
Faust: An Integrated
Environment for

Parallel Programming

Wncent A. Guama, Jr., Dennis Ganmm, David Jablonowski, Allen D. Malony,
and Yogesh &MI& University of Illinois at UrbanaChampaign

Desimedforthe
development of large,

scientiifc applications,
Faust includes seveml

new toolsand
integMtes existing

fools. some
components will Ire

ready fiorpublic
distribution this year

T oday, many environments are being
constructed to coordinate the dis-
joint activities of editing, debugging,

and tuning complex applications de-
signed to run on parallel architectures.
Faust is a workstation-based programming
environment for scientific applications
being developed at the Center for Super-
computing Research and Development at
the University of Illinois.

(Although Faust was named with no un-
derlying acronym or rationale, it has oc-
curred to us that completing the project
may require a deal with the devil.)

Faust is in tended to provide a tool set for
programming parallel machines. We have
three major goals:

l To design and implement a set of new
tools specifically designed to help develop
efficient parallel programs. This includes
interactive compilation and optimization
tools and facilities for debugging and ana-
lyzing performance in a parallel environ-
ment.

0740-7459/89/0700/0020/%0 I .oO 0 1989 IEEE

l To integrate these new tools with exist-
ing tools such as system text editors and
compilers without modification. To be ef-
fective, a computing environment must
offer an integrated set of functions and a
uniform user interface.

l To ensure portability. Although
Faust’s basic platform is a bitmapped
workstation running Unix, we expect it to
run on a variety of hardware. To accom-
plish this, we have layered all user-inter-
face libraries on top of the X Window Sys-
tern and we have designed all file
operations to work on a single file-name-
space system, such as NFS from Sun
Microsystems.

Architecture. Figure I shows Faust’s or-
ganization. At the user level are applica-
tiondevelopment utilities. Included at
this level are traditional Unix develop
ment tools such as system text editors and
compilers and Faust’s parallel-program-
ming tools such as a performanceevalua-

IEEE Software

tion facility and interactive compilation
tools.

As Figure 1 shows, these tools access the
file system through the Project Manager, a
hierarchical database manager that Faust
uses to associate related objects in way that
conceals the network. The Project Man-
ager also provides a locking mechanism
that lets you share project components in-
side and outside Faust.

At the lower right in the diagram is
Faust’s user interface, shown as a layer of
building blocks available to the Faust
tools. The building blocks comprise inter-
face utilities that do basic I/O operations
with X Windows. This layer also maintains
the hierarchical program abstraction,
which lets you view programs in varying
levels of detail - from a low-level textual
view of source code to a high-level graphi-
cal view offunction and task relationships.

Project database
In Faust, all applications work is done in

the context of projects. The project is the
unifying theme in Faust, serving as the
focal point for all tool interactions. A proj-
ect roughly corresponds to an executable
program. Faust achieves functional inte-
gration through operations on common
data sets maintained in each project.

Project Manager. The Project Manager
organizes and manipulates project com-
ponents. These components, called ob
jects, typically represent Unix files. A sim-
ple project might consist of a single
executable program and its associated
source, object, and include files. A com-
plex project might include many execut-
able programs, libraries, and data reposi-
tories from tools like the performance
analyzer.

Projects and objects are identified in an
object name space that is independent of
the file name space. This lets you assign
object names that relate to the project in-

July 1989

stead of forcing you to use file names with
directory prefixes that have been estab
lished by a system administrator. An inde-
pendent object name space also means
that the location of a physical file, and
thus its network path, can change while
the associated object path remains con-
stant.

This naming scheme is important be-
cause Faust is designed to be a multiuser,

In Faust, the project is
the unifiying theme,

servingas a focalpoint
for all tool interactions.

distributed, heterogeneous environment,
where distributed project creation and
file migration are likely. By keeping object
names constant, Faust insulates users and
tools from the details of absolute file paths

and machine names.
The Project Manager organizes a

project’s objects by building a directed
graph, where nodes are objects and arcs
are named relationships between objects.
Applications and users control a relation-
ship’s name and the objects associated
with it. For example, an object represent-
ing a library would be related to all its con-
stituent object-file objects via the relation-
ship named obj.

In the spirit of the Unix Make utility, you
can define a relationship to be a time-
based dependency; this supports object
consistency. An object is consistent if its
last-modified time is more recent than the
last-modified times of all of the files on
which it depends. If an object is found to
be inconsistent, it can be made consistent
by executing a script of commands associ-
ated with it.

Such a build script can contain com-
mands for any node in the heterogeneous
system; Project Manager servers wait on
each node to execute the commands for
that node. By creating scripts that com-
municate with these special demons on

Faust Tools (editors, compilers, debuggers, performance tools)

f-L Project
manager

Faust building blocks
I I

Flgure 1. Faust organization.

21

Comparing Faust
The labels attached to programming environments are so ill-de-

fined as to be almost interchangeable: scientific-programming envi-
ronments, software-engineering environments, software-
development environments, and so on. Indeed, a survey by
Fedchak’ found that the development of these environments is
driven by specific needs and goals.

Therefore, we compare Faust with four development efforts
driven by the same goals.

ParaScope. ParaScope, an extension of the R” environment, is
being developed at Rice University.’ ParaScope focuses on restruc-
turing sequential Fortran to parallel form. It supports both automatic
and manual, interactive restructuring.

ParaScope has integrated restructuring editors, compilers, and a
parallel debugger. While Faust is also designed to help restructure
sequential code, it is more flexible than ParaScope in that it lets you
integrate arbitrary tools into its environment.

Sigma is more closely related to ParaScope than to two other
restructuring tools, Ptran3 and Parafrase II ,4 both of which work on a
database of program dependency and interprocedural information.

AISPE. The framework of the Advanced Industrial Software Pro-
duction Environment is more general than Faust’s’ AISPE is a soft-
ware-production environment that attempts to support the entire life
cycle. AISPE acts as external shell around the operating system to
filter user commands and actions. This shell lets developers inte-
grate commercially available tools.

AISPE’s object handler manages objects that constitute projects.
In AISPE, objects undergo state transitions, using high-level petri
nets as control structures. Although AISPE’s integration efforts are
more ambitious than Faust’s, it addresses neither parallel prcgram-
ming nor distributed processing in a heterogeneous system.

MicroScope. Hewlett-Packard’s Microscope project uses a
knowledge base for project management.6 The knowledge base
consists of frames and inference rules. A frame’s data may include
procedural scripts or methods for computing objects in the knowl-
edge base.

MicroScope is concerned with effectively conveying program
structure through views. Aview may show the relationships between

a program’s modules or a static analysis of procedure relationships.
Faust also uses abstractions to give the user
and subroutine relationships.

‘a graphical view of file

SIB. The Software Information Base was developed by General
Telephone and Electric.’ SIB is an elaborate data model, or object
base, that stores a projects data over the entire life cycle. SIB seeks
to improve integration: Its objects can have types, classes, super-
types and subtypes, and superclasses and subclasses. In the spirit
of formal database theory, SIB defines its model’s internal, concep-
tual, and external layers.

Because of its generality and complexity, SIB has had perfor-
mance and user-interface problems in its initial prototypes.

Both MicroScope and SIB share some of our project-manage-
ment goals, with SIB’s goals being much more ambitious. However,
how these goals are achieved are very different in all three environ-
ments. MicroScope’s and SIB’s primary goals are limited to project
management. Faust uses project management to provide high-level
integration for development tools, but its overall goals are much
broader.

References
1. E. Fedchak. “An Introduction to Software Engineering Environments,”

Proc. Computer Software and Applications Conf., CS Press, Los Al-
amitos, Calif., pp. 456-463, 1986.

2. D. Callahan et al., “ParaScope: AParallel-Programming Environment,”
Tech. Report Comp TR88-77, Rice University, Houston, 1988.

3. F. Allen et al., “An Overview of the Ptran Analysis System for Multipro-
cessing,” Supercomputing, E.N. Houstis, T.N. Papatheodorou, and
CD. Polychronopoulos, eds., Springer Verlag, Berlin, pp. 194-211.

4. C. Polychronopoulos et al., “Parafrase II: A New-Generation Paralleliz-
in9 Compiler,” Proc. lntl Conf. Parallel Processing, CS Press, Los Al-
amitos, Calif., to appear, 1989.

5. G. Bruno, P. Spiller, and I. Tota, “AISPE: An Advanced, Industrial Soft-
ware-production Environment,” froc. CompuferSoffwareandApplica-
fions Conf, CS Press, Los Alamitos, Calif., pp. 94-99,1986.

6. J. Ambras and V. O’Day, “MicroScope: A Knowledge-Based Program-
ming Environment,” /EEESofWare, May 1988, pp. 50-58.

7. J.H. Kuo and H.-C. Tu, “Prototyping a Software Information Base for
Software-Engineering Environments,” froc. Computer Sofhvare and
Af@cations Conf., CS Press, Los Alamitos, Calif.. pp. 38-44, 1987.

other machines, the Project Manager im-
plements a remote compilation and exe-
cution facility.

Because Faust is a multiuser, distributed
environment, the Project Manager in-
cludes acentral server to administer locks.
All Faust tools access the project database
by first requesting arbitration and file-
location services from the Project Man-
ager, then using conventional Unix file
I/O.

Named relationships among objects
make it possible for the Project Manager
to answer queries from the Faust tools. In
the obj relationship, for example, an exe-
cutable program’s object files are con-
tained in the setofobjects that are destina-
tion objects in the obj relationship. These
objects can all be reached from the object

that represents the executable. Such que-
ries are most often made by the Faust per-
formance tools, which must modify a
program’s object files to generate data at
runtime.

Database components. The Project
Manager maintains eight types of files for
every Faust application:

l Executable: The ultimate target ob
ject.

l Source: The original program text
written in Fortran or C.

l Object: Intermediate files generated
by system compilers when they produce
an executable program.

l Assembler: Assembly-language ver-
sions of the source produced by the sys
tern compilers. The Project Manager cre-

ates these for reference by the perfor-
mance-prediction tools.

l Dependency: Symbol-table and data-
dependency information collected by
Faust compilers for reference by the re-
structuring environment described later.

l Program graph: A static call graph
used by Faust’s graphical browser.

l Execution trace: Collected at runtime
as a result of monitoring by performance-
evaluation tools. These trace files are ref-
erenced by performance-analysis and vi-
sualization tools.

l Annotation: Detailed information
about modifications applied to applica-
tions on behalf of Faust tools. For exam-
ple, every execution trace done by perfor-
mance-analysis tools has an annotation
file that contains a detailed description of

22 IEEE Software

the performance data collected and the
reason for collecting it.

Graphical Make file. One development
tool that you can easily construct with
Faust’s building blocks i’s a graphical ver-
sion of the Unix Make utility.

Faust’s graphical Make-file editor lets
you create a directed graph to show pro
gram dependencies, as shown in Figure 2.
At the root of the graph, or tree, is the
executable object. The next level contains
all the object files needed to generate the
executable object. Each object file is itself
the root of a subtree that contains all the
files needed to generate it.

The graphical Make-file editor high-
lights those executable files that are out of
date or inconsistent by drawing a box
around their node, as Figure 2 shows. This
reminds you which recompilations you
must perform. You can specify that a cer-
tain subtree be recompiled or you can let
the system perform all necessary build op
erations.

Usedeel tools
Sigma’ is a Faust tool designed to help

users of parallel supercomputers retarget
and optimize application code. Sigma
helps you either fine-tune parallel code
that has been automatically generated or
optimize a new parallel algorithm’s de-
sign.

At its lowest level, Sigma is a mouse-
based, multiwindow text editor with a
shell interface that can be used the way
most programmers use Emacs. (In fact, we
are developing an Emacs front end.)
Sigma’s power, however, lies in its inter-
face to the Faust program database.

An application’s project database con-
tains

l a complete data-dependency analysis
(both inner and interprocedural) of the
application’s source files,

l a control-flow graph with enough in-
formation to regenerate the original
source file (including comments), and

l a summary and analysis of the object
code generated by the compiler.

The database can support either For-
tran with Alliant’s vector and parallel ex-
tensions, Cedar Fortran (a Fortran 8Xex-
tension designed to exploit the Cedar
multiprocessor), and C. The database also

July 1989

gbZ_addarc.c gb2Zdlsp.c gb2-errmsgs.c

Figure 2. Using the graphical Make-file editor to create a directed graph of program de-
pendencies. Nodes that are out of date or inconsistent are boxed.

supports a parallel, object-oriented C ex-
tension similar to C+t and Cedar Parallel
C. The only target machine that now sup
ports object-code analysis is the Alliant
FX/8, but we are working on an analyzer
for the BBN Butterfly and Ardent Titan,

After the Project Manager builds an ap
plication, it uses special parsers to gener-
ate a project database, which you query
with the Sigma editor. For example, when
an application’s source file is displayed,
you can select (with a mouse) an item
such as a variable or function name and
make queries and issue commands like:

l Where was this variable initialized or
last modified?

l Which routines modify or use this vari-
able?

l What side effects does acall to this pro
cedure or function generate, and which
segments of array parameters are used or
modified?

l Can this loop be parallelized or
vectorized? If not, which variables pro
hibit concurrency?

l If this variable is a pointer to a C struc-
ture (or object in a Ct+ class), what are the
fields (operators) in that structure (ob
ject)?

l Generate an estimate of the caches’ hit
ratios for array objects in this code seg-
ment.

. Generate an estimate of code effi-
ciency (measured in floating-point opera-
tions per second) for this code segment.

l Draw this function’s static call graph.
l Draw this code segment’s datadepen-

dency graph.
With this kind of access to an appli-

cation’s semantics, you can work with the
system to restructure the code for a target
architecture.

In addition to semantic data, the graph-
ical representation of the code’s internal

form lets you guide the system in trans
forming the form. In this mode, you select
a program segment you want to modify.
Faust then presents you with a menu of
predefined program transformations, in-
cluding loop vectorization, paralleliza-
tion, interchanging, blocking, distribu-
tion, and some machine-specific
transformations. We are adding other
menu options, including subroutine ex-
pansion and encapsulation and variable
localization. If you try to transform the
program in a way that violates its original
semantics, you are warned that the trans-
formation will change the program’s
meaning.

Sample scenario. Sigma is designed to
help users port large applications to paral-
lel computers.

In any porting effort, the first step is to
use any automatic restructuring tools that
are available. For large programs, these
tools will sometimes provide the needed
performance without significant pro
grammer effort. Unfortunately, these
tools often fail to extract medium- and
coarse-grained parallelism from the
program’s higher levels. Yet this is often
the type of parallelism that is best sup
ported by multiple-instruction, multiple-
data machines like Cedar.

Therefore, after the code has been com-
piled and the performance information
loaded into the database, the program-
mer may want to improve on the
parallelization. The next step is to begin
restructuring the program by transform-
ing code segments to express more paral-
lelism.

As a simple example, Figures 3 and 4
show a Sigma session in which the pro-
grammer is investigating a simple matrix
times a vector subroutine. In Figure 3, the

23

I I I- i i

Vector Loaa End
I NC~,Cl?i = 101 :

[1cyrles = 11 I
lEoncurrent End

[cycles = 1 :

Performance evaluation. Faust incliidcs
a ti~1lamic call-graph tool.’ This tool
shtnvs an aniniatcd \ic\\ of a program’s ex-

Figure 3. The Sigma restructuring tool. The programmer has highlighted the Do iloop tor
object-code analysis. The Edit Transcript window shows the object-code summary.

coltion IO liclp you i1ndtwtaiid its opcr-a-
rim, silnilai- to twhniqucs described b!
hl~w~-s’ and 13roum.4 The d\nan~ic call-
gr-a~111 tool displays thy dynamic CXCCII-
tiotl of a parallel pr~~g1-am in the wntcxt
of the original suhroutinc iiitcrconncc-
tion graph that Faust generatrs automati-
GlllV.

pt-c,gt-atlltll~l- has sclrcrcYl tt1r I)0 , IOOJ’
for objrct-co& anal\si\. .1‘11c l;tlit .I r;ui-
script bindow showy a wnmi~i~n~ 01 thr 1-t’.
btrwtuiirig that wrsdo~ic ;uitolii;1ti(,111~ 1)~
tlic ;\lliarit cornpilci- xid xi algcl)t-<tic cx-
prcsbioii rcprcsclltilig the c\clc cou~it tot

the loop in twins 01 111~ niuiihc~i 01 JII.C~CS-

wrs (dumtcd t,\ the s~iiil~ol #J)) and thr
IOOJ’ 1,01l11ds. The cllllllllan lists tl1c COII-
cu~-r~c~~t and vcctoi- looping \ti~ucti1i-t’. th(
111ur1l~c1-o~s~~il~t1~ii~~ti~~1~~tiot14 (tl~i~otctl tn
S:), tllc. 1iiirnbc1-ol \cctoi- iiisu-uction\ ([It,-
noted bv \‘:), and tht, lOtill <\ClC (‘011111 Ior
the got-t-~sl”)ti[liilg basic l~lock.

If he decides that 111~ coniJ)ilcr did ;i

Figure 5 shmvs IO windows from Fallst’s
graph IIt-cmwr, each aho~ing sonic part of
a pr~qmn’b cxccutioil. The tqgct system
lilt- tI1is displ+ is the Xllimt FX/8 \vith
tight J>r~~cms~~rs. The fir-st eight windows
shol\ tllc staw of cxccution on each prw
ccsso1: The Scquciitial uindow sho~vs the
state of. the pro~i-aiii’s call graph when it
tran\itioncd II-oin 3 s~qti~ntial-execution
mode to a J~~1rallcl~x~cutioi~ motlc. ‘1%~
(;lobal window show the uiiion of tht

Impact. Famst‘s Intqt-atrd. Multiprtr
ccssior Pcrfi)r-i1iancc-~~f1;\l~sis an&(~Iia~-ac-
tcri/ation tool set intcgl atcs its tools that
collect [xTfol-lllarlcc data with tools that
anal!/c and tlisplal pcrfi)rmancc tre.sults.
l.atcly w havr coimmtratcd on tlc~clop
ing I~npact’s rventdiaplw tool. This tool
tracm lnultitasking CVC’II~S and displays
them in 21 time line.

Figul-r 6 shops a sc~ccn of the Impact
c\cllt-displa\ tool. In the main control
\vindow (tippc’r left), the user can sclcct
the trace dirwtot-y, which stores the
tl-aced files; the cvcnt-definition file,
which dcsctibrs the cvcnt types found in
the tract; and the cvcrlt-trace file, which
contains a time-srqrimccd list of all grner-
ated cvcnts. The Project Manager choosrs
SOIIIC drfault directories and paths, hut
yclu can ovrrridc these defaults.

Figure4. Restructunng the segment from Figure 3 to improve parallelization. Afier you specify, the files, Impact first

24 IEEE Software

reads the event-definition file and then
the trace-data file, using the event descrip
tions to interpret the trace input. After it
reads all the trace data, Impact generates
the global-trace statistics, shown in the
bottom halfof the screen. Impact also cre-
ates an internal trace-Me index to support
rapid event searches and it maintains an
event cache to reduce disk transfers.

A task group is responsible for display-
ing the events associated with a task. A task
group defines a time window for the trace.
Events for tasks that have been assigned to
a task group by the user will be displayed
in the task display only if the time at which
they occurred is within the task group’s
time window.

In the disnlav. the task grout, is shown at
L / , v L

the bottom and is represented as a time Fire 5. The dynamic call-graph browser. The top eight windows show the execution
line. The controls to change the time win- on each processor. The Sequential window shows the state of the call graph when it was
dow are the Start, <<<<, Zoom In, Zoom transitioned and the Global window shows the union of the views.

0 [XI Hai n-exi t
Trace Directory : tests
Event Definition File :eventdefs

!EI El Rout i ne-R-entry

Trace Fil e : programl. trace gS [XI Rout i ne-fl-exi t
Event types : 21
Total events: 2000 Total tasks : 54 H Rout i ne-B-ent ry

83 IxI Rout i ne-B-exi t

q (XI Rout i ne-C-ent ry
--- . .

Figure 6. The Impact event-display tool.

July 1989 25

Each task displa! 4~~~s c\c’nt.s lor each
active prc,cessoi-. (Inlpac t uill bc u\ctI on
the <:cdar machine, \\hvi-~, tasks c’xc’ctlt(
on hlliant F>;iX clt~s;tcr-~ and may USC all
eight processor\ on each clustc.1:) Impact
draws ;I horizontal lint for- each acti\,c I-“-Ck
ccssoi-. M’hcn the c~xccutiotl is \cqtlcntial,
Impact dralvs a horizontal litlc for procvi-
v,ro onlv.

In Impact, cvcr-y event spccificd in the
~\,~nt-definition filv has ;I r~niqrw icon.
E\,cnts arc placid ill the task displav at the
point given 1~) the I~roccssoi- II) \\hrl-c it
occurred and tlic time \vhcn it occurred.
1)cpending on the time-\ritl(lo\\‘s resolLl-
tion, event icons ~na! o~rlap. As Figure 6
shows, VOII can i-quest details about an
vvcnt by clicking on it.\ icon (shown fi)r
ttvo events in Task 0). This i\ ud111 when
you foi-get what an icon rcprcsents or
when yo,~witnt more dataabout the event.

In the event-control \vindow in the
upper right, IIWI-s can change which
ewnts jvill displa!, and how thy!, displav.
This window lists every c‘vvnt from the
event-definition file, its event-icon assign-
mcnt, and the state of its Lisibilitv. You

click on the event icon to get a palcttc
(s110w1 jut below the c\.cnt-ContIoI \\ill-
do\v) of icons from which you can select a
new icon. You click on the \isibilit\ box to
toggle the event’s\isibility ill the displav.

In the event-control \vindo\v !cju can

also categorilc cvcnts and abstract them
into groups, sue 11 as subroutine cntrq,
which are treated as ;I single logical event
in the display. For example, making the
icon for all events a black box gives \ou a

sense of the number and densit! ofc~~nts
in a time window without the confusing
clutter of all the event icons. SimilarI\,
making a11 events in\iGblc \viIl show you
the processor activit! lines only, fi-om
which you can readily identify sequential
and concurrent execution transitions.

The Impact event&splay tool also lea
you search for events by task group, set

26

marks at tlifl?icnt points in tinlc, and
dump Ia.& displays\ to filvs. \Ve plarl to dc-

\clop diy’la\s that Mill u\c‘ the c\‘c’nt data
to \iclv t;A-lcvcl ac ti\,it! and \\ill show rc’-
\ults fi-oni n101’c’ vxtcnsi\-v c\.cIIt-trace
aiial\G3. LVc also pIail to implrmeiit a sin-
XIV thread tayk display.

\Ve have usctl the Impact cvcnt-displa!
tool in sc\clal pvi-for-mallcc srtidivs, such
ac the design of a parallel circllit simula-
tion codv. Otis initial I-caction is that ob-
serving a pl-ogi-ain’s c\cnt squcncc is
Ktluahlc ill itlcntifying I”‘r-forlil~~llt(.-Iilllit-
ing behavior-. Ilo\vc\cr-, Eve need to better
intrgratc Impact \\ith othrl- Faust tool\ \o
a user can accc‘\\ all the info]-illation about
;I program ill ;I co1nmon framc\voi-k,

F au\t is far from finished. \Ve arc coii-
strilcting other tools, including a
d(,hrlggci-, a rorllldoff-err-or- an-

al\rcr, and an on-lint librarian. \Ve expect
to continue adding and revising tools for a
long time.

Sc\crdl tools liavc been deplo~rd intcI--
nall\~at the (;eiitc~- foi-Super-coml~rltcr Kc-
starch and I~c\~Iopment as alpha rc-
leases. Thcsc i~~cludc the graphical Make
file, Prctject %lanager, Sigma editor, and
the dynamic call graph and Impact tools.
LVe plan to make a public distribution of
some components later this year.

Krponse to the Sigma editor has been
good, although we can’t implrmrnt it
fully until we complete the integration.
M’r are par-titularly interest in studying
Mhich hencfita ,lst’rs derive fl-om each
Sigma fraturc. \Ve avant to make a sel-ious
analysis of each fc%urc’s contribution he-
cause each one is coniputationa11!, cxpen-
sive. ICecping the featur-es to a minimuni
\viII help keep Fnust interactive.

Our initial cxprr-ience \vith the other
tools h:ti been good. Mb have pal-ted the
Faust building blocks - developed on
Apollo workstations - to Sun work-
stations and IBM PC KTs without proh
lems. We think >(Windows has worked
well as a useiCnterface platform. .:.

Acknowledgments

IEEE Software

David J. Jablonowski is a senior software engi-
neer at the Center for Supercomputing Re-
search and Development, where he specializes
in integrated environments.

Jablonowski received a BS in computer sci-
ence from the University of Wisconsin at Eau
Claire and an MS in computer science from
Boston University. He is a master’s candidate in
applied mathematics at the University of Illi-
nois.

Allen D. Malony is a senior software engineer at
the Center for Supercomputing Research and
Development, where he is manager of perfor-
mance-evaluation of the Cedar multiprocessor.
His research interests are parallel computa-
tion, multiprocessor architectures, and perfor-
mance evaluation.

Malony is a doctoral candidate in computer
science at the University of Illinois. He received
a BS and an MS in computer science from the
University of California at Los Angeles.

Yogesh Gaur is a doctoral candidate at the Uni-
versity of Illinois. His research interests are par-
allel computing, programming environments,
and restructuring compilers.

Gaur received a BTech degree in electrical
engineering from the Indian Institute ofTech-
nology, Delhi, and an MS in computer science
from the State University of New York at Buf-
falo.

Address questions about this article to Guarna at the Center for Supercomputing Research and Development, 305 Talbot Laboratory, 104 S. Wright
St.,Urbana,IL 61801.

When it comes to choosing compilers,
MetaWare is the right choice!

Developing the next generation of software products is serious
business. You need the best tools to produce the best code. You
need MetaWare.

Superior Compilers
A compiler that handles large programs with ease, while pro-

ducing the expected results, is the key to developing the highest
quality applications. Many of MetaWare’s customers say that
High C TM and Professional Pascal rM are the highest quality
compilers in the industry. They are reliable, and well documen-
ted, and their superior diagnostic messages help to produce better
products more quickly. There are no surprises with MetaWare
compilers.

Compiler Features
ANSI Standard with extensions . Generates small, fast exe-

cutables * Suppon of 80x87. Weitek I 167/3 167. 6888 I, and
Am29027 math co-processors * Global common subexpression
elimination l Live / dead code analysis l Constant propagation,
copy propagation * Tail merging (cross jumping) * And many

Supported PlatfOrIIIS (re: Dhrystones)
l Sun-3 - ~50% > resident compiler.
-Sun 3861 - >50% > resident compiler.
l Sun-4 - >25% > resident compiler.
. PC: DOS, OS/2- 3-10% > Microsoft C; 30%>MS Pascal,

Lattice C.
* 386 32-bit DOS- No real competition.
l 286, 386 UNIX- 66% > than pee on 386.
. VAX VMS - = DEC’s excellent C and Pascal; Host for

cross compilers and TWS, not Native.
* VAX Ultrix - 19% > pee on Dhrystone;

much > Berkeley Pascal.
l RTPC - 93% > 4.3bsd port of pee.
. AIX/370 - Much better than any 370 C and VS Pascal.
. AMD 29K - >40.000 Dhrystones.
- Intel i860 - >70,000 Dhrystones at 33 MHz.

So when it comes to selecting a compiler company, you need
the best!

Can you really afford anything less?
more!

Multiple Platform Support
MetaWare uses its own Translator Writing System to create

all of its compiler products. Common components and library
functions are shared across the product line. Improvements to
compilers are quickly realized on all platforms.

INCORPORATED

Tlib
The Compiler Products for

MetaWare’”

Mc,aWarc. H,gh C and Profer\mnal Paral are wademark, of MetaWare Incorporated.
UNIX I\ a trademark of AT&T: Other product\ menuoned are lrrdemarkr of the re-
\pm,vc companw ,nd,caled.

Professional Software Developers
216 I Delaware Avenue * Santa Cruz, CA 95060-5706

Phone: (408) 429-6382 * FAX: (408) 429-9273

Reader Service Number S

