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Abstract 

The speed and efficiency of the memory system is a key 

limiting factor in the performance of supercomputers. 

Consequently, one of the major concerns when develop- 

ing a high-performance code, either manually or auto- 

matically, is deter mining and characterizing the influence 

of the memory system on performance in terms of algo- 

rithmic parameters. Unfortunately, the performance data 

available to an algorithm designer such as various bench- 

marks and, occasionally, manufacturer-supplied informa- 

tion, e.g. instruction timings and architecture compo- 

nent characteristics, are rarely suflicient for this task. In 

this paper, we discuss a systematic methodology for prob- 

ing the performance characteristics of a memory system 

via a hierarchy of data-movement kernels. We present 

and analyze the results obtained by such a methodology 

on a cache-based multi-vector processor (Alliant FX/8). 

Finally, we indicate how these experimental results can 

be used for predicting the performance of simple Fortran 

codes by a combination of empirical observations, archi- 

tectural models and analytical techniques. 

1 Introduction 

The speed and efficiency of the memory system is of- 
ten the main limiting factor of supercomputer per- 
formance. Several architectural solutions are cur- 
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rently used to improve the data access rate: pipelining 
and parallelization of the memory system, distributed 
memory systems, and hierarchical memory systems. 
Although these solutions result in a substantial per- 
formance improvement, they make the task of code 
performance optimization more difficult. Due to their 
increased complexity, such memory organizations are 
hard to model, making performance prediction diEi- 
cult. Furthermore, the performance of such systems is 
highly dependent upon the characteristics of address 
streams. For example, pipelining or parallelization 
works well if successive memory references are uni- 
formly distributed among the memory banks; on the 
other hand, vector strides which are a multiple of the 
degree of interleaving or of the number of memory 
modules can result in dismal performance. Similarly, 
hierarchical memory systems will be efficient only if 

the amount of data locality in an algorithm is suffi- 
cient and exploitable. 

Most studies of memory performance have been 
hardware oriented; the goal was to study the im- 
pact on performance of specific architecture charac- 
teristics. Two main approaches were used: queuing 
theory-based modeling which can produce results at 
the price of oversimplifying the code structure (espe- 
cially the pattern of its memory pattern references); 
and simulation-based modeling which provides more 
accurate information using a set of benchmark codes 
[l]. Neither approach provides enough insight in the 
interaction between the code and the memory sys- 
tem in order to predict and tune performance. Re- 
cently, more attention has been paid to the study of 
characteristics of the code and their interaction with 
the memory: impact of registers [3], effects of strides 
[2,4,5] and hot spot contention [8]. Their interest is 
more in the analysis of worst case or pathological be- 
havior and again the focus is too limited for predicting 
performance for more genera3 codes. 

Our primary goal in this paper is to develop a sys- 
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tematic methodology for investigating the interaction 
between a cache based memory system and the vari- 
ous address streams generated in loop constructs typ- 
ically found in scientific numerical computations. We 
first define a family of kernels parameterized for sys- 
tematically exploring the behavior of the system (Sec- 
tion 1). The experimental set up used in our study 
is described in Section 2. In Section 3, performance 
data from the Alliant FX/8 are presented and ana- 
lyzed. Finally, we indicate how the data produced 
by these kernels can be used for performance predic- 
tion and how these techniques can be integrated into 
a static or dynamic performance tuning system for 
cache based multiprocessor systems. 

2 Target architecture and 
load/store kernels 

In this section, we describe the global framework in 
which our performance study is integrated as well as 
the main guidelines for developing the family of ker- 
nels. The target architecture and the kernel set are 
described. 

2.1 Motivations of load/store kernels 

The goal of our work is to propose a methodology 
for characterizing and predicting the performance of 
basic Fortran multiply-nested loops. For simplicity, 
we assume that the loop body contains neither condi- 
tional statements nor call statements and that the ar- 
rays are referenced through linear subscript functions. 
The presence of conditional statements prevents ac- 
curate prediction; in such cases we can only predict 
a range of performance. The presence of calls can be 
easily overcome by in-line subroutine expansion. The 
choice of multiply-nested loops is motivated first by 
the fact that they account for a large part of numer- 
ical programs and second because due to the nature 
of subscripts, the sequence of memory locations ac- 
cessed is extremely regular and can be analyzed by 
techniques similar to the ones used for automatic vec- 
torization. 

As noted above, it has been observed that the mem- 
ory system is often the architectural feature which 
determines performance of a code. As a result, our 
approach was to develop a set of elementary param- 
eterized kernels. The choice of these kernels was 
guided by three major constraints. First, the ker- 
nels must be able to mimic the access patterns of 
the loop structures of interest using different param- 
eter combinations. Second, the kernels should be el- 
ementary enough to provide the ability of studying 

the impact of only one code characteristic at a time. 
Third, we must be able to “decompose’ a given loop 
under study in terms of these elementary kernels and 
then reconstruct the performance of the loop using 
the performance data obtained for the kernels. The 
following describes the Load/Store method and dis- 
cuss its ability to satisfy these requirements. Since, 
in this paper, we are restricting the application of the 
methodology to an Alliant FX/8, the discussion of the 
motivation of the use of the load/store model is based 
on the characteristics of this machine. The general- 
ization to other machines is considered in turn. 

2.2 Target architecture 

The memory system of the Alliant FX/8 combines 
parallel data access with a hierarchical memory struc- 
ture (see Figure 1). It is organized in three lev- 
els, a large main memory built of modules deliver- 
ing data by blocks (32 bytes), a cache organized as 
four independent modules (32 Kbytes each) simulta- 
neously accessible by eight computational elements 
(CE’s) through a crossbar, and scalar and vector reg- 
isters private to each CE. The cache is direct mapped 
and the main memory is updated by a write back 
policy. The vector registers are 32 double precision 
words long and can be operated on via the vector 
processing capabilities of each CE. Since we are inter- 
ested in multiply-nested Fortran loops which exploit 
both the concurrent and vector processing capabih- 
ties of the Alliant, we will concentrate on exploring 
the memory system’s influence on code for which the 
execution time of the iteration sent to each processor 
is dominated by vector instructions. 

The Alliant vector instructions can be grouped into 
two categories: 

0 Internal (register-register): All operands for 
these instructions are contained in vector and 
scalar registers. 

l External: For these instructions one operand 
comes from (or goes to) memory. 

Most of the vector instructions in each class have sim- 
ilar timing characteristics typically differing only in 
startup costs. Since the internal instructions do not 
depend on conditions external to the CE, their tim- 
ings are deterministic and can be derived from hard- 
ware specifications. The timings of external vector 
instructions can also be determined from hardware 
specifications. The problem in this case is that these 
timings depend heavily on runtime conditions such as 
the location of the operands (cache or memory) and 
degree of contention. Due to the complexity of the de- 
pendence on conditions external to the CE, carefully 
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designed empirical probing of the memory system is 
necessary for generating the behavioral characteris- 
tics of these instructions (although in some cases cycle 
count predictions are possible). 

Since all the external vector instructions issue mem- 
ory requests at the same rate (one operand per cy- 
cle) we can probe the performance characteristics by 
considering only two basic instructions: vector load 
and vector store. (The handling of the difference in 
startup is discussed below.) 

2.3 Load/store kernels 

We first focus on the 1-D kernels. They model a sin- 
gle parallel DO-LOOP (i.e. all iterations can be exe- 
cuted concurrently). These kernels generate synthetic 
address streams whose characteristics can be varied 
by adjusting certain parameters; see below. Similar 
kernels were also used in [7] for studying contention 
at the cache level, however their main goal was to 
study contention under various workloads and not to 
predict performance. 

The parameterized family of load and store ker- 
nels form the basic building blocks of the benchmark 
set. Their basic operation is loading (storing) a single 
vector of consecutive elements from (to) the memory 
system. The intent of these kernels is to determine 
the bandwidths of reads and writes that each compo- 
nent of the memory system is able to sustain and the 
conditions influencing these bandwidths. This sim- 
ple family is parameterized by the length of the vec- 
tor, the location of the vector (cache or memory), the 
number of processors, and the splitting of the opera- 
tions between the processors. 

For spreading the iterations across the processors, 
we used the following strategy: 

Self Scheduling: The vector of length n is broken 
into blocks of b contiguous elements. The original 
vector loop is decomposed into two loops. The out- 
ermost is performed in parallel across the CE’s while 
the innermost (operation on a block of b elements) 
is executed in vector mode within each CE. The dis- 
patching of the blocks to the processors is done by 
self-scheduling. That is, the blocks are logically ar- 
ranged in a queue and as soon as a processor has fin- 
ished operating on a block, it accesses the queue to get 
another block or goes idle if the blocks are exhausted. 
By changing the block size, the effect of synchroniza- 
tion can be analyzed as well as load balancing issues. 

This basic family is extended by including two more 
parameters: Temporal Distribution and Hit Ratio. 
The use and purpose of these parameters are as fol- 
lows: 

Temporal Distribution:The goal here is to study 

the effect of the variation of the temporal distribu- 
tion of requests. We want to study the interaction 
between a burst of requests (corresponding to an ex- 
ternal vector instruction) followed by several cycles 
without memory requests (corresponding to the exe- 
cution of an internal vector instruction or some ad- 
dress computation). In order to parameterize this fac- 
tor, we insert between each vector instruction a vari- 
able number of NO-OP instructions (informally called 
NOPS below). 

Hit Ratio: The goal of this parameter is to study 
the distribution of requests between the two mem- 
ory levels. The hit ratio can be manipulated exper- 
imentally by inserting ‘after a vector load (store) a 
variable number, k, of vector operations referencing 
exactly the same locations. The first vector reference 
generates a miss in the cache (this can be controlled) 
while the subsequent k references cause hits. The goal 
here is to analyze the behavior of the memory system 
under variations of temporal locality with spatial lo- 
cality variations suppressed. Furthermore, insight is 
gained into the behavior of the cache/main memory 
combination when simultaneously addressed. 

Based on the simple load/store family, more com- 
plex effects of the memory system are probed by 
building a hierarchy of load/store combinations pa- 
rameterized by reference pattern. These load/store 
combinations are also used to model the behavior of 
more complex loop bodies. The hierarchy is built by 
considering more complex addressing stream patterns 
together with varying access strides. 

The effects of mixing several address streams can 
be studied by replacing the basic vector loop used 
in the load/store kernel by a vector loop which ac- 
cesses more than one data stream with combinations 
of loads and stores. The three multiple address stream 
kernels which typify many basic vector computations 
are: load-load, load-store, and load-load-store. 

By including stride as a parameter in the simple 
load and store kernel family, the interleaving of the 
memory system can be probed as well as the effects 
of bursts of consecutive misses and spatial locality. 

The family of kernels is built in such a way that any 
parameter can be varied while the others remain con- 
stant. If all the points in the parameter space were 
to be tested, this would result in an overwhelming 
number of experiments. In practice, we proceed in 
a hierarchical manner. The parameter space is first 
explored in a coarse way, by making large steps in pa- 
rameter variations. After coarse performance is ob- 
served, refinement techniques are used by stepping 
with smaller increments. 

Clearly, this approach generalizes easily to multi- 
vector architectures with characteristics similar to the 
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Alliant; e.g one memory port per processor and suffi- 
cient memory bandwidth at the fastest level. Gener- 
alization is also possible to architectures which dif- 
fer more significantly. Consider, for example, the 
CDC Cyber 205 or the Cray X-MP with their multi- 
ple memory ports. In this case, the building block 
level of what were termed external vector instruc- 
tions above becomes the parameterized load-load- 
store family. The lower levels of the hierarchy are still 
needed but they now correspond to a type of instruc- 
tion between the internal and external types which 
requires slightly more careful handling. 

3 Experimental results 

We implemented a set of load/store kernels in as- 
sembly language parametrized by the parameters de- 
scribed in the previous section. All the loads and 
stores instructions operated on double precision data 
(64 bits). We varied the starting address in order to 
detect the sensitivity due to alignment within a cache 
line; due to the fact that we were streaming regu- 
larly long vectors, the alignment did not significantly 
influence performance. Each experimental value was 
obtained by running each kernel five times, eliminat- 
ing the best and the worst experimental values, and 
taking the arithmetic average of the three remaining 
values as a final number. Confidence intervals were 
computed for each set of five values and found to be 
satisfactory. All experimental values showed less than 
5% variation between the extremes. 

The resolution of the timer used was 10 microsec. 
In order to increase timing accuracy, each code was 
enclosed in a repetition loop such that the interval be- 
tween two consecutive calls to the timer was at least 
0.1 sec. However, on a cache based system, such a 
technique has the following drawback. If the total 
working set of the loop fits in cache (i.e the working 
set is smaller than the cache size), the first timing it- 
eration loads the cache and the subsequent iterations 
will operate from cache. This explains the general 
shape of our experimental curves. They have three 
distinct regions which depend on the relationship of 
the vector length n and the size of the cache, 16K 
double precision words. These regions are: 

Cache Region: 0 < n 5 16K for the load and 
store kernels (respectively 0 2 n 5 8K for the load- 
load and load-store kernels and 0 5 n < 5.3K for 
the load-load-store kernels). In this region, all the 
operands are in cache. It should be noted that this 
region is large enough so that we reach a speed very 
close to the asymptotic rate. 

Fall Off Region: 16K 5 n 5 32K for the load 

and store kernels (respectively, 8K 5 n 5 16K for 
the load-load and load-store kernels and 5.3K 5 n 5 
10.6K for the load-load-store kernels). In this region 
we observe a very strange phenomenon due to the 
direct mapped cache. Portions of the vector overlap 
in the cache forcing the elements to be fetched from 
memory from one iteration to the next. The other 
parts of the vector remain in the cache. In this region 
the hit ratio is decreasing from 1 to 0.25. 

Memory Region: 32K < n for the load and store 
kernels (respectively, 16K 5 n for the load-load and 
load-store kernels and 10.6K 5 n load-load-store ker- 
nels). In this case the cache is flushed each iteration 
and the operands come from memory. 

3.1 Load/Store Kernels Performance 

S.l.1 Load Kernel 

In these experiments, a simple kernel reading a vector 
of length n was timed (Figures 2a, 2b). 

On one processor, the performance is very regular. 
There is a small loss in performance when operands 
come from memory: this is not due to the saturation 
of the memory bandwidth but rather to the limit in 
the pipelined request-issue of the CE. Delays occur 
because the processor can only have two misses out- 
standing at any time. Notice the two processor case 
is perfectly scaled from the one processor (speedup 
of 2) performance. For four processors, where the 
contention at the cache level is negligible (speedup of 
4), the memory contention becomes more important 
(speedup of 3.3). 

For eight processors, cache contention begins to af- 
fect performance. In the cache region, 30 Megaloads/s 
may seem disappointing compared to the potential 
peak of 43.5 Mwords/s. However, there are two rea- 
sons for such a situation. One reason is that the over- 
head associated with each block (synchronization, ad- 
dress computations) is non-negligible. This decreases 
the intensity of requests from each processor. By us- 
ing larger blocks (which decreases the relative impor- 
tance of the overhead compared to the sequence of ac- 
cesses) or by unrolling the loop (same effect), speeds 
up to 38 Megaload/s can be achieved. Still, in all 
cases the speedup is around 7.3. 

Due to the cyclic nature of bank referencing, we 
would expect to have first an initial transient phase 
with some bank conflicts followed by a steady state 
where processors are synchronized with each other 
without any additional conflicts. Such a phenomenon 
would occur if each processor had an infinitely long se- 
quence of requests regularly spaced in time. In reality, 
due to the splitting in blocks and vector operations, 
the sequence of requests are not necessarily regularly 
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spaced in time. Some operations between vector re- 
quests could encounter conflicts. This acts to disrupt 
the synchronized conflict-free referencing between the 
processors. By looking at a trace of processor activity 
generated with a logical analyzer, we noticed that the 
processors indeed entered a phase-sync with respect 
to their referencing behavior after a short transient 
“conflict” phase at the beginning of a vector instruc- 
tion. However, we also observed that random access 
could easily disrupt the phase synchronization. Thus, 
instead of observing only a single transient phase fol- 
lowed by a long steady state, we saw a succession 
of transient phases (with conflicts) followed by short 
steady state periods. 

At the memory level the contention is far more se- 
vere (speed of 10 Megaload/s and speedup around of 5 
while the peak speed of the system is supposedly 23.5 
MWords/s). This is mainly caused by the fact that 
the memory bus cannot satisfy the requested band- 
width from the processors. The contention of the 
memory system combined with the request mecha- 
nism is responsible for most of the performance loss. 

3.1.2 Store Kernel 

The kernel used in these experiments is in all points 
the same as the load kernel except that a vector write 
is performed instead of a vector read. A close look 
at the results (Figures 3a, 3b) indicates that the be- 
havior of the store is very similar to the load. Only 
two main differences are worth noticing. First, the 
performance in cache is slightly lower (around 5%) 
due to the fact that the startup of a vector store is 
slightly higher. Second, the performance from mem- 
ory is similar to the load for one and two processors, 
but four and eight processors show significantly less 
performance: 6.5 Megastores per second versus 10.5 
Megaloads per second in the eight processor case. 
This drop is due to the limitations in bandwidth at 
the memory level (bandwidth for sequential writes is 
80% of the bandwidth for sequential reads) and to 
the combined effect of miss- on-write and write-back 
mechanisms; although the write-back mechanism de- 
fers the penalty for write. When the cache is full and 
new blocks are to be loaded, part of the memory bus 
bandwidth will be consumed by these delayed writes. 
From the memory point of view, each block is accessed 
two times: first when it is written into the cache and 
then later when it is written back to memory. 

The speedup curves show very clearly this phe- 
nomenon. The contention at the memory with four 
processors is already severe (speedup less than 2.9), 
since each write requires two transactions on the bus. 
So, four processors writing are almost equivalent to 

eight processors reading. 

3.1.3 More complex patterns 

The kernels used in these experiments were analogous 
to the basic load kernel, the main difference is that 
instead of accessing one vector, several vectors are 
accessed simultaneously. The purpose of these kernels 
is to study the impact of a mix of several address 
streams on the performance. 

We measured the performance of these kernels for 
for two different block-sizes: 64, for which the over- 
head associated with each iteration is relatively im- 
portant, and 512, for which the overhead is much 
smaller and relatively negligible (Figures 4a, 4b). The 
main conclusion is that the interference between sev- 
eral address streams is relatively small. Basically, the 
speed of Megaload-load/s is roughly half the speed 
of Megaloads/s independent of the location of the 
operands (cache or memory) and the number of pro- 
cessors. This equality holds within 5% when operands 
come from cache. For operands coming from mem- 
ory rather than from cache the equality may differ 
by as much as 10%; this is mainly due to the fact 
that the density of cache requests (average number 
of cache request per cycle) is slightly higher: three 
consecutive vector access as inside a loop for load- 
load-store versus one vector access inside a loop for 
vector load. The quick succession of three vector in- 
structions amplifies the performance loss due to the 
succession of transient states. Similar simple relation- 
ships also hold for load-store and load-load-store ker- 
nels: Megaload-store/s is equal to l/4 (Megaload/s 
+ Megastore/s) and Megaload-load-store is equal to 
l/9 ( 2 Megaload/s + Megastore/s). We tried more 
complex kernels such as load-store-store, load-load- 
load-store, and similar relations were verified. Such 
relations express the conservation of the aggregate 
memory system bandwidth. 

3.1.4 Temporal Distribution 

For these experiments, we inserted a fixed number of 
NOPS after each vector instruction. We varied the 
number of NOPS between 0 and 80 by increment of 
8. 

Introducing the NOPS has two effects: first, the 
time for an iteration is lengthened, and second, the 
memory reference rate is decreased thereby decreas- 
ing memory contention. For the one processor case 
(Figure 5a), the first effect is predominant because 
there is no contention. Accessing 32 elements from 
cache costs approximatively 35 cycles. Adding 80 cy- 
cles (80 NOPS) ft a er each vector instruction approx- 
imately triples the cost and we observe a corrqond- 
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ing decrease in performance of around three. From 
memory, accessing 32 elements cost around 80 cycles, 
so adding 80 NOPS should roughly divide the per- 
formance by two, which correlates exactly with the 
experimental results. 

The eight processor case is more complex to study 
due to the variations in contention (Figure 5b). 
From cache, the contention was not very important 
(speedup around 7) so increasing NOPS does not have 
a significant impact on the speedup. The main effect 
is seen in lengthening the time and we observe a cor- 
responding drop in performance. 

From memory the situation is more complex. No- 
tice with 0 NOPS the memory bandwidth is satu- 
rated: the total aggregate bandwidth requested by 
the processors exceeds the bandwidth of the mem- 
ory system. By adding NOPS, we are effectively 
decreasing the bandwidth requested by the proces- 
sors. Therefore, we observe the performance remain- 
ing constant while the bandwidth requested by the 
processors exceeds the capacity of the memory sys- 
tem until some point where the number of NOPS in- 
troduced results in the requested bandwidth exactly 
matching that of the memory. From that point the 
bandwidth requested becomes less than the capacity 
of the memory system, and we observe a decrease in 
performance. 

3.1.5 Vector Hits 

For these experiments, each vector instruction was fol- 
lowed by a fixed number of vector instructions (called 
vector hits) with the same starting address (i.e. each 
vector instruction accessed the exact same set of ad- 
dresses). For example, the 0 vector hit kernel corre- 
sponds to the standard load. The k vector hit kernel 
corresponds to a sequence of (k+l) vector instructions 
referencing exactly the same set of addresses. 

For the cache region, such experiments allow us to 
study the effect of unrolling; increasing k is going to 
decrease the impact of the loop overhead on the per- 
formance. For the memory region, they give informa- 
tion about the interaction between the references to 
the two memory levels and the relationship between 
miss-ratio and performance: for the k: vector hits ker- 
nel, the miss-ratio is S/(A + 1) * 32. 

In cache, the effect of unrolling is very clear, it al- 
lows to reach 38 Mwords/sec (Figures 6a, 6b). From 
memory, we observe a phenomenon similar to the 
one observed with the NOPS; increasing the num- 
ber of hits decreases the intensity of memory requests 
alleviating the contention problem at the memory 
level. Correspondingly, the speedup increases regu- 
larly from 5 to 6.3. The difference compared to the 

NOPS case is that hits and misses are contending each 
other at the cache level. It is worthwhile to note that 
the difference in performance between 0 vector hits 
and 10 vector hits reaches a factor of three while the 
advertised peak bandwidth between the two levels of 
memory diier only by a factor of two. 

3.1.6 Blocking Strategies 

In these experiments, a simple load kernel was used 
and we varied the size of consecutive iterations allo- 
cated as a block. 

According to the experimental results (Figures 7a, 
7b), changing block sizes does not seem to affect the 
load balancing between the processors. The major 
effect on performance is the decreased importance of 
the overhead associated with each block. This effect 
is much more sensitive in cache because vector access 
are much shorter. 

3.1.7 Strides 

The kernel used corresponds to reading a vector of n 
elements and varying the stride. 

In cache, the main effect of strides is to partition the 
requests among the four banks. Stride 1 and stride 
5 sweep all four banks and the performance is lin- 
ear in the number of processors (Figure 8a). Due to 
an Alliant-specific data skewing scheme, stride 2 still 
goes across all four banks and the performance is very 
similar to the stride 1 case. However, stride 4 concen- 
trates the request on two banks effectively halving the 
potential performance. Four processors can saturate 
the bandwidth in this case. Stride 8 concentrates all 
requests on one bank and bandwidth saturation can 
be reached with two processors. 

From memory, the effect of strides is complicated 
by the cache line size (Figure 8b). Any stride greater 
than four will imply a miss for each access. Except 
for strides which are multiples of eight (missing oc- 
curs on a single bank), all strides greater than four 
will achieve bandwidth saturation with only four pro- 
cessors. Surprisingly, the performance of the stride-4 
load and the stride-5 load are about the same. This 
indicates that missing on two banks gives the same 
performance as missing on all four cache banks. To be 
precise, in the case of stride 4, we are missing on two 
cache banks located on different cache boards. Recall 
that the four cache banks of the Alliant are ‘arranged 
on two cache boards, with each cache board hav- 
ing one port to the bus. More detailed experiments, 
where missing occurred on only two cache banks lo- 
cated on the same board, indicated that the speed ob- 
tained was about the same as the speeds stated above, 
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implying that the memory bus cannot fully support 
two cache boards requesting at their maximum rate. 

4 Conclusions 

As noted earlier, there are two basic goals of the pro- 
posed approach. The fist goal is obtaining a detailed 
characterisation of the behavior of the memory sys- 
tem and the parameters through which it can influ- 
ence algorithm performance. The progress towards 
this goal was discussed in the previous section. The 
second goal is the development of a strategy, based on 
the load/store model for predicting the performance 
of application codes. In this section we will tirst re- 
view some of the key conclusions obtained from our 
experimental data set and then we will indicate how 
such experimental data may be used for predicting 
performance of simple DO-LOOPS. 

4.1 Experimental Conclusions 

The first major conclusion is that the system has 
smooth behavior relative to varying the different pa- 
rameters and the trends can be easily predicted qual- 
itatively. From a quantitative point of view, the situ- 
ation is more complex: we must distinguish two cases 
depending on whether the system has one of its com- 
ponents at a saturation point or not. 

In the latter case (for example, one and two proces- 
sor experiments), we were able to predict the perfor- 
mance of the load/store kernels to within 10% error 
using simple cycle counting techniques i.e., inspect- 
ing the assembly code and computing the total ex- 
ecution by summing up the timings of elementary 
instruction, augmented by certain empirically deter- 
mined quantities. Such a simple technique proved to 
be very powerful and accurate even in the fall-off re- 
gion. For this region, the situation was a bit more 
complex due to the fact the fact that there is a mix 
of hits and misses. We used a straightforward model 
of the direct-mapped cache in order to determine how 
accesses will be directed to cache versus memory. The 
resulting prediction gave good results. 

In the former case (saturation of one component; 
four and eight processor cases), the situation is dif- 
ferent. First, the numbers provided by the manufac- 
turer (peak bandwidth) were inadequate. Further- 
more, knowledge of the protocol used in handling ex- 
changes between the different levels of the hierarchy 
did not help to determine quantitatively the loss in 
performance due to saturation. This was due to the 
complexity of memory transactions from the presence 
of multiple address streams. 

In such cases, controlled experimentation of the 
load/store type is crucial. This is particularly true 
when the experimental results can be deduced from 
more elementary data via relatively simple combina- 
tions. For example, the behavior of complex load 
patterns could be accurately approximated by aver- 
aging corresponding component load kernel results. 
We observed similar properties for the more complex 
parameter variations such as the hit ratio series of 
experiments. 

The basic conclusion is that for the Alliant FX/8, 
and most likely for similar architectures, careful com- 
bination of local analytical models and empirical ob- 
servation can characterise the performance of the 
memory system. 

4.2 Performance prediction 

The performance prediction proceeds in three basic 
steps. 

1. 

2. 

3. 

Building a database of experimental points in 
the parameter space. This experimentation can 
be conducted fairly systematically by for exam- 
ple sweeping first the parameter in a very coarse 
way, then by refining further the investigation 
(increasing the number of experimental points) in 
regions where the performance gradient is large. 

Extracting from the test code (to be anaiyred) 
the value of the parameters which allow us to 
establish a correspondence between experimental 
points and the test code. 

Using simple analytical models, interpolate the 
predicted performance from the experiments 
which are the closest in the parameter space. 

Let us focus on the second problem. In our case, 
following the choice of parameters, we need to de- 
termine from the source code hit ratios (i.e location 
of the operands), temporal distribution, patterns of 
accesses, strides. In fact most of these parameters 
(except the location of the operands) can be deter- 
mined by inspection of the assembly code generated 
from the loop studied. This analysis at present is done 
manually, but many of the software analysis tools to 
calculate the required parameters exist and will be 
integrated into a performance prediction tool in the 
near future. 

Predicting the location of an operand is more com- 
plex. The simplest solution is to consider the two 
extreme cases: either all the operands coming from 
cache (upper bound on the performance) or all the 
operands coming from memory (lower bound). Unfor- 
tunately, these approximations can give a very large 
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range of potential performance. In the case of linearly 
indexed array, which is a very common case in numeri- 
cal computations, the problem can be solved using re- 
cently proposed data dependence analysis techniques 
[6]. Moreover, these techniques also allow the compu- 
tation of the total number of distinct references to an 
array and a static estimate of the cache hit ratio. 

Our present and future work on this topic include: 
the verification of the approach on more complex loop 
structures; the refinement of multiprocessor predic- 
tion; further integration of the data locality estimates 
into the prediction process; and the extension of the 
approach to more complicated architectures such as 
Cedar. In ail cases, careful attention is given to de- 
termine the possibility of automation of the process. 
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