Faust: An Integrated
Environment for
Parallel Programming

Designed for the
development of large,
scientific applications,
Faust includes several
new tools and
integrates existing
tools. Some
components will be
ready for public
distribution this year.

20

Vincent A. Guarna, Jr., Dennis Gannon, David Jablonowski, Allen D. Malony,
and Yogesh Gaur, University of liinois at Urbana-Champaign

jointactivities of editing, debugging,
and tuning complex applications de-
signed to run on parallel architectures.
Faustisaworkstation-based programming
environment for scientific applications
being developed at the Center for Super-
computing Research and Development at
the University of Illinois.

(Although Faust was named with no un-
derlying acronym or rationale, it has oc-
curred to us that completing the project
may require a deal with the devil.)

Faust is intended to provide a toolset for
programming parallel machines. We have
three major goals:

* To design and implement a set of new
tools specifically designed to help develop
efficient parallel programs. This includes
interactive compilation and optimization
tools and facilities for debugging and ana-
lyzing performance in a parallel environ-
ment.

oday, many environments are being
constructed to coordinate the dis-

0740-7459/89/0700/0020/$01.00 © 1989 IEEE

* To integrate these new tools with exist-
ing tools such as system text editors and
compilers without modification. To be ef-
fective, a computing environment must
offer an integrated set of functions and a
uniform user interface.

® To ensure portability. Although
Faust’s basic platform is a bitmapped
workstation running Unix, we expect it to
run on a variety of hardware. To accom-
plish this, we have layered all user-inter-
face libraries on top of the X Window Sys-
tem and we have designed all file
operations to work on a single file-name-
space system, such as NFS from Sun
Microsystems.

Architecture. Figure 1 shows Faust’s or-
ganization. At the user level are applica-
tion-development utilities. Included at
this level are traditional Unix develop-
ment tools such as system text editors and
compilers and Faust’s parallel-program-
ming tools such as a performance-evalua-

IEEE Software




tion facility and interactive compilation
tools.

As Figure 1 shows, these tools access the
file system through the Project Manager, a
hierarchical database manager that Faust
uses to associate related objects in way that
conceals the network. The Project Man-
ager also provides a locking mechanism
that lets you share project components in-
side and outside Faust.

At the lower right in the diagram is
Faust’s user interface, shown as a layer of
building blocks available to the Faust
tools. The building blocks comprise inter-
face utilities that do basic I/O operations
with X Windows. This layer also maintains
the hierarchical program abstraction,
which lets you view programs in varying
levels of detail — from a low-level textal
view of source code to a high-level graphi-
cal view of function and task relationships.

Project database

In Faust, all applications work is done in
the context of projects. The project is the
unifying theme in Faust, serving as the
focal point for all tool interactions. A proj-
ect roughly corresponds to an executable
program. Faust achieves functional inte-
gration through operations on common
data sets maintained in each project.

Project Manager. The Project Manager
organizes and manipulates project com-
ponents. These components, called ob-
jects, typically represent Unix files. A sim-
ple project might consist of a single
executable program and its associated
source, object, and include files. A com-
plex project might include many execut-
able programs, libraries, and data reposi-
tories from tools like the performance
analyzer.

Projects and objects are identified in an
object name space that is independent of
the file name space. This lets you assign
object names that relate to the project in-

July 1989

stead of forcing you to use file names with
directory prefixes that have been estab-
lished by a system administrator. An inde-
pendent object name space also means
that the location of a physical file, and
thus its network path, can change while
the associated object path remains con-
stant.

This naming scheme is important be-
cause Faust is designed to be a multiuser,

In Faust, the project is
the unifiying theme,
serving as a focal point
for all tool interactions.

distributed, heterogeneous environment,
where distributed project creation and
file migration are likely. By keeping object
names constant, Faust insulates users and
tools from the details of absolute file paths

and machine names.

The Project Manager organizes a
project’s objects by building a directed
graph, where nodes are objects and arcs
are named relationships between objects.
Applications and users control a relation-
ship’s name and the objects associated
with it. For example, an object represent-
ing a librarywould be related to all its con-
stituent objectfile objects via the relation-
ship named obj.

In the spirit of the Unix Make utility, you
can define a relationship to be a time-
based dependency; this supports object
consistency. An object is consistent if its
last-modified time is more recent than the
last-modified times of all of the files on
which it depends. If an object is found to
be inconsistent, it can be made consistent
by executing a script of commands associ-
ated with it.

Such a build script can contain com-
mands for any node in the heterogeneous
system; Project Manager servers wait on
each node to execute the commands for
that node. By creating scripts that com-
municate with these special demons on

{ Faust Tools (editors, compilers, debuggers, performance tools)

Faust building blocks

Graph Interface tools | Text manager
manager/browser
X
Windows

Figure 1. Faust organization.

21




Comparing Faust

The labels attached to programming environments are so ill-de-
fined as to be almost interchangeable: scientific-programming envi-
ronments, software-engineering environments, software-
development environments, and so on. Indeed, a survey by
Fedchak' found that the development of these environments is

a program’s modules or a static analysis of procedure relationships.
Faust also uses abstractions to give the user a graphical view of file
and subroutine relationships.

SIB. The Software Information Base was developed by General

driven by specific needs and goals.

driven by the same goals.

Therefore, we compare Faust with four development efforts

Telephone and Electric.” SIB is an elaborate data model, or object
base, that stores a project’s data over the entire life cycle. SIB seeks
to improve integration: lts objects can have types, classes, super-
types and subtypes, and superclasses and subclasses. In the spirit

ParaScope. ParaScope, an extension of the R” environment, is
being developed at Rice University.2 ParaScope focuses on restruc-
turing sequential Fortran to parallel form. It supports both automatic
and manual, interactive restructuring.

ParaScope has integrated restructuring editors, compilers, and a
parallel debugger. While Faust is also designed to help restructure
sequential code, it is more flexible than ParaScope in that it lets you
integrate arbitrary tools into its environment.

Sigma is more closely related to ParaScope than to two other
restructuring tools, Ptran® and Parafrase Il,* both of which work on a
database of program dependency and interprocedural information.

AISPE. The framework of the Advanced Industrial Software Pro-
duction Environment is more general than Faust's.® AISPE is a soft-
ware-production environment that attempts to support the entire life
cycle. AISPE acts as extemnal shell around the operating system to
filter user commands and actions. This shell lets developers inte-
grate commercially available tools.

AISPE's object handler manages objects that constitute projects.
In AISPE, objects undergo state transitions, using high-level petri
nets as control structures. Although AISPE's integration efforts are
more ambitious than Faust’s, it addresses neither parallel program-
ming nor distributed processing in a heterogeneous system.

MicroScope. Hewlett-Packard’'s MicroScope project uses a
knowledge base for project managemem.G The knowledge base
consists of frames and inference rules. Aframe’s data may include
procedural scripts or methods for computing objects in the knowl-

of formal database theory, SIB defines its model’s internal, concep-
tual, and external layers.

Because of its generality and complexity, SIB has had perfor-
mance and user-interface problems in its initial prototypes.

Both MicroScope and SIB share some of our project-manage-
ment goals, with SIB's goals being much more ambitious. However,
how these goals are achieved are very different in all three environ-
ments. MicroScope's and SIB'’s primary goals are limited to project
management. Faust uses project management to provide high-level
integration for development tools, but its overall goals are much
broader.

References
1.

n

w

4. C. Polychronopoulos et al., “Parafrase II: A New-Generation Paralleliz-

o

6. J. Ambras and V. O'Day, "MicroScope: A Knowledge-Based Program-

. F. Allen et al., “An Overview of the Ptran Analysis System for Multipro-

E. Fedchak, “An Introduction to Software Engineering Environments,”
Proc. Computer Software and Applications Conf., CS Press, Los Al-
amitos, Calif., pp. 456-463, 1986.

D. Callahan et al., “ParaScope: A Parallel-Programming Environment,”
Tech. Report Comp TR88-77, Rice University, Houston, 1988.

cessing,” Supercomputing, E.N. Houstis, T.N. Papatheodorou, and
C.D. Polychronopoulos, eds., Springer Verlag, Berlin, pp. 194-211.

ing Compiler,” Proc. Int'| Conf. Parallel Processing, CS Press, Los Al-
amitos, Calif., to appear, 1989.

G. Bruno, P. Spiller, and |. Tota, “AISPE: An Advanced, Industrial Soft-
ware-Production Environment,” Proc. Computer Software and Applica-
tions Conf., CS Press, Los Alamitos, Calif., pp. 94-99, 1986.

ming Environment,” JEEE Software, May 1988, pp. 50-58.

edge base.

MicroScope is concerned with effectively conveying program
structure through views. Aview may show the relationships between

7. J.H. Kuo and H.-C. Tu, “Prototyping a Software Information Base for
Software-Engineering Environments,” Proc. Computer Software and
Applications Conf., CS Press, Los Alamitos, Calif., pp. 38-44, 1987.

other machines, the Project Manager im-
plements a remote compilation and exe-
cution facility.

Because Faust is a multiuser, distributed
environment, the Project Manager in-
cludes a central server to administer locks.
All Faust tools access the project database
by first requesting arbitration and file-
location services from the Project Man-
ager, then using conventional Unix file
I/0.

Named relationships among objects
make it possible for the Project Manager
to answer queries from the Faust tools. In
the obj relationship, for example, an exe-
cutable program’s object files are con-
tained in the set of objects that are destina-
tion objects in the obj relationship. These
objects can all be reached from the object

22

that represents the executable. Such que-
ries are most often made by the Faust per-
formance tools, which must modify a
program’s object files to generate data at
runtime.

Database components. The Project
Manager maintains eight types of files for
every Faust application:

* Executable: The ultimate target ob-
ject.

® Source: The original program text
written in Fortran or C.

* Object: Intermediate files generated
by system compilers when they produce
an executable program.

* Assembler: Assembly-language ver-
sions of the source produced by the sys-
tem compilers. The Project Manager cre-

ates these for reference by the perfor-
mance-prediction tools.

® Dependency: Symbol-table and data-
dependency information collected by
Faust compilers for reference by the re-
structuring environment described later.

® Program graph: A static call graph
used by Faust’s graphical browser.

® Execution trace: Collected at runtime
as a result of monitoring by performance-
evaluation tools. These trace files are ref-
erenced by performance-analysis and vi-
sualization tools.

® Annotation: Detailed information
about modifications applied to applica-
tions on behalf of Faust tools. For exam-
ple, every execution trace done by perfor-
mance-analysis tools has an annotation
file that contains a detailed description of

IEEE Software



the performance data collected and the
reason for collecting it.

Graphical Make file. One development
tool that you can easily construct with
Faust’s building blocks is a graphical ver-
sion of the Unix Make utility.

Faust’s graphical Make-file editor lets
you create a directed graph to show pro-
gram dependencies, as shown in Figure 2.
At the root of the graph, or tree, is the
executable object. The next level contains
all the object files needed to generate the
executable object. Each object file is itself
the root of a subtree that contains all the
files needed to generate it.

The graphical Make-file editor high-
lights those executable files that are out of
date or inconsistent by drawing a box
around their node, as Figure 2 shows. This
reminds you which recompilations you
must perform. You can specify that a cer-
tain subtree be recompiled or you can let
the system perform all necessary build op-
erations.

Userdevel tools

Sigma! is a Faust tool designed to help
users of parallel supercomputers retarget
and optimize application code. Sigma
helps you either fine-tune parallel code
that has been automatically generated or
optimize a new parallel algorithm’s de-
sign.

At its lowest level, Sigma is a mouse-
based, multiwindow text editor with a
shell interface that can be used the way
most programmers use Emacs. (In fact, we
are developing an Emacs front end.)
Sigma’s power, however, lies in its inter-
face to the Faust program database.

An application’s project database con-
tains

® a complete data-dependency analysis
(both inner and interprocedural) of the
application’s source files,

* a controlow graph with enough in-
formation to regenerate the original
source file (including comments), and

¢ a sunmary and analysis of the object
code generated by the compiler.

The database can support either For-
tran with Alliant’s vector and parallel ex-
tensions, Cedar Fortran (a Fortran 8 X ex-
tension designed to exploit the Cedar
multiprocessor), and C. The database also

July 1989

CPROJECT MaNagER T

gb2_disp.c

gb2_addarc.c

gb2_errmsgs.c

Figure 2. Using the graphical Make-file editor to create a directed graph of program de-
pendencies. Nodes that are out of date or inconsistent are boxed.

supports a parallel, object-oriented C ex-
tension similar to C++ and Cedar Parallel
C. The only target machine that now sup-
ports objectcode analysis is the Alliant
FX/8, but we are working on an analyzer
for the BBN Butterfly and Ardent Titan.

After the Project Manager builds an ap-
plication, it uses special parsers to gener-
ate a project database, which you query
with the Sigma editor. For example, when
an application’s source file is displayed,
you can select (with a mouse) an item
such as a variable or function name and
make queries and issue commands like:

® Where was this variable initialized or
last modified?

* Which routines modify or use this vari-
able?

® Whatside effects does a call to this pro-
cedure or function generate, and which
segments of array parameters are used or
modified?

® Can this loop be parallelized or
vectorized? If not, which variables pro-
hibit concurrency?

o If this variable is a pointer to a C struc-
ture (or objectin a C++ class), whatare the
fields (operators) in that structure (ob-
ject)?

* Generate an estimate of the caches’ hit
ratios for array objects in this code seg-
ment.

® Generate an estimate of code effi-
ciency (measured in floating-point opera-
tions per second) for this code segment.

* Draw this function’s static call graph.

® Draw this code segment’s data-depen-
dency graph.

With this kind of access to an appli-
cation’s semantics, you can work with the
system to restructure the code for a target
architecture.

In addition to semantic data, the graph-
ical representation of the code’s internal

form lets you guide the system in trans-
forming the form. In this mode, you select
a program segment you want to modify.
Faust then presents you with a menu of
predefined program transformations, in-
cluding loop vectorization, paralleliza-
tion, interchanging, blocking, distribu-
tion, and some machine-specific
transformations. We are adding other
menu options, including subroutine ex-
pansion and encapsulation and variable
localization. If you try to transform the
program in a way that violates its original
semantics, you are warned that the trans-
formation will change the program’s
meaning.

Sample scenario. Sigma is designed to
help users port large applications to paral-
lel computers.

In any porting effort, the first step is to
use any automatic restructuring tools that
are available. For large programs, these
tools will sometimes provide the needed
performance without significant pro-
grammer effort. Unfortunately, these
tools often fail to extract medium- and
coarse-grained parallelism from the
program’s higher levels. Yet this is often
the type of parallelism that is best sup-
ported by multiple-instruction, multiple-
data machines like Cedar.

Therefore, after the code hasbeen com-
piled and the performance information
loaded into the database, the program-
mer may want to improve on the
parallelization. The next step is to begin
restructuring the program by transform-
ing code segments to express more paral-
lelism.

As a simple example, Figures 3 and 4
show a Sigma session in which the pro-
grammer is investigating a simple matrix
times a vector subroutine. In Figure 3, the

23



e ———
subroutine matvBoim, n.a, = y7

nteger m.n
resl alm. i,

: cucles =
Concurrent Prolog Start
S: 12 [ cucles = 26 ]

Concurrent Loop Start 1 =
S: [ cucles = 26 3
Vector Loop Start 1 =1 :n
S 7, Vv 2 [ cycles =
Vector Loop End
: [ cycles = 11 ]
Concurrent End
S: 1 [ ecycles = 1 3

1 :m

Iritial

subroutine matvecim,n.a,x,y)

101 3

5 (m=1+10 8= {26+ 0n-1411/32»101+11)+1

Samplified o 3E+rosgsdTmsnpe 10 ]e i 320

lPr‘ok;ec T [Thgect ]Tr anstorm g

<),

g

Figure 3. The Sigma restructuring tool. The programmer has highlighted the Do /loop for
object-code analysis. The Edit Transcript window shows the object-code summary.

programmer has sclected the Do 7 loop
for object-code analvsis. The Edit Tran-
script window shows a summary of the re-
structuring that was done automaticatly by
the Alliant compiler and an algebraic ex-
pression representing the cvele count for
the loopin terms of the number of proces-
sors (denoted by the svinbol #p) and the
loop bounds. The summary lists the con-
current and vector looping strucuure, the
number of scalar instructions (denoted by
S, the number of vector instructions (de-
noted by Vi), and the total evele count for
the corresponding basic block.

If he decides that the compiler did a

poor job, the programmer can restruc-
ture the segment to produce the program
in Figure 4. The first ransformation inter-
changed the Do fand Do jloops. The see-
ond transtormation blocked the Do iloop
byatactorot 32, generating a Do i_T loop.
This caused the inmermost loop to have a
length ideal for the vector registers in the
Alliant FX/8. In doing this, the compiler
generated two temporaries, 210 and ztl,
which are partof the index computations.
The Do i_T loop was then carried to the
outside by another transtformation and

the innermost loop was vectorized. All off

these actions are carried out by by select-

return

=rnd

=

Figure 4. Restructuring the segment from Figure 3 to improve parallelization.

24

ing the loop to be modified and then se-
lecting the the appropriate action from
the Transform menu.

To illustrate Sigma’s ability to check the
semantics of a transformation, in Figure 4
the programmer has requested that the
inner loop be parallelized. The system re-
fused to complete the transformation for
the reasons shown in the Edit Transcript
window.

Performance evaluation. Faust includes
a dynamic call-graph tool.? This tool
shows an animated view of a program’s ex-
ecution to help vou understand its opera-
tion, similar to techniques described bv
Mevers® and Brown.* The dynamic call-
graph tool displavs the dynamic execu-
tion of a parallel program in the context
of the original subroutine interconnec-
tion graph that Faust generates automati-
cally.

Figure 5 shows 10 windows from Faust’s
graph browser, cach showing some part of
a program’s exccution. The target system
for this display is the Alliant FX/8 with
eight processors. The first eight windows
show the state of execution on cach pro-
cessor. The Sequential window shows the
state of the program'’s call graph when it
transitioned from a sequential-execution
modec to a parallelexecution mode. The
Global window shows the union of the
views,

Impact. Faust's Integrated, Multipro-
cessor Performance-Analysis and -Charac-
terization tool set integrates its tools that
collect performance data with tools that
analyze and display performance results.
Lately, we have concentrated on develop-
ing Impact’s eventdisplay tool. This ool
traces multitasking events and displayvs
themin a ime line.

Figure 6 shows a screen of the Impact
event-display tool. In the main control
window (upper left), the user can select
the trace dircctory, which stores the
traced files; the event-definition file,
which describes the event types found in
the trace; and the event-trace file, which
containsa ime-sequenced list of all gener-
ated events. The Project Manager chooses
some default directories and paths, but
you can override these defaults.

After you specify the files, Impact first

IEEE Software



reads the event-definition file and then
the trace-data file, using the event descrip-
tions to interpret the trace input. After it
reads all the trace data, Impact generates
the global-trace statistics, shown in the
bottom half of the screen. Impact also cre-
ates an internal trace-file index to support
rapid event searches and it maintains an
event cache to reduce disk transfers.

A task group is responsible for display-
ing the events associated with a task. A task
group defines a time window for the trace.
Events for tasks that have been assigned to
a task group by the user will be displayed
in the task display only if the time at which
they occurred is within the task group’s
time window.

In the display, the task group is shown at

the bottom and is represented as a time
line. The controls to change the time win-
dow are the Start, <<<<, Zoom In, Zoom

Figure 5. The dynamic call-graph browser. The top eight windows show the execution
on each processor. The Sequential window shows the state of the call graph when it was
transitioned and the Global window shows the union of the views.

IMPACT B X Main_entry
O X Main_exit
Trace Directory :tests :
Event Definition File :eventdefs B K Routine RA_entry
gracs iil e 21: programi. trace B K Routine_A_exit
vent types :
Total events: 2000 Total tasks s B K Routine_B_entry
Start : 0 End: 19990 Elapsed Time : 19990 B © Routine_B_exit
5] Routi ne_C_entry
O P7 é oE—R M K Routine C_exit
P6 i
T Ps o BOBEQCOEE
2 P4 * ‘moemECE
s — 9N _ e
k P3 -8 h 5 ; NEDOE BB
1 P2 L
J %
Pl 7o %E 8 o BEOVEDM&
PO I} i * « B R
& 7 // & =088
P6 m% Ad r h © é
I PS5 olevent: Loop_Matmul _exit N
s P4 [{{Time: 4020 ﬁ? -
k P3 Event: Loop_LU_exit [ﬂi HE—
0 P2 Time: 4830 4| L
P1 AR %ﬂ %—‘ A —
PO {C} ¥ot & K 5
0 T T T T T T —T
Y & 44080 48080 5288 56808 66808 6408 68080
T ST
r ART ﬂ <<<<< ]rzoon INT Z00M OUT H >>>>> H END J

L

Figure 6. The Impact event-display tool.

July 1989

25



Out, >>>> and End buttons.

Faust provides icons for viewing the en-
tire task group and its associated displays,
scrolling bewtween viewable tasks in the
oun, serolling b i

, SCY

g !
and attaching new tasks to the group. Fi-

nally, Faust lets vou view multiple task
groups in different time windows simulta-
neously.

Each task display shows events for cach
active processor. (Impact will be used on
the Cedar machine, where tasks execute
on Alliant FX/8 clusters and may use all
cight processors on cach cluster.) Impact
draws a horizontal line for cach active pro-
cessor. When the execution is sequential,
Impact draws a horizontal line for proces-
sor 0 only.

In Impact, every event specified in the
cevent-definition file has a unique icon.
Events are placed in the task display at the
point given by the processor ID where it
occurred and the time when it occurred.
Depending on the time-window's resolu-
tion, event icons mav overlap. As Figure 6
shows, vou can request details about an
event by clicking on its icon (shown for
two events in Task 0). This is useful when
vou forget what an icon represents or
when youwant more dataabout the event.

In the event-control window in the
upper right, users can change which
events will display and how theyv display.
This window lists every event from the
event-definition file, its event-dcon assign-
ment, and the state of its visibility. You
click on the event icon to get a paletie
(shown just below the event-control win-
dow) of icons from which you can select a
new icon. You click on the visibility box to
toggle the event'svisibility in the display.

In the event-control window you can
also categorize events and abstract them
into groups, such as subroutine entry,
which are treated as a single logical event
in the display. For example, making the
icon for all events a black box gives you a
sense of the number and density of events
in a time window without the confusing
clutter of all the event icons. Similarly,
making all events invisible will show you
the processor activity lines only, from
which you can readilv identify sequential
and concurrent execution transitions.

The Impact eventdisplay tool also lets
you search for events by task group, sct

26

marks at different points in time, and
dump task displavs to files. We plan to de-
velop displays that will use the event data
to view task-level activity and will show re-
sults from more Cxle/nsi\.'r cvent-trace
analvsis. We also plan 1o implement a sin-
gle thread task display.

We have used the Impact event-display
tool in several performance studies, such
as the design of a parallel circuit simula-
tion code. Our inital reaction is that ob-
serving a program’s event sequence is
valuable in identifving performance-limit-
ing behavior. However, we need to better
integrate Impact with other Faust tools so
auser can access all the information about
aprogram in a common framework.

aust is far from finished. We are con-

structing other tools, including a

debugger, a roundoff-error an-
alyzer, and an on-line librarian. We expect
to continue adding and revising tools for a
long time.

Several tools have been deploved inter-
nally at the Center for Supercomputer Re-
search and Development as alpha re-
leases. These include the graphical Make
file, Project Manager, Sigma editor, and
the dynamic call graph and Impact tools.
We plan to make a public distribution of
some components later this year.

Reponse to the Sigma editor has been
good, although we can’t implement it
fully until we complete the integration.
We are particularly interest in studying
which benefits users derive from each
Sigma feature. We want to make a serious
analysis of each feature’s contribution be-
cause cach one is computationally expen-
sive. Keeping the features to a minimum
will help keep Faust interactive.

Our initial experience with the other
tools has been good. We have ported the
Faust building blocks — developed on
Apollo workstations — to Sun work-
stations and IBM PC RTs without prob-
lems. We think X Windows has worked

k3

well as a user-interface platform. <

Acknowledgments

Several people are responsible for the Faust
project. Bruce Shei, Dava Attapatu, and Jeng
Kuen Lee designed and implemented Faust's
database tools at Indiana University. We also
thank James Krause, David Kuck, Duncan
Lawrie, Paul Lewis, Joseph Pickert, and Dan

Reed for their efforts and continuing support.

Faustissupported in part by US Air Force Sci-
entific Research Office grant AFOSR-F49620-
86-(0136. National Science Foundation grant
MIP-8410110, US Energy Dept. grant DE-FGO2-
KIER25001, and IBM.

References
1. D. Gannon et al,, *A Software Tool for

Building Supcrcomputing Applications,”

Proc. Parallel Computations and Their Impact

on Mechanics, ASME, New York, 1987, pp.

81-92.

KA. Gallivan etal., “Performance Analysis

on the Cedar System, ™ in Performance Fvale-

ation of Supercomputers, J.1.. Martin, ed.,

North-Holland, Amsterdam, 1987.

3. BA Mevers, “Incense: A System for Dis-
playing Data Structures,” Computer Graph-
ies July 1983, pp. 115-125.

4. M.H. Brown, “Techniques for .—\‘lgorithm

RN AN I 1098
Hau 1703, pp.

1o

ATt
AIMAlion,

28-39.

ol B
SOftwidie, jail.

Vincent A. Guarna, Jr., is a senior softwarc engi-
neer and manager of the Faust project at the
Center for Supercomputing Research and De-
velopment at the University of Hlinois at Ur-
bana-Champaign. His research interest in-
clude programming environments, parallel-
programming tools, and restructuring compil-
ers for C.

Guarna is a doctoral candidate in computer
science at the University of THinois. He received
a BS in computer science from Roosevelt Uni-
versity, Chicago, and an MS in computer sci-
ence from the University of [llinois.

Dennis Gannon is an associate professor in
computer science at Indiana University and
part-time researcher at the Center for Super-
computing Research and Development. His re-
search interests are algorithm design, perfor-
mance analysis, tools, and graphics for parallel
processing.

Gannon received a PhD in mathematics at
the University of California at Davis and a PhD
in computer science at the University of Illi-
nois.

IEEE Software



David J. Jablonowski is a senior software engi-
neer at the Center for Supercomputing Re-
search and Development, where he specializes
in integrated environments.

Jablonowski received a BS in computer sci-
ence from the University of Wisconsin at Eau
Claire and an MS in computer science from
Boston University. He is a master’s candidate in
applied mathematics at the University of Illi-
nois.

Allen D. Malony is a senior software engineer at
the Center for Supercomputing Research and
Development, where he is manager of perfor-
mance-evaluation of the Cedar multiprocessor.
His research interests are parallel computa-
tion, multiprocessor architectures, and perfor-
mance evaluation.

Malony is a doctoral candidate in computer
science at the University of Illinois. He received
a BS and an MS in computer science from the
University of California at Los Angeles.

Yogesh Gaur is a doctoral candidate at the Uni-
versity of Illinois. His research interests are par-
allel computing, programming environments,
and restructuring compilers.

Gaur received a BTech degree in electrical
engineering from the Indian Institute of Tech-
nology, Delhi, and an MS in computer science
from the State University of New York at Buf-
falo.

Address questions about this article to Guarna at the Center for Supercomputing Research and Development, 305 Talbot Laboratory, 104 S. Wright

St., Urbana, IL 61801.

When it comes to choosing compilers,
MetaWare is the right choice!

Developing the next generation of software products is serious
business. You need the best tools to produce the best code. You

need MetaWare.

« Sun-3
* Sun 386i
¢ Sun-4

Supported Platforms (re: Dhrystones)
— >50% > resident compiler.
— >50% > resident compiler.
— >25% > resident compiler.

« PC: DOS, 0S/2— 3-10% > Microsoft C; 30%>MS Pascal,

Superior Compilers

A compiler that handles large programs with ease, while pro-
ducing the expected results, is the key to developing the highest
quality applications. Many of MetaWare’s customers say that
High C ™ and Professional Pascal ™ are the highest quality
compilers in the industry. They are reliable, and well documen-
ted, and their superior diagnostic messages help to produce better
products more quickly. There are no surprises with MetaWare
compilers.

Compiler Features

ANSI Standard with extensions * Generates small, fast exe-
cutables « Support of 80x87, Weitek 1167/3167, 68881, and
Am29027 math co-processors » Global common subexpression
elimination « Live / dead code analysis « Constant propagation,
copy propagation * Tail merging (cross jumping) * And many
more!

Multiple Platform Support

MetaWare uses its own Translator Writing System to create
all of its compiler products. Common components and library
functions are shared across the product line. Improvements to
compilers are quickly realized on all platforms.

MctaWare, High C and Professional Pascal are ks of MetaWare Incorporated:
UNIX is a trademark of AT&T: Other products mentioned are trademarks of the re-
spective companies indicated.

Lattice C.
« 386 32-bit DOS— No real competition.
* 286, 386 UNIX— 66% > than pcc on 386.

« VAX VMS  — = DEC’s excellent C and Pascal; Host for
cross compilers and TWS, not Native.

« VAX Ultrix ~ — 19% > pcc on Dhrystone;
much > Berkeley Pascal.

*RTPC — 93% > 4.3bsd port of pcc.

« AIX/370 — Much better than any 370 C and VS Pascal.

* AMD 29K — >40.000 Dhrystones.

« Intel 1860 — >70,000 Dhrystones at 33 MHz.

So when it comes to selecting a compiler company, you need
the best!

Can you really afford anything less?

MetaWare™

INCORPORATED

The Compiler Products for
Professional Software Developers

2161 Delaware Avenue + Santa Cruz, CA 95060-5706
Phone: (408) 429-6382 + FAX: (408) 429-9273

Reader Service Number §




