
Data Interpretation and Experiment Planning

Moderator: Allen D. Malony
University of Oregon.

in Performance Tools

Session Abstract
The parallel scien~c computing commtmity is placing

increasing emphasis on portability and scalaliiity of programs,
languages, and architectures. This createsnew challenges for
developers of parallel ~rformsnce analysis tools, who will have to
deal with increasing volumes of performance data drawn from
diverse platforms. One way to meet this challenge is to incorporate
sophisticated facilities for data interpretation and experiment plan-
ning witbin the tools themselves, giving them increased flexibility
and autonomy in gathering and selecting prfonnance data. This
p~el discussion brings together four resemch groups that have
ma& advances in this direction.

A Formal Theory of Performance Diagnosis Processes
B. Robert Hehn

University of Oregon

We are currently developing performance analysis tools for a
portable, scalable, high-level progr -g l~g~ge, @H. The
features of this language have raised some fundamental challenges
for our research

. Because the language implementation is sculuble, programs in
@i-t might run on anywhere from one processor to thousands,
with runtimes ranging from milliseconds to days. How can we
help programmers collect enough dam but not too much, over
such a wide range of program scales?

. Because programs in pt%- areportable, they might run on
numerous platforms, from small-scale shared-memory
machines to large-scale distributed systems. Each platform has
its own characteristic performance concerns and measurement
characteristics. How cat we help programmers select useful
performance metrics and d~plays over such a diverse range of
architectures?
We do not believe any single data collection and analysis strat-

egy Cm meet thesechallenges. What we require instead is a f~~
dteory of performance diagnosis processes. Such a theory should
describe the strategies by which programmers assessand explain
perforn-umceproblems. The theory should predict where a strategy
will work well, and where it will not. Formally encoded in a per-
formance tool, the theory could help programmers plan efficient
experiments, and configure the tool to support those experiments.

We have &velo~d a theory of psrallel performance diagnosis
processes,baaed on formal models of diagnosis developed for
other fields. We have used our theory to describe performance
diagnosis casestudies involving lmth performance tool developers
and scientific programmers. The results of these studies show that
the theory is useful for describing performance diagnosis methods,
and for evaluating performance tool features. The theory and the
results of these studies are being incorporated into POirOt,a toolkit
for managing performance diagnosis.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMETRICS ’95, Ottawa, Ontario, Canada
0 1995 ACM 0-89791 -695-6/95/0005 ..$3.50

Online Semi-Automatic Performance Debugging
Jeffrey K. Hollingsworth
University of Maryland

Large parallel and distributed systems are being built to meet
the computing needs of scientific applications and commercial
databasesystems. Due to their complexity, it is not possible to
completely model and analyze these systems off line. InSt@ it is
vital to monitor a running system and understand what perfor-
mance problems exist. However, due to the rate of computation
and communication, monitoring all aspectsof every processor and
communication link is not practical. Even monitoring relatively
small systems today can generate gigabytes of data every second.
But to un&rstand the performance of these large systems, we need
to collect sufficiently detailed information to isolate the problem.
To handle this dilemma requires new approaches to performance
measurement,

We have been developing a new approach to performance mon-
itoring called Dynamic Instrutnentatiom which differs horn tradi-
tional data collection because it defers selecting what data to
collect until the program is running. This permits insertion and
alteration of the instrumentation during program execution. It also
features anew type of data collection thar combines the low data
volume of sampling with the accuracy of tracing. Jnstrumentation
to precisely count and time events is insented by dynamically mod-
ifying the binary program. These counters and timers are then peri-
odically sampled to provide intermediate values to higher level
consumers of performance data. Based on this intermediate data
changes are made in the instrumentation to collect more infortna-
tion to further isolate the bottlencxk.

While tool builders work to efficiently collect dat~ users are
being inundated with mounds of statistics that require a perfor-
mance expert to interpret. The rweseveral w ays to manage this
information overload problem. FirsL we need monitoring tech-
niques that are demand driven rather than supply driven. Just
becausewe can collect some bit of data doesn’t (necessarily) mean
we should collect it, Secon~ as the data is collecq we must help
users to sort through it to identify performance problems. We have
been developing a strategy called the W3 Search System to provide
users with answers to their performance questions. The goal is to
develop performance measurement tools that assistprogrammers
by automating the search for performance problems.

When looking for a performance problem by han~ programm-
ers (generally) start from a high level view of their application
and iteratively isolate the source of a performance problem to
more specific components of their application. The W3 Seaxch
System provides this same approach by iteratively answering three
questions: why is the application performing poorly, where is the
bottleneck and when does the problem occur. To answer the why
question, tests are conducted to i&ntify the type of bottleneck
(e.g., synchronization, I/0, computation). Answering the where
question isolates a performanm bottleneck to a specific resource
used by the program (e.g., a dwk system, a synchronization vari-
able, or a procedure). Answering when a problem occurs, tries to
isolate a bottleneck to a specific phase of the program’s execution.

We have built an initial implementation of Dynamic Instrumen-
tation and the W3 Search System aspart of the Paradyn Parallel
Performance Monitoring Tools. Several real parallel application

62

IXOWIIIS have been measured using the system, and the results
have been encouraging. F~st, for each of the applications studi~
several significant performance bottlenecks have been identified.
Second the volume of data gathered has been two to three orders
of magnitude less than event logging (tracing) would generate.
l%ird the perturbation of application execution time has been
under 10%.

Performance Measurement for High-Level Parallel Pro-

gramming Languages
Barton P. Miller

University of Wkconsin

High-level parallel progrsmrnin g lsnguagea promise to make
programmers’ lives easier. They offer portable, conceptually com-
pact notations for specifying parallel programs, and their compil-
ers automatically map programs onto complex parallel machines,
ffee.ing programmers from the difficul~ error-prone, and some-
times ineffective task of specifying parallel computations explici-
tly. Unfortunately, effective performance measurement took for
high-level parallel progr amrning languages are dtificult to ‘build
becausethey must account for implicit low-level activities created
by compilers and must present performance information about
those activities in terms of the source code language.

We argue that performance measurement (and other) tools
must support two basic features: (1) performance information that
is relevant to the high-level source code, and (2) the ability to peel
back layers of abstraction to examine low-level problems while
maintaining references to the high-level source code that ulti-
mately caused the problem. The first pint is generally agreed
upon, and we feel that the second point is equally as important.
We make this point because while high-level language abstrac-
tions hide the gritty details to speed the building of parallel pro-
gram, these abstractions also hide the causesof performance
problems.

We have built a facility into our Psradyn Parallel Perfomwmce
Tool that can present performance information at multiple layers
of abstraction. In ParadyIL a level of abstraction includes a collec-
tion of code and data objects, snd the operations on these c)bjects.
Performance data may be presented in terms of obvious high-level
constructs, such asparallel loops, or less obvious ones, such as
parallel arrays. Performance data can be view in terms of these
parallel constructs, or in terms of the primitive computation and
communication operations. Our prototype implementation can
handle data-parallel Fortran (CM Fortran) and has been used to
make significant performance improvements in real applications.

Interactive Parallel Programs: The On-line Monitoring

and Steering of High Performance Codes
Karsten Schwan

Georgia Institute of Technology

Our group is constructing and experimenting with parallel pro-
grams that simultaneously run on a variety of parallel machinea
lirdced with high performance networks. The primary purpose of
our research is to exploit these machines’ capabilities to otlfer
human-interactive interfaces that can execute simultaneously with
a program’s computational and communication tasks. Speci.tically,
we are exploring the potential for incresaes in perforrnartca and
functionality gained by the on-line interaction of end users with
their supercomputer applications on single and on networked psr-
allel machines. Therefore, we are concerned with human or slgo-
rithm interactions with the programs themselves, called
“interactive pro~sm steering”.

The program steering addressedby our work encompassed
rapid, on-line program changes that require built-in, customized

monitoring algorithms determiningg and enacting such changes. It
also includes gradual changes to long-runnin g real-time programs
and scientific applications that interact at human speedsvia user
interfaces. In any case program steering is based on the on-line
capture of information defining current program and configuration
state, and it assumesthat human users or algorithms inspect such
information and manipulate it to make steering deciiions.

Our current work focuses on the opportunitiea and costs of on-
line monitoring and steering with two substantial parallel spplica-
tionx (1) a molecular dynamics simulation MD used by physicists
for exploration of elementary properties of lubricants, and (2) an
atmospheric modeling code used by scientists for global atmo-
spheric modeling. We demonstrate the potential of improving per-
formance by on-line steering with initial experimental results
attained on shared memory multiprocessors, An experimental sys-
temfor the on-line monitoring and steering of parallel programs --
the Falcon system -- is used in interactive runs of the MD and atmo-
spheric codes. Using Falcon can improve program performance
substantially because it allows users to manipulate the programs’
data decompositions in or&r to balance the loads among different
parallel execution threads. Using Falcon can also improve the effec-
tiveness of end users and developers alike because it allows both to
create, us~ and inspect visual presentations of program output
along with animated d~plays of program performance information.
Such information is gathered via Falcon’s monitoring syste~ which
enables the on-line capture, analysis, and dwplay of the program
information that is required for program steering.

New research topics must be addressed in order to emableand
facilitate on-line monitoring and steering. Firsg monitoring and
steering must be performed in the abstractions familiar to end users,
such as ‘global energy’, ‘particle locations’, etc. Such application-
specitic monitoring is neither easy to implement nor readily avsil-
able in current performance-oriented program monitoring systems.
%con~ since one purpose of program steering is the on-line
improvement of program performance, not only on-line monitoring
must be ‘cheap’ relative to the frequency of steering actions, but
also, more importantly, monitoring overheads must be controlled
and contained throughout program execution. This implies that the
monitoring system itself must be steered in terms of the amounts of
information being collected, the tkxp.mncies of information collec-
tion, etc. Third for on-line program steering, it is typically impor-
tant to reduce or at least control the latency between event
occurrence in the program and event processing or visualization by
the monitoring system This requires mechanisms that differ from
the event files or trace files employed in current systems. Last but
not lesa~ many issues exist with respect to the on-line presentation
of program informati~ using visual or even textual interfaces. For
instance, the order in which the program information is produced by
the monitoring system typically does not correspond to the order in
which program events occur. Therefore, on-the-fly event reordering
becomes necessary.This also implies that on-line information anal-
ysis cannot always employ existing implementations of statistical
analysis tools or of graphical display tools, due to the disordering
of events being received and due to possible incompleteness of
information.

To realize on-line program steering, it is also important to sup-
port end users in performing steering tasks in terms of(1) models of
the parallel program tAmg constructed typically available in part
from compilers and other program construction tools snd/or (2)
models of the parallel program’s execution and functionality with
which end users are familiar, often presented by data and program
visualization tools. Our research is addressing bow by construction
of an interactive program tuning tool capitaltimg on program infor-
mation available from compilers, and by construction of interactive
data visualizers and manipulators, again using the aforementioned
MD and atmospheric modeling codes.

