle) we can probe the performance characteristics by
considering only two basic instructions: vector load
and vector store. (The handling of the difference in
startup is discussed below.)

2.3 Load/store kernels

We first focus on the 1-D kernels. They model a sin-
gle parallel DO-LOOP (i.e. all iterations can be exe-
cuted concurrently). These kernels generate synthetic
address streams whose characteristics can be varied
by adjusting certain parameters; see below. Similar
kernels were also used in [7] for studying contention
at the cache level, however their main goal was to
study contention under various workloads and not to
predict performance.

The parameterized family of load and store ker-
nels form the basic building blocks of the benchmark
set. Their basic operation is loading (storing) a single
vector of consecutive elements from (to) the memory
system. The intent of these kernels is to determine
the bandwidths of reads and writes that each compo-
nent of the memory system is able to sustain and the
conditions influencing these bandwidths. This sim-
ple family is parameterized by the length of the vec-
tor, the location of the vector (cache or memory), the
number of processors, and the splitting of the opera-
tions between the processors.

For spreading the iterations across the processors,
we used the following strategy:

Self Scheduling: The vector of length n is broken
into blocks of b contiguous elements. The original
vector loop is decomposed into two loops. The out-
ermost is performed in parallel across the CE’s while
the innermost (operation on a block of b elements)
is executed in vector mode within each CE. The dis-
patching of the blocks to the processors is done by
self-scheduling. That is, the blocks are logically ar-
ranged in a queue and as soon as a processor has fin-
ished operating on a block, it accesses the queue to get
another block or goes idle if the blocks are exhausted.
By changing the block size, the effect of synchroniza-
tion can be analyzed as well as load balancing issues.

This basic family is extended by including two more
parameters: Temporal Distribution and Hit Ratio.
The use and purpose of these parameters are as fol-
lows:

Temporal Distribution:The goal here is to study

the effect of the variation of the temporal distribu-
tion of requests. We want to study the interaction
between a burst of requests (corresponding to an ex-
ternal vector instruction) followed by several cycles
without memory requests (corresponding to the exe-
cution of an internal vector instruction or some ad-
dress computation). In order to parameterize this fac-
tor, we insert between each vector instruction a vari-
able number of NO-OP instructions (informally called
NOPS below).

Hit Ratio: The goal of this parameter is to study
the distribution of requests between the two mem-
ory levels. The hit ratio can be manipulated exper-
imentally by inserting ‘after a vector load (store) a
variable number, k, of vector operations referencing
exactly the same locations. The first vector reference
generates a miss in the cache (this can be controlled)
while the subsequent k references cause hits. The goal
here is to analyze the behavior of the memory system
under variations of temporal locality with spatial lo-
cality variations suppressed. Furthermore, insight is
gained into the behavior of the cache/main memory
combination when simultaneously addressed.

Based on the simple load/store family, more com-
plex effects of the memory system are probed by
building a hierarchy of load/store combinations pa-
rameterized by reference pattern. These load/store
combinations are also used to model the behavior of
more complex loop bodies. The hierarchy is built by
considering more complex addressing stream patterns
together with varying access strides.

The effects of mixing several address streams can
be studied by replacing the basic vector loop used
in the load/store kernel by a vector loop which ac-
cesses more than one data stream with combinations
of loads and stores. The three multiple address stream
kernels which typify many basic vector computations
are: load-load, load-store, and load-load-store.

By including stride as a parameter in the simple
load and store kernel family, the interleaving of the
memory system can be probed as well as the effects
of bursts of consecutive misses and spatial locality.

The family of kernels is built in such a way that any
parameter can be varied while the others remain con-
stant. If all the points in the parameter space were
to be tested, this would result in an overwhelming
number of experiments. In practice, we proceed in
a hierarchical manner. The parameter space is first
explored in a coarse way, by making large steps in pa-
rameter variations. After coarse performance is ob-
served, refinement techniques are used by stepping
with smaller increments.

Clearly, this approach generalizes easily to multi-
vector architectures with characteristics similar to the

81 Performance Evaluation Review Vol. 17 #l May1989

Alliant; e.g one memory port per processor and suffi-
cient memory bandwidth at the fastest level. Gener-
alization is also possible to architectures which dif-
fer more significantly. Consider, for example, the
CDC Cyber 205 or the Cray X-MP with their multi-
ple memory ports. In this case, the building block
level of what were termed external vector instruc-
tions above becomes the parameterized load-load-
store family. The lower levels of the hierarchy are still
needed but they now correspond to a type of instruc-
tion between the internal and external types which
requires slightly more careful handling.

3 Experimental results

We implemented a set of load/store kernels in as-
sembly language parametrized by the parameters de-
scribed in the previous section. All the loads and
stores instructions operated on double precision data
(64 bits). We varied the starting address in order to
detect the sensitivity due to alignment within a cache
line; due to the fact that we were streaming regu-
larly long vectors, the alignment did not significantly
influence performance. Each experimental value was
obtained by running each kernel five times, eliminat-
ing the best and the worst experimental values, and
taking the arithmetic average of the three remaining
values as a final number. Confidence intervals were
computed for each set of five values and found to be
satisfactory. All experimental values showed less than
5% variation between the extremes.

The resolution of the timer used was 10 microsec.
In order to increase timing accuracy, each code was
enclosed in a repetition loop such that the interval be-
tween two consecutive calls to the timer was at least
0.1 sec. However, on a cache based system, such a
technique has the following drawback. If the total
working set of the loop fits in cache (i.e the working
set is smaller than the cache size), the first timing it-
eration loads the cache and the subsequent iterations
will operate from cache. This explains the general
shape of our experimental curves. They have three
distinct regions which depend on the relationship of
the vector length n and the size of the cache, 16K
double precision words. These regions are:

Cache Region: 0 < n 5 16K for the load and
store kernels (respectively 0 2 n 5 8K for the load-
load and load-store kernels and 0 5 n < 5.3K for
the load-load-store kernels). In this region, all the
operands are in cache. It should be noted that this
region is large enough so that we reach a speed very
close to the asymptotic rate.

Fall Off Region: 16K 5 n 5 32K for the load

and store kernels (respectively, 8K 5 n 5 16K for
the load-load and load-store kernels and 5.3K 5 n 5
10.6K for the load-load-store kernels). In this region
we observe a very strange phenomenon due to the
direct mapped cache. Portions of the vector overlap
in the cache forcing the elements to be fetched from
memory from one iteration to the next. The other
parts of the vector remain in the cache. In this region
the hit ratio is decreasing from 1 to 0.25.

Memory Region: 32K < n for the load and store
kernels (respectively, 16K 5 n for the load-load and
load-store kernels and 10.6K 5 n load-load-store ker-
nels). In this case the cache is flushed each iteration
and the operands come from memory.

3.1 Load/Store Kernels Performance

S.l.1 Load Kernel

In these experiments, a simple kernel reading a vector
of length n was timed (Figures 2a, 2b).

On one processor, the performance is very regular.
There is a small loss in performance when operands
come from memory: this is not due to the saturation
of the memory bandwidth but rather to the limit in
the pipelined request-issue of the CE. Delays occur
because the processor can only have two misses out-
standing at any time. Notice the two processor case
is perfectly scaled from the one processor (speedup
of 2) performance. For four processors, where the
contention at the cache level is negligible (speedup of
4), the memory contention becomes more important
(speedup of 3.3).

For eight processors, cache contention begins to af-
fect performance. In the cache region, 30 Megaloads/s
may seem disappointing compared to the potential
peak of 43.5 Mwords/s. However, there are two rea-
sons for such a situation. One reason is that the over-
head associated with each block (synchronization, ad-
dress computations) is non-negligible. This decreases
the intensity of requests from each processor. By us-
ing larger blocks (which decreases the relative impor-
tance of the overhead compared to the sequence of ac-
cesses) or by unrolling the loop (same effect), speeds
up to 38 Megaload/s can be achieved. Still, in all
cases the speedup is around 7.3.

Due to the cyclic nature of bank referencing, we
would expect to have first an initial transient phase
with some bank conflicts followed by a steady state
where processors are synchronized with each other
without any additional conflicts. Such a phenomenon
would occur if each processor had an infinitely long se-
quence of requests regularly spaced in time. In reality,
due to the splitting in blocks and vector operations,
the sequence of requests are not necessarily regularly

82 Performance Evaluation Review Vol. 17 #I May1 989

spaced in time. Some operations between vector re-
quests could encounter conflicts. This acts to disrupt
the synchronized conflict-free referencing between the
processors. By looking at a trace of processor activity
generated with a logical analyzer, we noticed that the
processors indeed entered a phase-sync with respect
to their referencing behavior after a short transient
“conflict” phase at the beginning of a vector instruc-
tion. However, we also observed that random access
could easily disrupt the phase synchronization. Thus,
instead of observing only a single transient phase fol-
lowed by a long steady state, we saw a succession
of transient phases (with conflicts) followed by short
steady state periods.

At the memory level the contention is far more se-
vere (speed of 10 Megaload/s and speedup around of 5
while the peak speed of the system is supposedly 23.5
MWords/s). This is mainly caused by the fact that
the memory bus cannot satisfy the requested band-
width from the processors. The contention of the
memory system combined with the request mecha-
nism is responsible for most of the performance loss.

3.1.2 Store Kernel

The kernel used in these experiments is in all points
the same as the load kernel except that a vector write
is performed instead of a vector read. A close look
at the results (Figures 3a, 3b) indicates that the be-
havior of the store is very similar to the load. Only
two main differences are worth noticing. First, the
performance in cache is slightly lower (around 5%)
due to the fact that the startup of a vector store is
slightly higher. Second, the performance from mem-
ory is similar to the load for one and two processors,
but four and eight processors show significantly less
performance: 6.5 Megastores per second versus 10.5
Megaloads per second in the eight processor case.
This drop is due to the limitations in bandwidth at
the memory level (bandwidth for sequential writes is
80% of the bandwidth for sequential reads) and to
the combined effect of miss- on-write and write-back
mechanisms; although the write-back mechanism de-
fers the penalty for write. When the cache is full and
new blocks are to be loaded, part of the memory bus
bandwidth will be consumed by these delayed writes.
From the memory point of view, each block is accessed
two times: first when it is written into the cache and
then later when it is written back to memory.

The speedup curves show very clearly this phe-
nomenon. The contention at the memory with four
processors is already severe (speedup less than 2.9),
since each write requires two transactions on the bus.
So, four processors writing are almost equivalent to

eight processors reading.

3.1.3 More complex patterns

The kernels used in these experiments were analogous
to the basic load kernel, the main difference is that
instead of accessing one vector, several vectors are
accessed simultaneously. The purpose of these kernels
is to study the impact of a mix of several address
streams on the performance.

We measured the performance of these kernels for
for two different block-sizes: 64, for which the over-
head associated with each iteration is relatively im-
portant, and 512, for which the overhead is much
smaller and relatively negligible (Figures 4a, 4b). The
main conclusion is that the interference between sev-
eral address streams is relatively small. Basically, the
speed of Megaload-load/s is roughly half the speed
of Megaloads/s independent of the location of the
operands (cache or memory) and the number of pro-
cessors. This equality holds within 5% when operands
come from cache. For operands coming from mem-
ory rather than from cache the equality may differ
by as much as 10%; this is mainly due to the fact
that the density of cache requests (average number
of cache request per cycle) is slightly higher: three
consecutive vector access as inside a loop for load-
load-store versus one vector access inside a loop for
vector load. The quick succession of three vector in-
structions amplifies the performance loss due to the
succession of transient states. Similar simple relation-
ships also hold for load-store and load-load-store ker-
nels: Megaload-store/s is equal to l/4 (Megaload/s
+ Megastore/s) and Megaload-load-store is equal to
l/9 (2 Megaload/s + Megastore/s). We tried more
complex kernels such as load-store-store, load-load-
load-store, and similar relations were verified. Such
relations express the conservation of the aggregate
memory system bandwidth.

3.1.4 Temporal Distribution

For these experiments, we inserted a fixed number of
NOPS after each vector instruction. We varied the
number of NOPS between 0 and 80 by increment of
8.

Introducing the NOPS has two effects: first, the
time for an iteration is lengthened, and second, the
memory reference rate is decreased thereby decreas-
ing memory contention. For the one processor case
(Figure 5a), the first effect is predominant because
there is no contention. Accessing 32 elements from
cache costs approximatively 35 cycles. Adding 80 cy-
cles (80 NOPS) ft a er each vector instruction approx-
imately triples the cost and we observe a corrqond-

83 Performance Evaluation Review Vol. 17 #l May1 989

ing decrease in performance of around three. From
memory, accessing 32 elements cost around 80 cycles,
so adding 80 NOPS should roughly divide the per-
formance by two, which correlates exactly with the
experimental results.

The eight processor case is more complex to study
due to the variations in contention (Figure 5b).
From cache, the contention was not very important
(speedup around 7) so increasing NOPS does not have
a significant impact on the speedup. The main effect
is seen in lengthening the time and we observe a cor-
responding drop in performance.

From memory the situation is more complex. No-
tice with 0 NOPS the memory bandwidth is satu-
rated: the total aggregate bandwidth requested by
the processors exceeds the bandwidth of the mem-
ory system. By adding NOPS, we are effectively
decreasing the bandwidth requested by the proces-
sors. Therefore, we observe the performance remain-
ing constant while the bandwidth requested by the
processors exceeds the capacity of the memory sys-
tem until some point where the number of NOPS in-
troduced results in the requested bandwidth exactly
matching that of the memory. From that point the
bandwidth requested becomes less than the capacity
of the memory system, and we observe a decrease in
performance.

3.1.5 Vector Hits

For these experiments, each vector instruction was fol-
lowed by a fixed number of vector instructions (called
vector hits) with the same starting address (i.e. each
vector instruction accessed the exact same set of ad-
dresses). For example, the 0 vector hit kernel corre-
sponds to the standard load. The k vector hit kernel
corresponds to a sequence of (k+l) vector instructions
referencing exactly the same set of addresses.

For the cache region, such experiments allow us to
study the effect of unrolling; increasing k is going to
decrease the impact of the loop overhead on the per-
formance. For the memory region, they give informa-
tion about the interaction between the references to
the two memory levels and the relationship between
miss-ratio and performance: for the k: vector hits ker-
nel, the miss-ratio is S/(A + 1) * 32.

In cache, the effect of unrolling is very clear, it al-
lows to reach 38 Mwords/sec (Figures 6a, 6b). From
memory, we observe a phenomenon similar to the
one observed with the NOPS; increasing the num-
ber of hits decreases the intensity of memory requests
alleviating the contention problem at the memory
level. Correspondingly, the speedup increases regu-
larly from 5 to 6.3. The difference compared to the

NOPS case is that hits and misses are contending each
other at the cache level. It is worthwhile to note that
the difference in performance between 0 vector hits
and 10 vector hits reaches a factor of three while the
advertised peak bandwidth between the two levels of
memory diier only by a factor of two.

3.1.6 Blocking Strategies

In these experiments, a simple load kernel was used
and we varied the size of consecutive iterations allo-
cated as a block.

According to the experimental results (Figures 7a,
7b), changing block sizes does not seem to affect the
load balancing between the processors. The major
effect on performance is the decreased importance of
the overhead associated with each block. This effect
is much more sensitive in cache because vector access
are much shorter.

3.1.7 Strides

The kernel used corresponds to reading a vector of n
elements and varying the stride.

In cache, the main effect of strides is to partition the
requests among the four banks. Stride 1 and stride
5 sweep all four banks and the performance is lin-
ear in the number of processors (Figure 8a). Due to
an Alliant-specific data skewing scheme, stride 2 still
goes across all four banks and the performance is very
similar to the stride 1 case. However, stride 4 concen-
trates the request on two banks effectively halving the
potential performance. Four processors can saturate
the bandwidth in this case. Stride 8 concentrates all
requests on one bank and bandwidth saturation can
be reached with two processors.

From memory, the effect of strides is complicated
by the cache line size (Figure 8b). Any stride greater
than four will imply a miss for each access. Except
for strides which are multiples of eight (missing oc-
curs on a single bank), all strides greater than four
will achieve bandwidth saturation with only four pro-
cessors. Surprisingly, the performance of the stride-4
load and the stride-5 load are about the same. This
indicates that missing on two banks gives the same
performance as missing on all four cache banks. To be
precise, in the case of stride 4, we are missing on two
cache banks located on different cache boards. Recall
that the four cache banks of the Alliant are ‘arranged
on two cache boards, with each cache board hav-
ing one port to the bus. More detailed experiments,
where missing occurred on only two cache banks lo-
cated on the same board, indicated that the speed ob-
tained was about the same as the speeds stated above,

84 Performance Evaluation Review Vol. 17 #I May1989

implying that the memory bus cannot fully support
two cache boards requesting at their maximum rate.

4 Conclusions

As noted earlier, there are two basic goals of the pro-
posed approach. The fist goal is obtaining a detailed
characterisation of the behavior of the memory sys-
tem and the parameters through which it can influ-
ence algorithm performance. The progress towards
this goal was discussed in the previous section. The
second goal is the development of a strategy, based on
the load/store model for predicting the performance
of application codes. In this section we will tirst re-
view some of the key conclusions obtained from our
experimental data set and then we will indicate how
such experimental data may be used for predicting
performance of simple DO-LOOPS.

4.1 Experimental Conclusions

The first major conclusion is that the system has
smooth behavior relative to varying the different pa-
rameters and the trends can be easily predicted qual-
itatively. From a quantitative point of view, the situ-
ation is more complex: we must distinguish two cases
depending on whether the system has one of its com-
ponents at a saturation point or not.

In the latter case (for example, one and two proces-
sor experiments), we were able to predict the perfor-
mance of the load/store kernels to within 10% error
using simple cycle counting techniques i.e., inspect-
ing the assembly code and computing the total ex-
ecution by summing up the timings of elementary
instruction, augmented by certain empirically deter-
mined quantities. Such a simple technique proved to
be very powerful and accurate even in the fall-off re-
gion. For this region, the situation was a bit more
complex due to the fact the fact that there is a mix
of hits and misses. We used a straightforward model
of the direct-mapped cache in order to determine how
accesses will be directed to cache versus memory. The
resulting prediction gave good results.

In the former case (saturation of one component;
four and eight processor cases), the situation is dif-
ferent. First, the numbers provided by the manufac-
turer (peak bandwidth) were inadequate. Further-
more, knowledge of the protocol used in handling ex-
changes between the different levels of the hierarchy
did not help to determine quantitatively the loss in
performance due to saturation. This was due to the
complexity of memory transactions from the presence
of multiple address streams.

In such cases, controlled experimentation of the
load/store type is crucial. This is particularly true
when the experimental results can be deduced from
more elementary data via relatively simple combina-
tions. For example, the behavior of complex load
patterns could be accurately approximated by aver-
aging corresponding component load kernel results.
We observed similar properties for the more complex
parameter variations such as the hit ratio series of
experiments.

The basic conclusion is that for the Alliant FX/8,
and most likely for similar architectures, careful com-
bination of local analytical models and empirical ob-
servation can characterise the performance of the
memory system.

4.2 Performance prediction

The performance prediction proceeds in three basic
steps.

1.

2.

3.

Building a database of experimental points in
the parameter space. This experimentation can
be conducted fairly systematically by for exam-
ple sweeping first the parameter in a very coarse
way, then by refining further the investigation
(increasing the number of experimental points) in
regions where the performance gradient is large.

Extracting from the test code (to be anaiyred)
the value of the parameters which allow us to
establish a correspondence between experimental
points and the test code.

Using simple analytical models, interpolate the
predicted performance from the experiments
which are the closest in the parameter space.

Let us focus on the second problem. In our case,
following the choice of parameters, we need to de-
termine from the source code hit ratios (i.e location
of the operands), temporal distribution, patterns of
accesses, strides. In fact most of these parameters
(except the location of the operands) can be deter-
mined by inspection of the assembly code generated
from the loop studied. This analysis at present is done
manually, but many of the software analysis tools to
calculate the required parameters exist and will be
integrated into a performance prediction tool in the
near future.

Predicting the location of an operand is more com-
plex. The simplest solution is to consider the two
extreme cases: either all the operands coming from
cache (upper bound on the performance) or all the
operands coming from memory (lower bound). Unfor-
tunately, these approximations can give a very large

85 Performance Evaluation Review Vol. 17 #1 May1989

range of potential performance. In the case of linearly
indexed array, which is a very common case in numeri-
cal computations, the problem can be solved using re-
cently proposed data dependence analysis techniques
[6]. Moreover, these techniques also allow the compu-
tation of the total number of distinct references to an
array and a static estimate of the cache hit ratio.

Our present and future work on this topic include:
the verification of the approach on more complex loop
structures; the refinement of multiprocessor predic-
tion; further integration of the data locality estimates
into the prediction process; and the extension of the
approach to more complicated architectures such as
Cedar. In ail cases, careful attention is given to de-
termine the possibility of automation of the process.

References

[ll

PI

PI

PI

bl

14

[71

PI

Abu-Sufah, W. and Kwok, A. Performance pre-
diction tool8 for Cedar: A multiprocessor super-
computer. 12th Int. Symp. on Comp. Arch., 1985,
pp. 406-413.

Bailey, D. Vector computer memory bank con-
tention. IEEE TC, C-36,3, 293 - 298, March,
1987.

Bucher, I., Simmons, M. A close look at vector
performance of register-to-register vector com-
puters and a new model. Proc. 1987 ACM SIG-
METRICS, 1987, pp. 39-45.

Caiahan, D. Performance evaluation of static
and dynamic memory system8 on the Cruy-2.
Proc. Int. Conf. on Supercomputing, 1988, pp.
619-624.

Cheung, T. and Smith, J. An analysis of the Cray
X&P memory syltem, Proc. Int. Conf. on Par-
allel Processing, August 1984, pp. 494605.

Gannon, D., Jalby, W,, and Gallivan, K. Strate-
gies for Cache and Local Memory Management
by Global Program l%ansformation, Jour. Par.
and Distr. Computing, Oct. 1987, pp. 587-616.

Andrews, J., Lavery, D., and Iyer, R., A mea-
durement based study of cache contention in a
shared memory multiprocessor CSL Rep. Univer-
sity of Illinois, 1987.

Phister, G. and Norton, A. Hot spot contention
and combining in multistage interconnection net-
work8. Proc. Int. Conf. on Parallel Processing,
1985, pp. 790-797.

Flgure 1
Alllant !%/FJ Archlteclure

Cache

Moi”‘e

Cache

M”!u’e

CROSSBAR INTERCONNECT
I Bandwidth 376 MB I se01 I 1

I
CE4

CEI CE3 CES CE7

Flgure 8s
Load Psrbrmmes

(Block Sire 128)

28

24

0-I

0 8192 15384 24576 32768 40960 49152

Length of Vector Operation

Flgwe 2b
Load Speedup

(Blcxk Sire 128)

Speedup

8]

4-
3 1 1

2-I- i
-. . .

0 8192 16384 24576 32768 40980 49152

Length of Vector Operation

86 Performance Evaluation Review Vol. 17 #l May1989

Flgurs lo
Starr Pwformancr

(Block Sias 198)

Speedup

Figure 8b
Stem Speadup

(Block Shr 128)

I

0 8193 11384 24676 32788 40950 49152

Length of Vector Opsr&m

MTmaaction+c

6, I

0 8199 16384 24576 327'38 40960 42152

Lgn+b or vbr op9rdoa

4

3 1
-, . ,

0 8192 10364 24576 32766 40980 4#152

Lsngth d vs~tor opdi0n

Flgura 4b
Kernel Performmcc OIL 8 Procumn

(Block Sire 512)

30

26

20

15

10

5

0-l
0 6162 16364 24576 31763 40930 49162

Length of Vector Operation

Figure 6s Figure 6b
ERectm of NOPs on 1 Proceuor Effect or NOPI on 8 Proceuon
(Load ksnwl, Block She 128) (Load Kernel, B&k Sire 128)

10240 20480 30720 40960

Length 0r Vector Operation

a4 40960
Length d VKW Operation

87 Performance Evaluation Review Vol. 17 #l May1989

Figure 6s
BUect of Cache ML Ratio on 1 Processor

(Load kernel, Block Siao 128)
Fl~urc 8b

Effect of Cache Miu Ratio OIL 8 Proceuorl
(Load kernel, Block Sire 128)

10240 20480 20720 40900 10240 20480 SO720 40960

Length of Vector Operation Langth of V.&or Operation

Figure 7a
Effect of Block Sire on 1 Proceuor

(Load kernel)
Flgura Ib

E&t of Block Sire on 8 Procumr.
(Load ksmel)

34

29

24

19

14

9

4 Block Sir, 1048

0 8192 Ill384 241170 32758 40910 49162

Length of V&Or OpOrStiOn

Figure 81 Figure 8b
E&t of Strides In Cache Et&et of Stride Ir, Memoq

(Load kernel) (Load kernel)

MLcwk/ue MLods/Kc

12 a 4 a i ; s

Length of Vector Ujm&m

; 8192 16384 24670 . 32768 ’ 40980 . 49162 ’
Japth of Vector Operation

88 Performance Evaluation Review Vol. 17 #I May1 989

