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A lthough they con- 
tain much performance detail, large trace 
files capturing logical or physical actions 
taken by a program are difficult to use 
when analyzing a system’s perfomlance. 
The manual effort required to manipulate 
trace files, including creating graphical 
presentations, can be daunting, requiring 
some automatic support for trace analysis 
and visualization. 

Trace-based performance visualiza- 
tion gives you an intuitive understanding 
that is often more useful than a textual sta- 
tistical profile.‘.’ However, systems that 
support performance visualization often 
only accept trace input of a specific type, 
conforming to a particular execution 
paradigm or generated from a particular 
system context.‘-” Furthermore, the dis- 
plays used can be inadequate to show the 
time-dependent behavior of arbitrary 
data values that might be associated with 

different events in the trace.’ 
A general-purpose trace-visualization 

system can incorporate common aspects 
of trace processing and display. However, 
the gains in reusability come at the ex- 
pense of specificity in trace-data analysis, 
because such a system must use a simpli- 
fied event-interpretation model. Whether 
this trade-off is a liability will depend on 
the trace-visualization application. 

In this article, we describe the design, 
development, and application of’T?aceview, 
a general-purpose n-ace-visualization tool. 
We seek to identify the aspects of trace vi- 
sualization that can be incorporated into a 
reusable tool and evaluate the trade-off in 
general-purpose design versus semantical- 
ly based, detailed trace-data analysis. 

ARCHITECTURE AND FUNCTION 

The architecture for a genera-purpose 
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trace-visualization tool must be flexible 
enough to let you select analysis and dis- 
play alternatives. However, it should also 
provide a structure rigid enough to let you 
build on the resources of the tool and ex- 
tend the base analysis and display meth- 
ods. 

Such an architecture cannot support all 
trace-visualization models, but it should 
support most - especially those used for 
the simple visualization problems that 
occur most frequently. Extension mecha- 
nisms should provide an easy customiza- 
tion path for more complex cases. 

We based Traceview’s general-purpose 
architecture on the concept of a trace-vi- 
sualization session. Figure 1 shows the hi- 
erarchical tree structure of a Traceview 
session, which involves trace files, views, 
and displays. 

First you specify a set of trace files to 
visualize. For each trace file, you can de- 
fine a set of views. A view defines a trace 

subregion by setting a beginning and an the trace data, the number of defined 
ending point, and by event filtering. For views, and the information necessary to 
each view, you can create a set of displays. reconstruct each view. The session man- 
Although the session paradigm precludes ager assumes that a session-configuration 
displays that combine data from multiple file is consistent with the data in the desig- 
traces, it supports multiple simultaneous nated traces. In future implementations, 
displays. You can use multiple displays to the session manager will record the modi- 
compare data from several trace files. fication dates of trace files in the saved 

configuration and check the dates when it 
Session mmopent. As Figure 2 shows, restores the configuration. 

Traceview’s session manager saves and re- The session manager lets you merge 
stores each session’s configuration and multiple session configurations into the 
coordinates the trace, view, and display current session. If all trace files are distinct, 
managers. The session manager lets you merging is simple - basically, it is addi- 
save a session configuration to external tive. When there are conflicting trace- 
storage for later retrieval of the same visu- view combinations, you are prompted to 
alization environment. This saves work resolve the conflict by selecting one alterna- 
because ‘Ii-aceview visualization sessions tive over another or by renaming entries. 
can be quite complex, with many trace Figure 3 shows how a session appears 
files opened and many views defined on to a user. Open files are listed in the Files 
each trace. window, defined views for the selected file 

At any point while you use Traceview, in the views window, and created displays 
the session manager defines the current for the selected view in the Displays win- 
session as the set of open trace files, the set dow. When vou select a trace file from the 
of defined views for each trace, and the set open files list, Traceview automatically 
of displays for each view. However, the updates the views list to show the corre- 
current displays for each view are not part sponding defined views. Similarly, when 
of the session configuration. They are de- you select a view, Traceview updates the 
fined only for the current Traceview invo- displays list to show the view displays you 
cation. Our initial reasoning was that sav- have created. You can add or delete files, 
ing the total display state would require views, and displays at any time. The num- 
too much space. Now we are determining ber of trace files, view specifications, and 
if display saving can be accomplished with displays is limited only by the memory 
only part of the display state. available to store the pertinent session in- 

For each open trace, the session man- formation. 
ager saves the name of the file containing 

1 Trace fik. Traceview processes event 

67 trace file input session configuration 
saving and restoring 

Session manager 

Trace manager ~~~]*[Disploy Luger 1 U 

Figure 2. Tmcevim a~&temwe. 

traces. An event is a recorded instance of 
some logical action. We intentionally give 
only general descriptions of events be- 
cause Traceview makes no semantic inter- 
pretation of the actions that the events 
represent. It assumes that each event is 
time-stamped merely to establish an or- 
dering relation (usually a time ordering) 
among the events. 

The trace file is divided into two parts: 
an ASCII header and binary trace data, 
which is a time-sequenced list of trace 
events. Each event reflects the instance of 
some action taking place during computa- 
tion. Traceview interprets this action as a 
state transition. Each event recorded in 
the trace includes encodings of the state 
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being exited and the state being entered, 
an event type, and a time stamp. Events 
may also include supplemental data fields. 
Events within a file are homogeneous in 
their format: Each has the same number of 
data fields associated with it. (Future im- 
plementations will allow variable-size data 
fields dependent on the state.) Each data 
field typically represents some numeric 
event metic. 

The trace-file header specifies the 
number of data fields associated with each 
event transition and how the data is la- 
beled when presented to the user. It also 
provides flags to control display 
customization, a directory of names to use 
for the states, and an optional index into 
the event data. Summary information in 
the header includes the number of events 
in the trace and the total time represented 
by the trace data. 

Trace mmagement.  Working with this 
trace-file format, the trace manager 

* opens trace files, 
+ interprets the trace-file header, 
+ calculates global trace statistics, 
+ reads events from open trace files, 

and 
l closes trace files (freeing storage allo- 

cated when the trace was opened). 
The trace manager also provides a 

graphical user interface. You select traces 
to open through a standard dialogue. The 
trace manager presents the list of open files 
in the left window of the main ‘Ii-aceview 
window, as shown in Figure 3, and pres- 
ents summary information in the display 
shown in Figure 4. 

View management.  To define multiple 
views on each trace, you use the view man- 
ager. A view deftition consists of 

+ a starting time in the trace, 
+ an ending time, and 
+ a list of names of events to be ex- 

cluded from the trace. 
The view manager applies a view defi- 

nition to a trace to produce a virtual trace, 

File name:  /groups/performance/traces/ptrace 
Trace id: 1  
Start: 0  
End : 7.61719 
Loaded : No 
No. Events: 35937 
No. Event Names: 33  
No. Data Fields: 8  
No. Views: 3  
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which is derived from the actual trace. The 
view manager first discards any events that 
occur before the view starting time or after 
the view ending time. Then it filters the 
remaining events to remove the events 
you specified for exclusion in the view def- 
inition. 

You change the effect of the pattern 
matching using the Exclude and Include 
buttons. 

Figure 5 shows the user interface for 
view creation and modification. The view 
range is a lower and upper bound of time 
or events, which you select or adjust. For 
event adjustments, the view manager 
searches for the named event forward or 
backward from the current lower or upper 
bound. You make time adjustments either 
by entering a new time directly, or by 
using the scroll bar. While it maintains its 
normal scrolling functions, which let users 
move a time window across the trace, the 
scroll bar can also be extended or con- 
tracted to change the time-window size. 

ing trace events from secondary storage 
can slow the system. Our approach in 
Traceview is to cache trace events in mem- 
ory buffers. We chose to cache virtual 
traces instead of raw traces because vir- 
mal-trace range selection and event filter- 
ing suppress events of no concern in the 
display. However, Traceview does virmal- 
trace caching only for views, not for each 
derivative view display. 

For event filtering, you toggle event 
names in the event filter list. You can tog- 
gle them individually or collectively, using 
the string pattern-matching capabilities. 

Traceview performs event filtering 
based on the view definition when con- 
structing a virtual trace. Removing the 
events that occur before or after the view- 
ing range is trivial. Filtering out individual 
unwanted events is a bit more compli- 
cated. The view manager removes an 
event from the trace if the event’s ‘I6 or 
From state designator matches an event 
name specified for exclusion. The easiest 
way to understand the algorithm for event 
filtering is to see it as removing one event 
at a time from the trace. At each iteration, 
the algorithm creates a new virtual trace 
with all events to or from the state in ques- 
tion removed. The data fields are updated 
appropriately. When it has removed all 
the specified events, the final virtual trace 
is the result. 

Because trace files can be large, the cost 
of reading raw traces entirely into memory 
can be prohibitive. However, always read- 

Traceview implements virtual-trace 
caching by assigning each defined view a 
cache buffer, the size of which you control 
through a Traceview application resource. 
(In the future, we will add interactive 
buffer-size control to the view window.) 
At any time, some consecutive portion of 
the virtual trace is cached. The time stamp 
of the first cached event and the time 
stamp of the last cached event delimit the 
portion. If a display requests a virtual-trace 
event within the cache, the view manager 
fetches the event from the cache, getting 
the benefits of fast memory access. How- 
ever, if a display requests a virtual-trace 

I I 
_____-__ _________- 

22 SEPTEMBER 1991 



event outside the cache, the view manager 
flushes the cache and then refills it from 
the virtual-trace stream derived from the 
original trace on secondary storage, start- 
ing with the requested event. 

Virtual-trace caching minimizes 
Traceview’s total memory requirements 
while offering fast response time during 
display interaction. Speed depends on sev- 
eral parameters: the cache-buffer size, the 
view-range selection, the extent of event 
filtering, and the location of the virtual- 
trace references during display update. 
Further experience with Traceview, par- 
ticularly with large trace files, will help us 
determine the efficacy of virtual-trace 
caching. 

Display management. The display man- 
ager graphically presents the virtual trace 
constructed by the view manager. The dis- 
play manager lets you select horn two 
available display methods and creates a 
display window showing the data. The 
display manager cormols the right win- 
dow in Figure 3, which presents a list of 
existing displays for the selected view. You 
can reopen, destroy, and create displays. 

The display manager does not actually 
display the data; rather it invokes a display 
method to display a virtual trace. 
Traceview does not dictate a display 
method. Although two display types are 
statically linked with Traceview, you can 
incorporate any display method that can 
interpret a Ti-aceview virtual trace. 

DISPLAY METHODS 

The display type menu lets you select 
either a Gantt display or a rate display. 
Both use the Gantt chart widget. Gantt 
charts are line-plot representations of 
time-sequenced performance data. 
Traceview uses a Gantt chart widget we 
developed expressly for displaying mace 
data. 

Gantt chart widget. The Gantt chart wid- 
get provides horizontal and vertical axes, 
axes labels, data display, density bars, and 
data averaging. In most cases, the number 
of points displayed in a Gantt chart greatly 
exceeds the pixel width of the x axis of the 
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Gantt chart. In our experience, the ratio of 
data points to pixels commonly exceeds 
10: 1. The Gantt chart widget offers two 
solutions to this data-density problem: 
density bars and average curves. 

axis. Because of this vertical stacking, the 
density and distribution of data points on 
the x axis are identical for all the Gantt 
charts in a given display shell. 

The display of a density bar on a chart 
is optional. A density bar is a band of color 
displayed above the Gantt’s data-display 
area. For density bars, Traceview lets you 
select a color map, which assigns integer 
ranges to colors. A density bar can repre- 
sent either value density or point density. 
In a value-density bar, the color at pixel p 
represents the average of all the data points 
displayed at pixelp on the x axis. In a point- 
density bar, the color at pixel p represents 
the number of data points represented at 
pixel p on the x axis. 

In addition to a density bar and the 
graphical data display, the 
Gantt chart widget op- 
tionally displays an aver- 
age curve. The average 
curve overlays the data 
display and is computed 
by taking the average over 
a hxed interval of points as 
the interval slides along 
the x axis. The average 
data value for point p on 
the x axis is calculated 
using all the data points 
from the interval when 
centered atp. If a point on 
the x axis has no actual 

The display shell lets you control the 
individual Gantt charts. From the display 
shell you can add charts to or delete charts 
&om the display, mm density bars on or 
off, turn averaging on or off, and produce 
a Postscript version of the chart. 

The display shell also lets you manipu- 
late all the Gantt charts together by ad- 
justing the averaging interval and by 
zooming in on a chart region. You select 
the averaging interval by manipulating a 
slider to choose a percentage of the width 
of the chart’s x axis. To zoom in on a chart 
portion, you use the mouse to select a re- 
gion. Then you can zoom in on that re- 

gion in all the charts. You 
can undo zooming step- . . 

Although two disploy 
types are statically 

linked with Traceview, 
you can incorporate 
any display method 
that can interpret 

a Traceview 
virtual trace. 

data points associated 
with it, the Gantt chart 
widget assumes it has the same average 
value as the most recent point preceding it. 

Display shell. Both display methods bun- 
dle Gantt charts in a display shell that syn- 
chronizes many Gantt charts in one win- 
dow. The display shell also provides the 
user interface where you control the be- 
havior and appearance of the individual 
Gantt charts. 

All the Gantt charts in a display shell 
derive from the same virtual trace, and the 
x axis for all the charts is identical. There- 
fore, the display shell stacks Gantt charts 
horizontally and aligns them so a vertical 
line across the display shell intersects all its 
charts at precisely the same point on the x 

wise or all at once. 

Using Gantt charts. 
Traceview uses the Gantt 
chart widget with the dis- 
play shell to present two 
kinds of displays to the 
user: displays based on 
state transitions, which 
we call simply Gantt dis- 
plays, and displays of the 
number of times a state is 
entered, or ratesdi@zys. 

For Gantt displays, the 
chart’s x axis represents 
time. The y axis varies 

from chart to chart. For traces that con- 
tain no data fields, the display manager 
shows only a single chart. Here, they axis 
represents states. A square wave shows 
when a state is entered and when it is ex- 
ited. If the trace also includes data fields, 
then the display shell includes a Gantt 
chart for each data field. For these, they 
axis represents the data field values. Be- 
cause Traceview traces only have data re- 
corded at state transitions, all the charts 
have the same x axis and the same data 
point distribution. 

In the rates display, you view metric 
data associated with a trace state. For the 
selected state, you can have a chart for 
each data field deiined for the trace. The 
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ing horizontal line displayed across the 
Gantt chart. 

From within the display shell, you can 
dump the details of a virtual mace to an 
ASCII file. Traceview generates two types 
of files. The first contains the details of 
each event record in the virtual trace, in- 
cluding time stamps and all the other fields 
of the event record. The second contains 
the details of how Traceview constructed 
the virtual ttace from the raw trace. If 
Traceview excludes routines from the vir- 
tual trace, the most relevant data in this file 
is how Traceview combined or ignored 
event records and their data fields to create 
the virtual trace. We use the second type of 
file for diagnostics in virtual-trace genera- 
tion. 

TRACEVIEW APPLICATIONS 

display manager also provides an addi- 
tional chart giving the summation of all 
the metrics available. 

For the rates display to be applicable, 
the trace must include data fields. In the 
rates display, the x axis represents ordinal 
instances of the state being entered. They 
axis represents the individual data field 
values. Instead of the more familiar square 
wave usually used in Gantt charts, the dis- 
play manager causes the Gantt chart wid- 
get simply to display the points and con- 
nect them. 

MisceU0neOas features. You can use the 
mouse to place a horizontal line across the 
Gantt chart plotting state transitions and 
find out the name of the state represented 
by that point on they axis. Conversely, you 
can bring up a list of all states in the virtual 
trace, select one, and have the correspond- 
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A general-purpose trace-visualization 
tool must be effective across a variety of 
applications. Using the tool’s standard fea- 
tures, you should be able to conveniently 
process and visualize traces from real or 
simulated systems. The visualization 
should help you gain insight into impor- 
tant performance phenomena difficult to 
observe otherwise. The tool should let you 
input trace data from different perfor- 
mance levels (hardware, system software, 
and application software) with different 
data appearing together in the trace. Fi- 
nally, a trace-visualization environment 
must let you visualize and compare multi- 
ple traces simultaneously. 

lb see whether Traceview met these 
practical objectives, we used it to visualize 
traces encountered in our performance 
evaluation projects at the Center for 
Supercomputing Research and Develop- 
ment at the University of Illinois at Ur- 
bana-champaign. One project required 
Traceview to visualize program-event 
transitions and associated hardware per- 
formance information from applications 
programs running on Cray super- 
computers. Another project was to deter- 
mine via simulation the maximum paral- 
lelism within application executions. In 
this project, Traceview shows time-de- 
pendent levels of parallelism and corre- 
sponding system performance metrics. 

We elaborate on these two projects later. 
Another project not discussed here was 
the visualization of register- and func- 
tional-unit usage in traces from an instruc- 
tion-level simulation of a single Cray X- 
M P  processor. 

We conclude from our validation tests 
that Traceview is effective across different 
trace-visualization applications and re- 
quires little trace input modification, ex- 
cept for conversion to the standard 
Traceview trace format. Although 
Traceview’s display methods are currently 
limited, the Gantt and rates displays offer 
a robust visualization approach, paticu- 
larly for comparing different performance 
data within a single trace or across multi- 
ple traces. 

We observed shortcomings in those 
trace-data 13nalyses that required semantic 
interpretation. In the future, we could add 
limited semantic capabilities to Traceview 
for applications that require, for the most 
part, semantically independent trace anal- 
ysis, but need some semantic trace inter- 
pretation. However, we will continue to 
emphasize trace-visualization applications 
in which the user provides the semantic 
context. 

Viewing Gray applications. You can capture 
detailed data about the performance be- 
havior of an application’s execution only 
by tracing important events and sampling 
relevant machine performance metrics. 
One tracing system for Cray super- 
computers’ measures program-event 
transitions and stores information about 
machine performance accessed from the 
Cray hardware-performance monit0r.a 
There are four hardware performance 
monitor groups, covering different classes 
of hardware performance, but only one of 
the four groups is accessible at a time. 

Tracing application execution can gen- 
erate large amounts of trace data quickly, 
and analyzing and presenting the data 
manually can be arduous. We have applied 
Traceview to the analysis and display of 
Cray application traces. Here we describe 
a sample Traceview session, where we 
viewed the trace from a vector execution of 
the Perfect benchmark code FL052 (a 
multigrid fluid-dynamics computation).’ 
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The session display in Figure 3 is a 
snapshot of the session configuration used 
for the FL052 traces. The Files window 
lists the four open trace files from different 
vector executions of the FL052 program. 
The file ftrace contains an events-only 
trace, while the other traces include hard- 
ware-performance monitor values for 
each event in the trace. The ptrace file 
contains the group 0 counter values. The 
files trace02 and trace03 contain the group 
2 and group 3 traces, respectively. Figure 4 
shows the summary trace information for 
ptrace. 

Because the ptrace trace contains both 
event data and hardware-performance 
monitor data, you must be able to view 
event transitions and changes in hardware 
performance simultaneously. Then you 
can analyze different computation regions 
to see their effects on hardware perfor- 
mance. Figure 6 shows the Gntt Options 
menu, which lets you choose interactively 
the data to be shown. Figure 7 shows the 
Gantts display of the transitions between 
FL052 computational blocks during exe- 
cution and the corresponding hardware 
behavior. 

Because the view definition for Figure 
7 selects all routines for viewing, all entry 
and exit transitions between the FL052 
routines appear in the Events chart. All 
routines are numbered and appear at their 
corresponding number level on they axis 
in the Events chart. You can bring up the 
routine-to-number mapping in another 
window for review. Each vertical line in 
the display represents a routine transition, 
and each horizontal line indicates the time 
spent in the current routine. Thus you can 
identify the current routine at any point in 
the display and observe the relative pattern 
of routine occurrence and the differences 
in routine execution time. For FLO52, the 
Events chart shows the cyclic nature of the 
multigrid computation during one major 
phase of the execution. 

Figure 7 also shows the values of the 
chosen hardware-performance metrics 
corresponding to each routine transition. 
The displayed values are computed as 
rates over the period between successive 
state transitions. In this case, the rates are 
in millions per second. From these dis- 
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plays, you can see how hardware perfor- 
mance changes between routines. You can 
also correlate performance across the dif- 
ferent hardware metrics. The figure shows 
that the cyclic nature of the routine transi- 
tions in the displayed region ofthe FL052 
computation is reflected in repetitive 
hardware behavior. This indicates rela- 
tively stable hardware performance within 
and between the successive periods. 

A problem with displaying a large 
number of events is screen resolution. The 
screen reproduced in Figure 7 displays ap- 
proximately 11,000 events in 900 pixels. 
The point-density bar in the Events dis- 
play highlights areas where many events 
are presented. In this case, the color map 
ranges from black, through red, orange, 
and yellow, and finally to white. Black is 
the least dense, white the most. The value- 
density bars in the various performance- 
metric displays show the average of per- 
formance values at the screen resolution. 
Zooming in on areas with high point den- 
sity provides additional details about event 
transition and hardware performance. 

Figure 8 shows a zoomed-in Gantts 
display for the FL052 trace. Although 

there is still an event-density problem, you 
can discern some individual event transi- 
tions. This lets you observe and quantify 
the high variability in discrete hardware 
performance transitions during the 
FL052 computation. Clearly, the CPU 
Memory References metric is not uniform 
across routines and shows significant 
changes in the memory reference rate. We 
also observed this for the Total Floating 
Point Operations metric (not shown). 

You use the average curve, drawn over 
the CPU Memory References metric 
chart, to contrast the discrete perfor- 
mance behavior with average perfor- 
mance. The CPU Memory References 
metric is a good example of how 
Traceview can simultaneously display per- 
formance data analyzed over different 
time intervals. Viewing detailed hardware 
data localizes the performance behavior to 
particular routines, while averaged hard- 
ware data curves show aggregate perfor- 
mance over time. 

You use Traceview’s rates display to 
observe the performance differences be- 
tween successive invocations of a single 
routine. Figure 9 shows four performance 
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metrics for each invocation of the routine 1 FL052 code. A transition in the display 
Psmoo, a solution-approximation reflects a separate invocation in a time-or- 
smoothing routine in the multigrid ~ d ere se d q uence of Psmoo calls. Because 

no resolution problem exists, you can 
quickly observe the cyclic nature of Psmoo 
performance in the view region. All Float- 
ing Point Operations and CPU Memory 
References are positively correlated, but 
they are negatively correlated with I/O 
Memory References. Floating Point Mul- 
tiplies appear to be uncorrelated. The in- 
vocation sequence in a single period re- 
flects the FL052 computation’s multigrid 
nature. As the Psmoo routine is called on 
successively coarser grids, the vector oper- 
ations increase in overhead, resulting in 
decreases in delivered floating-point per- 
formance and memory-reference rate. 

The main benefit of the rates display 
for the FLOSZ application study is its abil- 
ity to focus on a particular routine and 
display performance data for only that 
routine. All the user-interaction capabili- 
ties of the Gantts display are accessible in 
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the rates display. 
We continue to use Traceview to study 

different versions of Cray applications, in- 
cluding FLOSZ. Because Traceview lets us 
open multiple trace files simultaneously, 
we can view traces from different execu- 
tions on the screen at the same time. This 
is important in Cray work because we 
must execute the programs several times 
to capture traces for all four hardware-per- 
formance monitor groups. Also, we want 
to compare the FL052 traces of vector 
execution with those from scalar and con- 
current executions to better understand 
the relative performance benefits of differ- 
ent compiler optimizations. 

Viewing max’hum parallelism. When eval- 
uating the performance of a parallel com- 
putation, you want to know the maximum 
levels of parallelism that could be achieved 
during execution. Although in practice the 
instantaneous parallelism will be limited 
by the total processors available on the 
machine, a notion of peak parallelism can 
help you understand execution efficiency. 

Maxpar’” is a simulator for extracting a 
program’s maximum theoretically attaina- 
ble parallelism. It works by maintaining a 
set of shadow variables for each actual vari- 
able. The shadow variable records the 
time when the variable’s current value is 
valid. Each operation in the original pro- 
gram, in addition to computing a change 
in the variable’s value, also computes the 
time when that value is first available. 

From this information, Maxpar can 
calculate the number of operations that 
can be simultaneously computed. From 
these maximum parallelism levels, Maxpar 
can derive other operational statistics such 
as the number of CPU memory references 
and floating-point operations. 

Maxpar generates extensive tracing in- 
formation, roughly comparable to that 
produced by Cray’s hardware-perfor- 
mance monitoring software. It generates 
event records on each routine entry and 
exit, along with information on when the 
routine could have first been entered. In 
addition, performance profiling records 
keep track of when each instruction and 
arithmetic operation was ready to execute. 
A set of filters adapts this information to a 

Figure 10. Gantts display of the Events chart of the entire FLOi2 computation as analyzed b Maxpar. The 
chart clearly shows the three majorphases ofthe FLOj2 computation. However, unlike scalar and vector Gray 
e.recutions, multip2e routines can be active at the same time. 

format suitable for Traceview. 
Once they are formatted, you can view 

the Maxpar profiles side by side with Cray 
traces of the same program. This lets you 
compare potential peak parallelism, as 
generated by Maxpar, with the Cray’s at- 
tained performance. Figure 10 shows a 
Traceview Gantts display of the Events 
chart of the entire FL052 computation 
analyzed by Maxpar. The chart clearly 
shows the three major phases of the 
FL052 computation. However, unlike 
scalar and vector Cray executions, multi- 
ple routines can be active at the same time. 

Figure 11 shows a Cantts display for 
Maxpar performance data generated from 

FL052. The Instructions Executed Gantt 
chart indicates the number of parallel in- 
structions executed. In comparison with a 
real traced execution, the Maxpar traces 
reveal the same phased, periodic behavior 
of the FLOSZ computation. However, the 
levels of parallelism are significantly more 
enhanced and variable from phase to 
phase. The Instructions Executed levels in 
the measured Gray traces are limited by 
the number of processors available and the 
vector register lengths. 

As with a Cray execution trace, it is 
interesting in the Maxpar case to observe 
how instruction execution affects machine 
performance. You can use the Store Ops 

Figure 11. Gantts display fw Maxpar performance data generated jiwn FL012 metrics. Maxpar traces 
reveal the srme phased, periodic bebaviol- of the FL012 computation, but the levels ofparallelism are szgnifi- 
cant& more enhanced and variable fi-om phase to phase. It is imerestmg in the Maxpar case to obseme hm 
imtmctton execution affects macbme pe?formancr. The Stove Ops chart show the increase in simultatenous 
memory refeerezces, which is expected. However, pe?fo?ma,ce variability alro hIcreases. Similarly, the Add Ops 
chart shows az expected la?;qeel- rzumbel- ofjloatmg-point operations at hi&w levels ofparallelism. 
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chart to observe the referencing demand 
on the memory system. You expect a large 
number of parallel instructions to generate a 
large number of simultaneous memory ref- 
erences, and the Store Ops chart shows this 
quite clearly. However, the performance 
variability also increases. Similarly, you ex- 
pecT a larger number of floating-point oper- 
ations at higher levels of parallelism. The 
Add Ops chart shows this pattern. You can 
interpret this chart as showing maximum 
floating-point add operations. 

Many Traceview features are useful for 
the Maxpar application. For example, you 
can see the average performance on the 
graphs at various averaging intervals and 
evaluate how well the FL052 computa- 
tion as a whole benefits horn parallelism. 
Traceview’s cross-trace comparison capa- 
bilities also let you evaluate different opti- 
mized Cray executions against the max- 
mum parallelism cases to detemline the 
optimizations that contribute most effec- 
tively to performance. 

T 
he Traceview model does not apply to 
all trace-visualization applications. 

However, we think it will be useful in most 

cases. Traceview’s primary shortcoming i 
its lack of semantic understanding of th 
trace events and data. In our future re 
search, we must determine whether add 
ing semantic knowledge to increase analy 
sis capabilities will lessen the tool’s gener: 
applicability. Perhaps we can identif 
common trace types and incorporate basi 
events and analysis capabilities derive1 
from these types into Traceview. Or w 
could make the tool’s architecture mor 
open to let users write their own special 
purpose analysis and display component 
and integrate them with the tool’s gener: 
trace-management and view-specification 
features. 

WC intend to add the capability to visu 
aI& resource usage where the data associ 
ated with an event defines changes in re 
source state rather than a perfonnanc 
metric. For this, a color-coded PER’: 
(performance-evaluation research task 
display might be better than a Gantt line 
plot display. Such functionality would b 
well suited to mace visualizations of CPI 
function-unit usage, processor use, mem 
ory-module references, and switching 
network operation. 1 
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