
4b ha

general-purpose,

reusable plaqomn,
Traceview

implemcn ts the
trace-management
and I/O fea tunes
usually found in
special-purpose

D-ace-analysis

systems.

T raceview:
A Trace
V isua
Tool

ization

ALLEN D . MALONY, DAVID H. HAMMERSLAG, and
DAVID J. ~ABLONOWSKl, Center for Supercomputing

Research and Development

A lthough they con-
tain much performance detail, large trace
files capturing logical or physical actions
taken by a program are difficult to use
when analyzing a system’s perfomlance.
The manual effort required to manipulate
trace files, including creating graphical
presentations, can be daunting, requiring
some automatic support for trace analysis
and visualization.

Trace-based performance visualiza-
tion gives you an intuitive understanding
that is often more useful than a textual sta-
tistical profile.‘.’ However, systems that
support performance visualization often
only accept trace input of a specific type,
conforming to a particular execution
paradigm or generated from a particular
system context.‘-” Furthermore, the dis-
plays used can be inadequate to show the
time-dependent behavior of arbitrary
data values that might be associated with

different events in the trace.’
A general-purpose trace-visualization

system can incorporate common aspects
of trace processing and display. However,
the gains in reusability come at the ex-
pense of specificity in trace-data analysis,
because such a system must use a simpli-
fied event-interpretation model. Whether
this trade-off is a liability will depend on
the trace-visualization application.

In this article, we describe the design,
development, and application of’T?aceview,
a general-purpose n-ace-visualization tool.
We seek to identify the aspects of trace vi-
sualization that can be incorporated into a
reusable tool and evaluate the trade-off in
general-purpose design versus semantical-
ly based, detailed trace-data analysis.

ARCHITECTURE AND FUNCTION

The architecture for a genera-purpose

19

Trace
fibs

Displays

trace-visualization tool must be flexible
enough to let you select analysis and dis-
play alternatives. However, it should also
provide a structure rigid enough to let you
build on the resources of the tool and ex-
tend the base analysis and display meth-
ods.

Such an architecture cannot support all
trace-visualization models, but it should
support most - especially those used for
the simple visualization problems that
occur most frequently. Extension mecha-
nisms should provide an easy customiza-
tion path for more complex cases.

We based Traceview’s general-purpose
architecture on the concept of a trace-vi-
sualization session. Figure 1 shows the hi-
erarchical tree structure of a Traceview
session, which involves trace files, views,
and displays.

First you specify a set of trace files to
visualize. For each trace file, you can de-
fine a set of views. A view defines a trace

subregion by setting a beginning and an the trace data, the number of defined
ending point, and by event filtering. For views, and the information necessary to
each view, you can create a set of displays. reconstruct each view. The session man-
Although the session paradigm precludes ager assumes that a session-configuration
displays that combine data from multiple file is consistent with the data in the desig-
traces, it supports multiple simultaneous nated traces. In future implementations,
displays. You can use multiple displays to the session manager will record the modi-
compare data from several trace files. fication dates of trace files in the saved

configuration and check the dates when it
Session mmopent. As Figure 2 shows, restores the configuration.

Traceview’s session manager saves and re- The session manager lets you merge
stores each session’s configuration and multiple session configurations into the
coordinates the trace, view, and display current session. If all trace files are distinct,
managers. The session manager lets you merging is simple - basically, it is addi-
save a session configuration to external tive. When there are conflicting trace-
storage for later retrieval of the same visu- view combinations, you are prompted to
alization environment. This saves work resolve the conflict by selecting one alterna-
because ‘Ii-aceview visualization sessions tive over another or by renaming entries.
can be quite complex, with many trace Figure 3 shows how a session appears
files opened and many views defined on to a user. Open files are listed in the Files
each trace. window, defined views for the selected file

At any point while you use Traceview, in the views window, and created displays
the session manager defines the current for the selected view in the Displays win-
session as the set of open trace files, the set dow. When vou select a trace file from the
of defined views for each trace, and the set open files list, Traceview automatically
of displays for each view. However, the updates the views list to show the corre-
current displays for each view are not part sponding defined views. Similarly, when
of the session configuration. They are de- you select a view, Traceview updates the
fined only for the current Traceview invo- displays list to show the view displays you
cation. Our initial reasoning was that sav- have created. You can add or delete files,
ing the total display state would require views, and displays at any time. The num-
too much space. Now we are determining ber of trace files, view specifications, and
if display saving can be accomplished with displays is limited only by the memory
only part of the display state. available to store the pertinent session in-

For each open trace, the session man- formation.
ager saves the name of the file containing

1 Trace fik. Traceview processes event

67 trace file input session configuration
saving and restoring

Session manager

Trace manager ~~~]*[Disploy Luger 1 U

Figure 2. Tmcevim a~&temwe.

traces. An event is a recorded instance of
some logical action. We intentionally give
only general descriptions of events be-
cause Traceview makes no semantic inter-
pretation of the actions that the events
represent. It assumes that each event is
time-stamped merely to establish an or-
dering relation (usually a time ordering)
among the events.

The trace file is divided into two parts:
an ASCII header and binary trace data,
which is a time-sequenced list of trace
events. Each event reflects the instance of
some action taking place during computa-
tion. Traceview interprets this action as a
state transition. Each event recorded in
the trace includes encodings of the state

SEPTEMBER 1991

FILES VIEWS

Se1 ected VI ew

iAl’s View

Help
__- -“.I”“.““.“.“““,xI~- -.-_- “-l--l. ^_-“-___-_---

DISPLAYS l”““_ __ ,. __^_.. ---.-l-” -_.- l.l

DJ spl ay lype Cantts ..: j

Se1 ected DJ spl ay
^.^“̂ . .- “I”.” -.- ^ _~~~~~~~~~~~~~~.~~.~.~~~.~~---

i dl spl ay-a,,

New 1
“.“. .“. ^ .J

Open i Destroy i
.I.-- _._. “.I.“. _-.-----_I -1

l__^_^“_^ -. -_ --. .” ” ..I.^.-^_- ..-- -_“I _.“-^---

being exited and the state being entered,
an event type, and a time stamp. Events
may also include supplemental data fields.
Events within a file are homogeneous in
their format: Each has the same number of
data fields associated with it. (Future im-
plementations will allow variable-size data
fields dependent on the state.) Each data
field typically represents some numeric
event metic.

The trace-file header specifies the
number of data fields associated with each
event transition and how the data is la-
beled when presented to the user. It also
provides flags to control display
customization, a directory of names to use
for the states, and an optional index into
the event data. Summary information in
the header includes the number of events
in the trace and the total time represented
by the trace data.

Trace mmagement. Working with this
trace-file format, the trace manager

* opens trace files,
+ interprets the trace-file header,
+ calculates global trace statistics,
+ reads events from open trace files,

and
l closes trace files (freeing storage allo-

cated when the trace was opened).
The trace manager also provides a

graphical user interface. You select traces
to open through a standard dialogue. The
trace manager presents the list of open files
in the left window of the main ‘Ii-aceview
window, as shown in Figure 3, and pres-
ents summary information in the display
shown in Figure 4.

View management. To define multiple
views on each trace, you use the view man-
ager. A view deftition consists of

+ a starting time in the trace,
+ an ending time, and
+ a list of names of events to be ex-

cluded from the trace.
The view manager applies a view defi-

nition to a trace to produce a virtual trace,

File name: /groups/performance/traces/ptrace
Trace id: 1
Start: 0
End : 7.61719
Loaded : No
No. Events: 35937
No. Event Names: 33
No. Data Fields: 8
No. Views: 3

IEEE SOFTWARE 21

le Name:

Fi 1 ter Events
-mm

PLOT w>

J ENDPLT (133

XPAND (141

METRIC (151

INIT (161

STEP (171

Pattern

-~-
Range Se1 ecti on

Adjust Lower Bound AdJust Upper Bound

Ti me :

Event:

Time:

Event

Figure Y. Viewdefinition dialogue window. In the range selection portion, you select or adjust a lower and upper bound oftime or- events. To jilter events, you toggle
event nanm individually or collectively in the event filter list. Andyou change the eflect ofpattem matching using the Exclude and Include buttons.

which is derived from the actual trace. The
view manager first discards any events that
occur before the view starting time or after
the view ending time. Then it filters the
remaining events to remove the events
you specified for exclusion in the view def-
inition.

You change the effect of the pattern
matching using the Exclude and Include
buttons.

Figure 5 shows the user interface for
view creation and modification. The view
range is a lower and upper bound of time
or events, which you select or adjust. For
event adjustments, the view manager
searches for the named event forward or
backward from the current lower or upper
bound. You make time adjustments either
by entering a new time directly, or by
using the scroll bar. While it maintains its
normal scrolling functions, which let users
move a time window across the trace, the
scroll bar can also be extended or con-
tracted to change the time-window size.

ing trace events from secondary storage
can slow the system. Our approach in
Traceview is to cache trace events in mem-
ory buffers. We chose to cache virtual
traces instead of raw traces because vir-
mal-trace range selection and event filter-
ing suppress events of no concern in the
display. However, Traceview does virmal-
trace caching only for views, not for each
derivative view display.

For event filtering, you toggle event
names in the event filter list. You can tog-
gle them individually or collectively, using
the string pattern-matching capabilities.

Traceview performs event filtering
based on the view definition when con-
structing a virtual trace. Removing the
events that occur before or after the view-
ing range is trivial. Filtering out individual
unwanted events is a bit more compli-
cated. The view manager removes an
event from the trace if the event’s ‘I6 or
From state designator matches an event
name specified for exclusion. The easiest
way to understand the algorithm for event
filtering is to see it as removing one event
at a time from the trace. At each iteration,
the algorithm creates a new virtual trace
with all events to or from the state in ques-
tion removed. The data fields are updated
appropriately. When it has removed all
the specified events, the final virtual trace
is the result.

Because trace files can be large, the cost
of reading raw traces entirely into memory
can be prohibitive. However, always read-

Traceview implements virtual-trace
caching by assigning each defined view a
cache buffer, the size of which you control
through a Traceview application resource.
(In the future, we will add interactive
buffer-size control to the view window.)
At any time, some consecutive portion of
the virtual trace is cached. The time stamp
of the first cached event and the time
stamp of the last cached event delimit the
portion. If a display requests a virtual-trace
event within the cache, the view manager
fetches the event from the cache, getting
the benefits of fast memory access. How-
ever, if a display requests a virtual-trace

I I
_____-__ _________-

22 SEPTEMBER 1991

event outside the cache, the view manager
flushes the cache and then refills it from
the virtual-trace stream derived from the
original trace on secondary storage, start-
ing with the requested event.

Virtual-trace caching minimizes
Traceview’s total memory requirements
while offering fast response time during
display interaction. Speed depends on sev-
eral parameters: the cache-buffer size, the
view-range selection, the extent of event
filtering, and the location of the virtual-
trace references during display update.
Further experience with Traceview, par-
ticularly with large trace files, will help us
determine the efficacy of virtual-trace
caching.

Display management. The display man-
ager graphically presents the virtual trace
constructed by the view manager. The dis-
play manager lets you select horn two
available display methods and creates a
display window showing the data. The
display manager cormols the right win-
dow in Figure 3, which presents a list of
existing displays for the selected view. You
can reopen, destroy, and create displays.

The display manager does not actually
display the data; rather it invokes a display
method to display a virtual trace.
Traceview does not dictate a display
method. Although two display types are
statically linked with Traceview, you can
incorporate any display method that can
interpret a Ti-aceview virtual trace.

DISPLAY METHODS

The display type menu lets you select
either a Gantt display or a rate display.
Both use the Gantt chart widget. Gantt
charts are line-plot representations of
time-sequenced performance data.
Traceview uses a Gantt chart widget we
developed expressly for displaying mace
data.

Gantt chart widget. The Gantt chart wid-
get provides horizontal and vertical axes,
axes labels, data display, density bars, and
data averaging. In most cases, the number
of points displayed in a Gantt chart greatly
exceeds the pixel width of the x axis of the

IEEE SOFTWARE

Gantt chart. In our experience, the ratio of
data points to pixels commonly exceeds
10: 1. The Gantt chart widget offers two
solutions to this data-density problem:
density bars and average curves.

axis. Because of this vertical stacking, the
density and distribution of data points on
the x axis are identical for all the Gantt
charts in a given display shell.

The display of a density bar on a chart
is optional. A density bar is a band of color
displayed above the Gantt’s data-display
area. For density bars, Traceview lets you
select a color map, which assigns integer
ranges to colors. A density bar can repre-
sent either value density or point density.
In a value-density bar, the color at pixel p
represents the average of all the data points
displayed at pixelp on the x axis. In a point-
density bar, the color at pixel p represents
the number of data points represented at
pixel p on the x axis.

In addition to a density bar and the
graphical data display, the
Gantt chart widget op-
tionally displays an aver-
age curve. The average
curve overlays the data
display and is computed
by taking the average over
a hxed interval of points as
the interval slides along
the x axis. The average
data value for point p on
the x axis is calculated
using all the data points
from the interval when
centered atp. If a point on
the x axis has no actual

The display shell lets you control the
individual Gantt charts. From the display
shell you can add charts to or delete charts
&om the display, mm density bars on or
off, turn averaging on or off, and produce
a Postscript version of the chart.

The display shell also lets you manipu-
late all the Gantt charts together by ad-
justing the averaging interval and by
zooming in on a chart region. You select
the averaging interval by manipulating a
slider to choose a percentage of the width
of the chart’s x axis. To zoom in on a chart
portion, you use the mouse to select a re-
gion. Then you can zoom in on that re-

gion in all the charts. You
can undo zooming step- . .

Although two disploy
types are statically

linked with Traceview,
you can incorporate
any display method
that can interpret

a Traceview
virtual trace.

data points associated
with it, the Gantt chart
widget assumes it has the same average
value as the most recent point preceding it.

Display shell. Both display methods bun-
dle Gantt charts in a display shell that syn-
chronizes many Gantt charts in one win-
dow. The display shell also provides the
user interface where you control the be-
havior and appearance of the individual
Gantt charts.

All the Gantt charts in a display shell
derive from the same virtual trace, and the
x axis for all the charts is identical. There-
fore, the display shell stacks Gantt charts
horizontally and aligns them so a vertical
line across the display shell intersects all its
charts at precisely the same point on the x

wise or all at once.

Using Gantt charts.
Traceview uses the Gantt
chart widget with the dis-
play shell to present two
kinds of displays to the
user: displays based on
state transitions, which
we call simply Gantt dis-
plays, and displays of the
number of times a state is
entered, or ratesdi@zys.

For Gantt displays, the
chart’s x axis represents
time. The y axis varies

from chart to chart. For traces that con-
tain no data fields, the display manager
shows only a single chart. Here, they axis
represents states. A square wave shows
when a state is entered and when it is ex-
ited. If the trace also includes data fields,
then the display shell includes a Gantt
chart for each data field. For these, they
axis represents the data field values. Be-
cause Traceview traces only have data re-
corded at state transitions, all the charts
have the same x axis and the same data
point distribution.

In the rates display, you view metric
data associated with a trace state. For the
selected state, you can have a chart for
each data field deiined for the trace. The

-
23

Instructicms
Issued

Clock Periods
Holding Issue

Buffer Fetches

I/O Memory
References

CPU Memory
References

Floating Point
Adds

Figure 6. disphy options.

ing horizontal line displayed across the
Gantt chart.

From within the display shell, you can
dump the details of a virtual mace to an
ASCII file. Traceview generates two types
of files. The first contains the details of
each event record in the virtual trace, in-
cluding time stamps and all the other fields
of the event record. The second contains
the details of how Traceview constructed
the virtual ttace from the raw trace. If
Traceview excludes routines from the vir-
tual trace, the most relevant data in this file
is how Traceview combined or ignored
event records and their data fields to create
the virtual trace. We use the second type of
file for diagnostics in virtual-trace genera-
tion.

TRACEVIEW APPLICATIONS

display manager also provides an addi-
tional chart giving the summation of all
the metrics available.

For the rates display to be applicable,
the trace must include data fields. In the
rates display, the x axis represents ordinal
instances of the state being entered. They
axis represents the individual data field
values. Instead of the more familiar square
wave usually used in Gantt charts, the dis-
play manager causes the Gantt chart wid-
get simply to display the points and con-
nect them.

MisceU0neOas features. You can use the
mouse to place a horizontal line across the
Gantt chart plotting state transitions and
find out the name of the state represented
by that point on they axis. Conversely, you
can bring up a list of all states in the virtual
trace, select one, and have the correspond-

24

A general-purpose trace-visualization
tool must be effective across a variety of
applications. Using the tool’s standard fea-
tures, you should be able to conveniently
process and visualize traces from real or
simulated systems. The visualization
should help you gain insight into impor-
tant performance phenomena difficult to
observe otherwise. The tool should let you
input trace data from different perfor-
mance levels (hardware, system software,
and application software) with different
data appearing together in the trace. Fi-
nally, a trace-visualization environment
must let you visualize and compare multi-
ple traces simultaneously.

lb see whether Traceview met these
practical objectives, we used it to visualize
traces encountered in our performance
evaluation projects at the Center for
Supercomputing Research and Develop-
ment at the University of Illinois at Ur-
bana-champaign. One project required
Traceview to visualize program-event
transitions and associated hardware per-
formance information from applications
programs running on Cray super-
computers. Another project was to deter-
mine via simulation the maximum paral-
lelism within application executions. In
this project, Traceview shows time-de-
pendent levels of parallelism and corre-
sponding system performance metrics.

We elaborate on these two projects later.
Another project not discussed here was
the visualization of register- and func-
tional-unit usage in traces from an instruc-
tion-level simulation of a single Cray X-
M P processor.

We conclude from our validation tests
that Traceview is effective across different
trace-visualization applications and re-
quires little trace input modification, ex-
cept for conversion to the standard
Traceview trace format. Although
Traceview’s display methods are currently
limited, the Gantt and rates displays offer
a robust visualization approach, paticu-
larly for comparing different performance
data within a single trace or across multi-
ple traces.

We observed shortcomings in those
trace-data 13nalyses that required semantic
interpretation. In the future, we could add
limited semantic capabilities to Traceview
for applications that require, for the most
part, semantically independent trace anal-
ysis, but need some semantic trace inter-
pretation. However, we will continue to
emphasize trace-visualization applications
in which the user provides the semantic
context.

Viewing Gray applications. You can capture
detailed data about the performance be-
havior of an application’s execution only
by tracing important events and sampling
relevant machine performance metrics.
One tracing system for Cray super-
computers’ measures program-event
transitions and stores information about
machine performance accessed from the
Cray hardware-performance monit0r.a
There are four hardware performance
monitor groups, covering different classes
of hardware performance, but only one of
the four groups is accessible at a time.

Tracing application execution can gen-
erate large amounts of trace data quickly,
and analyzing and presenting the data
manually can be arduous. We have applied
Traceview to the analysis and display of
Cray application traces. Here we describe
a sample Traceview session, where we
viewed the trace from a vector execution of
the Perfect benchmark code FL052 (a
multigrid fluid-dynamics computation).’

SEPTEMBER 1991

The session display in Figure 3 is a
snapshot of the session configuration used
for the FL052 traces. The Files window
lists the four open trace files from different
vector executions of the FL052 program.
The file ftrace contains an events-only
trace, while the other traces include hard-
ware-performance monitor values for
each event in the trace. The ptrace file
contains the group 0 counter values. The
files trace02 and trace03 contain the group
2 and group 3 traces, respectively. Figure 4
shows the summary trace information for
ptrace.

Because the ptrace trace contains both
event data and hardware-performance
monitor data, you must be able to view
event transitions and changes in hardware
performance simultaneously. Then you
can analyze different computation regions
to see their effects on hardware perfor-
mance. Figure 6 shows the Gntt Options
menu, which lets you choose interactively
the data to be shown. Figure 7 shows the
Gantts display of the transitions between
FL052 computational blocks during exe-
cution and the corresponding hardware
behavior.

Because the view definition for Figure
7 selects all routines for viewing, all entry
and exit transitions between the FL052
routines appear in the Events chart. All
routines are numbered and appear at their
corresponding number level on they axis
in the Events chart. You can bring up the
routine-to-number mapping in another
window for review. Each vertical line in
the display represents a routine transition,
and each horizontal line indicates the time
spent in the current routine. Thus you can
identify the current routine at any point in
the display and observe the relative pattern
of routine occurrence and the differences
in routine execution time. For FLO52, the
Events chart shows the cyclic nature of the
multigrid computation during one major
phase of the execution.

Figure 7 also shows the values of the
chosen hardware-performance metrics
corresponding to each routine transition.
The displayed values are computed as
rates over the period between successive
state transitions. In this case, the rates are
in millions per second. From these dis-

IEEE SOFTWARE

plays, you can see how hardware perfor-
mance changes between routines. You can
also correlate performance across the dif-
ferent hardware metrics. The figure shows
that the cyclic nature of the routine transi-
tions in the displayed region ofthe FL052
computation is reflected in repetitive
hardware behavior. This indicates rela-
tively stable hardware performance within
and between the successive periods.

A problem with displaying a large
number of events is screen resolution. The
screen reproduced in Figure 7 displays ap-
proximately 11,000 events in 900 pixels.
The point-density bar in the Events dis-
play highlights areas where many events
are presented. In this case, the color map
ranges from black, through red, orange,
and yellow, and finally to white. Black is
the least dense, white the most. The value-
density bars in the various performance-
metric displays show the average of per-
formance values at the screen resolution.
Zooming in on areas with high point den-
sity provides additional details about event
transition and hardware performance.

Figure 8 shows a zoomed-in Gantts
display for the FL052 trace. Although

there is still an event-density problem, you
can discern some individual event transi-
tions. This lets you observe and quantify
the high variability in discrete hardware
performance transitions during the
FL052 computation. Clearly, the CPU
Memory References metric is not uniform
across routines and shows significant
changes in the memory reference rate. We
also observed this for the Total Floating
Point Operations metric (not shown).

You use the average curve, drawn over
the CPU Memory References metric
chart, to contrast the discrete perfor-
mance behavior with average perfor-
mance. The CPU Memory References
metric is a good example of how
Traceview can simultaneously display per-
formance data analyzed over different
time intervals. Viewing detailed hardware
data localizes the performance behavior to
particular routines, while averaged hard-
ware data curves show aggregate perfor-
mance over time.

You use Traceview’s rates display to
observe the performance differences be-
tween successive invocations of a single
routine. Figure 9 shows four performance

Fig-we 8. Zoomed FLOS2 Gantts disphy which letsyou discern mne individual event transitions. The CPU
n/lemq References metric i.s not umfom acms routines a?zdsh~.~.ci~~l~cal~t changes in the menmy ve$ewzce
vate. We aho obwwed t&for the Total Floating Point Operations metric (not shouz).

metrics for each invocation of the routine 1 FL052 code. A transition in the display
Psmoo, a solution-approximation reflects a separate invocation in a time-or-
smoothing routine in the multigrid ~ d ere se d q uence of Psmoo calls. Because

no resolution problem exists, you can
quickly observe the cyclic nature of Psmoo
performance in the view region. All Float-
ing Point Operations and CPU Memory
References are positively correlated, but
they are negatively correlated with I/O
Memory References. Floating Point Mul-
tiplies appear to be uncorrelated. The in-
vocation sequence in a single period re-
flects the FL052 computation’s multigrid
nature. As the Psmoo routine is called on
successively coarser grids, the vector oper-
ations increase in overhead, resulting in
decreases in delivered floating-point per-
formance and memory-reference rate.

The main benefit of the rates display
for the FLOSZ application study is its abil-
ity to focus on a particular routine and
display performance data for only that
routine. All the user-interaction capabili-
ties of the Gantts display are accessible in

File Name /groups/performance/traces/ptrace, View Name Al's View, Display Name

24.3243

PSM;x)
I /O Memory
References

PSfUD3
CPU Memory
References

1 2j6 552'

7.1097

2.8546

44.6809

Floating
Multiplle

~~-

Figure 9. Fourpe$omanre metricsfov each invocation of the routine Psnwo, a sobtion~r~pproximatio mloothing routine in the multigrid FLOJ2 rode. A transition
in the display rejects a separate invocation in a time-ordered sequence of Prmoo calls. Th rates di.rpkzy focuses on a particular routine and displays performance data
fw only that routine.

26 SEPTEMBER 1991

the rates display.
We continue to use Traceview to study

different versions of Cray applications, in-
cluding FLOSZ. Because Traceview lets us
open multiple trace files simultaneously,
we can view traces from different execu-
tions on the screen at the same time. This
is important in Cray work because we
must execute the programs several times
to capture traces for all four hardware-per-
formance monitor groups. Also, we want
to compare the FL052 traces of vector
execution with those from scalar and con-
current executions to better understand
the relative performance benefits of differ-
ent compiler optimizations.

Viewing max’hum parallelism. When eval-
uating the performance of a parallel com-
putation, you want to know the maximum
levels of parallelism that could be achieved
during execution. Although in practice the
instantaneous parallelism will be limited
by the total processors available on the
machine, a notion of peak parallelism can
help you understand execution efficiency.

Maxpar’” is a simulator for extracting a
program’s maximum theoretically attaina-
ble parallelism. It works by maintaining a
set of shadow variables for each actual vari-
able. The shadow variable records the
time when the variable’s current value is
valid. Each operation in the original pro-
gram, in addition to computing a change
in the variable’s value, also computes the
time when that value is first available.

From this information, Maxpar can
calculate the number of operations that
can be simultaneously computed. From
these maximum parallelism levels, Maxpar
can derive other operational statistics such
as the number of CPU memory references
and floating-point operations.

Maxpar generates extensive tracing in-
formation, roughly comparable to that
produced by Cray’s hardware-perfor-
mance monitoring software. It generates
event records on each routine entry and
exit, along with information on when the
routine could have first been entered. In
addition, performance profiling records
keep track of when each instruction and
arithmetic operation was ready to execute.
A set of filters adapts this information to a

Figure 10. Gantts display of the Events chart of the entire FLOi2 computation as analyzed b Maxpar. The
chart clearly shows the three majorphases ofthe FLOj2 computation. However, unlike scalar and vector Gray
e.recutions, multip2e routines can be active at the same time.

format suitable for Traceview.
Once they are formatted, you can view

the Maxpar profiles side by side with Cray
traces of the same program. This lets you
compare potential peak parallelism, as
generated by Maxpar, with the Cray’s at-
tained performance. Figure 10 shows a
Traceview Gantts display of the Events
chart of the entire FL052 computation
analyzed by Maxpar. The chart clearly
shows the three major phases of the
FL052 computation. However, unlike
scalar and vector Cray executions, multi-
ple routines can be active at the same time.

Figure 11 shows a Cantts display for
Maxpar performance data generated from

FL052. The Instructions Executed Gantt
chart indicates the number of parallel in-
structions executed. In comparison with a
real traced execution, the Maxpar traces
reveal the same phased, periodic behavior
of the FLOSZ computation. However, the
levels of parallelism are significantly more
enhanced and variable from phase to
phase. The Instructions Executed levels in
the measured Gray traces are limited by
the number of processors available and the
vector register lengths.

As with a Cray execution trace, it is
interesting in the Maxpar case to observe
how instruction execution affects machine
performance. You can use the Store Ops

Figure 11. Gantts display fw Maxpar performance data generated jiwn FL012 metrics. Maxpar traces
reveal the srme phased, periodic bebaviol- of the FL012 computation, but the levels ofparallelism are szgnifi-
cant& more enhanced and variable fi-om phase to phase. It is imerestmg in the Maxpar case to obseme hm
imtmctton execution affects macbme pe?formancr. The Stove Ops chart show the increase in simultatenous
memory refeerezces, which is expected. However, pe?fo?ma,ce variability alro hIcreases. Similarly, the Add Ops
chart shows az expected la?;qeel- rzumbel- ofjloatmg-point operations at hi&w levels ofparallelism.

IEEE SOFTWARE 27

chart to observe the referencing demand
on the memory system. You expect a large
number of parallel instructions to generate a
large number of simultaneous memory ref-
erences, and the Store Ops chart shows this
quite clearly. However, the performance
variability also increases. Similarly, you ex-
pecT a larger number of floating-point oper-
ations at higher levels of parallelism. The
Add Ops chart shows this pattern. You can
interpret this chart as showing maximum
floating-point add operations.

Many Traceview features are useful for
the Maxpar application. For example, you
can see the average performance on the
graphs at various averaging intervals and
evaluate how well the FL052 computa-
tion as a whole benefits horn parallelism.
Traceview’s cross-trace comparison capa-
bilities also let you evaluate different opti-
mized Cray executions against the max-
mum parallelism cases to detemline the
optimizations that contribute most effec-
tively to performance.

T
he Traceview model does not apply to
all trace-visualization applications.

However, we think it will be useful in most

cases. Traceview’s primary shortcoming i
its lack of semantic understanding of th
trace events and data. In our future re
search, we must determine whether add
ing semantic knowledge to increase analy
sis capabilities will lessen the tool’s gener:
applicability. Perhaps we can identif
common trace types and incorporate basi
events and analysis capabilities derive1
from these types into Traceview. Or w
could make the tool’s architecture mor
open to let users write their own special
purpose analysis and display component
and integrate them with the tool’s gener:
trace-management and view-specification
features.

WC intend to add the capability to visu
aI& resource usage where the data associ
ated with an event defines changes in re
source state rather than a perfonnanc
metric. For this, a color-coded PER’:
(performance-evaluation research task
display might be better than a Gantt line
plot display. Such functionality would b
well suited to mace visualizations of CPI
function-unit usage, processor use, mem
ory-module references, and switching
network operation. 1

IS

e

3

11

1
3

e

ACKNOWLEDGMENTS
_ . . . ,

em Foundation grants NSFMII-88.07775 and NSFASC WMSS6, and National .&ttxx~dc\ dtld Space
Administration Ames Research Center grant NCC-2-559. Hammerslag’s and Jablonowuki’u work was sup-
pxtrd in pan by US Air Force Office of Scienafic Research grmr AFSOR 90-0044 and US Ener~ Dept.
grdnt DE-FGO?-8SERZSOOl.

REFERENCES

2. D. Reed and D. Rudolph, “The Intel iPSC/?: An Approach to Performance Instrurnentadon,“Il/t’l~.
High-Speed Computing, Dec. 1990, pp. 517.542.

3. B. Miller et al., “IPS-2: The Second Generation of a Parallel Program ,Ikasurcmcnt System,” Tech. Re-
port CS-783, Univ. Wisconsin, Madison, 1%‘is., 1988.

4. T LeBlanc, J. Mellor-Cmmmey, and R. Fowler, “;lnalyzing Parallel Program Executions Using ,Multiplc
Vmvs,“~. Par&land Diswihred Computi%g, June 1990, pp. 203.2 Ii.

j. M. Heath and J. E&ridge, “\isualizing Performance of Parallel Programs,” Tech. Report Oh\&TA1-
11811, Oak Ridge Nat’1 Laboratory, Oak Ridge, T&m., 1991,

6. T L&r et al., ‘>Tsualizing Prtfomnnce Debugging,” cm/m,; Oct. 1989, pp. 38-i 1.
i. h Malony, J. Larson, and D. Reed, “TracingAppItcdtion Program Erccution on the Gay X-MP and Gray

2 ,‘) Pm. 1990 SupcwYnI~~ ti?l<q CO?$, cs P ress, Los Alamitos, C&f., 1990, pp. 60.i3.
8. J. Larron, “CrayX-MP Hardware Performance .Monitor,” G-ay C%anwl.r, U’mtcr 1986, pp. 18.19.
9. M. Berry, “The Perfect Club Benchmarks: Effwtive Performmce Fsaluadon of Sup~rcotnput~r,,” Int’l~.

Supe~romnptrt~~,lpplirariolLc, Fall 1989, pp. 5.4).
IO. D. Chen, .~laxpm -112 Eventrim~ D&T Simrrlhtor fnr .Shu~~wr~ P~w&l S~mm, nmter’~ the& Univ. ofIlli-

noia at Urbana-Champaign, Urbana, III., 1990..

AlIen D. M&my is an asis-
tam professor in the Com-
puter and Information Sc-
ence Dqxarhnent at the

University of Oregon.
While working on
Traceview, he was a senior
dtwarc cnginw at the
Center for Supcrcompudng
Research and Development
at the U&c&y of Illinois

Iis rerearch interests are per-
ormance evahaholl, multiprocessor architechlres, and
,arallel programmltlg environments.

,Malony rcccwed a BS and an MS in computer sci-
:ncc l&n the Unnusiq of Cdlifomia at Los Angeles
md a PhD in computer s&ace from the University of
Ilinois at Urbana-Champaign IIc is a member of the
EEE Computer Society.

Hammerslag recewr
the University ofIllinois.
Computer Society.

David H. Hammerslag is a
dtware engker at the
Center for Supercomputing
Research and Devrlopmmt
at the University 0fIlIinois
at Urt,ana-(:hampai~l. His
research intcrcsts arc soft-
ware .!qineering, progr‘m-
ming rnvironmrnts and
tools, and programming lan-
guages.

d his KS, MS, and PhD from
He is a member ofthe IEEE

David J. Jablonowski is a se-
nior software engineer at the
Center for Supercomputing
Research and Development,
where he specializes in inte-
grated environments and
user-interface design.

JahlonowAi received a
BS in computer science from
the University of Wisconsin
at Eau Claire and an MS in

computer science ftom Boston University.
Address questions about this article to Ham-

me&g, Center for Supercomputing Research and De-
velopment, University ofIllinois, Urbana, IL 61801;
Intcmct hanmmcr@urd.uiuc.edu.

28 SEPTEMBER 1991

