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Motivation
 Performance problem analysis increasingly complex

 Multi-core, heterogeneous, and extreme scale computing
 Shift of performance measurement and analysis perspective

 Static, offline       dynamic, online
 Support for performance monitoring (measurement + query)
 Enabling of adaptive applications

 Prerequisites for performance measurement
 Low overhead and low perturbation
 Runtime analysis antithetical to performance tool orthodoxy

 Neo-performance perspective
 Co-allocation of additional (tool specific) system resources
 Make dynamic, performance-driven optimization viable
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Performance Observation Needs
 Performance problem type determines observation approach 

 Translates to requirements for measurement and analysis
  Standard offline performance diagnosis/tuning process

 Compile-execute-measure-analyze cycle
 Pre-determined performance experiment (events, measures)
 Static application execution and optimization

  Standard approach difficult to apply to complex execution
 Dynamic applications where performance changes
 Extreme scale, heterogenous systems with high dimensionality

 Requires extended online performance measurement support
 Dynamic monitoring and performance feedback
 Raises vital concerns of overhead and perturbation

 bigger issue in online systems due to global effects 
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Performance Observation Modes
 Post-mortem

 Performance data interpreted offline
 May lack temporal detail (e.g., using profiles only)

 Post-mortem with temporal detail
 Still offline interpretation
 Can generate prodigious data volumes (e.g., using tracing)

 Online
 Performance data queried, interpreted at runtime
 Suitable to long running applications (especially at scale)
 Similar in spirit to real-time visualization

 Online with feedback into ...
Measurement subsystem (optimize, distribute analysis)
Application (steering)
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Monitoring for Performance Dynamics
 Runtime access to parallel performance data

 Scalable and lightweight
 Support for performance-adaptive, dynamic applications
 Focus on parallel profile data

 Alternative 1: Extend existing performance measurement
 Create own monitoring infrastructure
 Integrate with measurement system
 Disadvantage: maintain own monitoring framework

 Alternative 2: Couple other with monitoring infrastructure
 Leverage scalable middleware from other supported projects
 Challenge: measurement/monitor integration
 TAU over Supemon (ToS) (UO, LANL)
 TAU over MRNet (ToM) (UO, University of Wisconsin)
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Talk Outline
 Motivation
 Performance observation needs
 Performance observation modes
 Monitoring for performance dynamics
 Separation of concerns and MRNet
 TAUoverMRNet (ToM)

 System design
 Monitor instantiation problem
 ToM filters: distributed analysis, reduction

 System characterization
 Future plans and conclusion
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Separation of Concerns
 Online performance monitoring decomposes into

 Measurement
 Access / Transport

 Measurement sub-system
 Measures application performance

 parallel profile per context (MPI ranks, processes, threads)
 Maintains performance state locally (global performance data)

 Access / Transport
 Query of distributed performance state (frequency, selection)
 Bridges application (source) with monitors / front ends (sinks)
 Moves performance data from source to sink
 Distributed performance data processing (MRNet)

 distributed performance analysis / reduction also feasible
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What is MRNet?
 Multicast Reduction Network

 Software infrastructure, API, utilities (written in C++)
 Create and manage network overlay trees (TBON model)
 Efficient control through root-to-leaf multicast path
 Reductions (transformations) on leaf-to-root data path
 Packed binary data representation

 Uses thread-per-connection model
 Supports multiple concurrent “streams”  

 Filters on intermediate nodes
 Default filters (e.g., sum, average)
 Loads custom filters through shared-object interface

 MRNet-base tools (Paradyn, STAT debugger, ToM)
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TAU Transport Abstraction Layer
 Application calls into TAU (TAU_DB_DUMP())

 Application specific intervals
 example: per-iteration or phase

 Regular periodic intervals
 Configuration specific

 Compile or runtime
 One per thread

 Develop abstract transport
interface
 Adaptors to alternative monitor infrastructure

 Push-Pull model
 Source pushes and sink pulls
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MRNet Back-End Adapter
 Adapter responsibilities

 Initialization
 Finalization
 Control
 Performance data output

 TAU MRNet Back-End
 Two streams

 data
 control

 Packetization
 Non-blocking receive for control

10
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Components and Data/Control Flow
 Components

 Back-End (BE) adapter
 Filters

 reduction
 distributed Analysis
 up / down stream

Front-End (FE)
 unpacks, interprets, stores

 Data path
 Reverse reduction path

 Control path
 Forward multicast path
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Monitor Instantiation Problem
 How to co-allocate nodes (cores) for monitoring?

 Monitor performs transport and analysis
 General problem when utilizing additional resources

 tool specific
 Important especially in non-interactive (batch) environments

 Set of allocated nodes not known a priori
 Multi-step setup procedures difficult / awkward
 Environments vary widely

 command-line / script interfaces and capabilities
 Need an approach ...

 To instantiate application, transport, and front-end
 ... that is independent of batch environment
 ... that requires no changes to application
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Monitor Instantiation: Required Steps

13
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Monitor Instantiation: Required Steps
 Calculate (monitor + application) and request total resources
 Apportion resources based on role (monitor, application)
 Construct transport topology (Front-End, Filters)
 Help Back-Ends discover and connect to parents
 Do so transparently to application
 Do so transparently to queue manager and scheduler
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Monitor Instantiation: Required Steps
 Calculate (monitor + application) and request total resources
 Apportion resources based on role (monitor, application)
 Construct transport topology (Front-End, Filters)
 Help Back-Ends discover and connect to parents
 Do so transparently to application
 Do so transparently to queue manager and scheduler
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 Total resource calculation easy
 Do so manually or through script (based on FanOut)

 MRNet already does transport topology construction and 
filter instantiation for us
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Transparent Monitor Instantiation
 Solution for MPI Applications
 Based on interception of MPI Calls

 PMPI interface
 Separate roles

 Tree: Rank-0 and Ranks 1..k-1
 Application: Ranks k..N+k

 Three parts to method:
 Initialization
 Application execution
 Finalization
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Transparent Monitor: Initialization
 COMM_WORLD split based on role of rank
 Intermediate nodes register with ToM on Rank-0 using MPI
 Rank-0 uses MRNet API to instantiate transport
 Rank-0 MPI bcasts tree info to application BEs to join
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Rank 0

TAU MPI_Init() Wrapper

S1 :   Call PMPI_Init()

S2 :   Split Tree/App Comm

S3 :   Recv Inter. Hostnames

S4 :   Create Tree Topology file

S5 :   Fork/Exec Front-End

S6 :   Read Host/Port from FE

S7 :   Send Host/Port to Appl.

S8 :   waitpid() on Front-End

S9 :   Send fini to Tree-ranks

S10 : Call PMPI_Finalize()

Tree Ranks 1 to (K-1)

TAU MPI_Init() Wrapper

S0 :   Call PMPI_Init()

S1 :   Split Tree/App Comm

S2 :   Send Hostname to Rank0

S3 :   Call MPI_Irecv(fini)

S4 :   sleep 5

S5 :   if(MPI_Test() == false)

  goto S4 

S6 :   Call PMPI_Finalize()

Application Ranks

TAU MPI_Init() Wrapper

S0 :   Call PMPI_Init()

S1 :   Split Tree/App Comm

S2 :   Recv Host/Port Parent

S3 :   return

Other TAU MPI Wrapper

S0 :   if(comm == 

MPI_COMM_WORLD)

            comm = userComm; 

S1 :   Call PMPI routine

S3 :   return
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Transparent Monitor: Application Execution
 Application on Back-Ends proceeds normally
 MPI calls on COMM_WORLD are converted

 Intercepted to use userComm
 MPI jobs on Ranks 0 to k-1 idle
 MRNet processes active
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Rank 0

TAU MPI_Init() Wrapper

S1 :   Call PMPI_Init()

S2 :   Split Tree/App Comm

S3 :   Recv Inter. Hostnames

S4 :   Create Tree Topology file

S5 :   Fork/Exec Front-End

S6 :   Read Host/Port from FE

S7 :   Send Host/Port to Appl.

S8 :   waitpid() on Front-End

S9 :   Send fini to Tree-ranks

S10 : Call PMPI_Finalize()

Tree Ranks 1 to (K-1)

TAU MPI_Init() Wrapper

S0 :   Call PMPI_Init()

S1 :   Split Tree/App Comm

S2 :   Send Hostname to Rank0

S3 :   Call MPI_Irecv(fini)

S4 :   sleep 5

S5 :   if(MPI_Test() == false)

  goto S4 

S6 :   Call PMPI_Finalize()

Application Ranks

TAU MPI_Init() Wrapper

S0 :   Call PMPI_Init()

S1 :   Split Tree/App Comm

S2 :   Recv Host/Port Parent

S3 :   return

Other TAU MPI Wrapper

S0 :   if(comm == 

MPI_COMM_WORLD)

            comm = userComm; 

S1 :   Call PMPI routine

S3 :   return
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Transparent Monitor: Finalization
 Application ranks call MPI_Finalize
 ToM tree destruction initiated
 Eventually Ranks 0..k-1 also call MPI_Finalize to end job.
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Rank 0

TAU MPI_Init() Wrapper

S1 :   Call PMPI_Init()

S2 :   Split Tree/App Comm

S3 :   Recv Inter. Hostnames

S4 :   Create Tree Topology file

S5 :   Fork/Exec Front-End

S6 :   Read Host/Port from FE

S7 :   Send Host/Port to Appl.

S8 :   waitpid() on Front-End

S9 :   Send fini to Tree-ranks

S10 : Call PMPI_Finalize()

Tree Ranks 1 to (K-1)

TAU MPI_Init() Wrapper

S0 :   Call PMPI_Init()

S1 :   Split Tree/App Comm

S2 :   Send Hostname to Rank0

S3 :   Call MPI_Irecv(fini)

S4 :   sleep 5

S5 :   if(MPI_Test() == false)

  goto S4 

S6 :   Call PMPI_Finalize()

Application Ranks

TAU MPI_Init() Wrapper

S0 :   Call PMPI_Init()

S1 :   Split Tree/App Comm

S2 :   Recv Host/Port Parent

S3 :   return

Other TAU MPI Wrapper

S0 :   if(comm == 

MPI_COMM_WORLD)

            comm = userComm; 

S1 :   Call PMPI routine

S3 :   return

Calls MPI_Finalize()
{

Send ToM FIN to FE
Call PMPI_Finalize()

}
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ToM Filters
 Ideally there would be no need for filtering

 Retrieve and store all performance data provided
 Acceptability depends on performance monitor use

 High application perturbation, transport and storage costs
 Need to trade-off queried performance data granularity
 Which events, time intervals, application ranks?

 Reduce performance data as it flows through transport
 Distribute Front-End analysis out to intermediate filters

 Three filtering schemes developed for ToM
 Each builds upon and extends previous
 Progressively provide increased temporal and spatial detail

 Upstream and downstream filters
18
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Summary Statistics Filter
 Global summary statistics

 Across ranks (N)
 For each profile event
 N parallel profiles reduced

  to E event statistics
 Functions:

 mean, min, max
 standard deviation

 Single phase (A)
Up-stream filter

 Intermediate node
 Summarize children’s data
 Recursively arrive at FE
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Example: Summary Statistics Filter
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Example: Summary Statistics Filter
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Example: Summary Statistics Filter
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Histogram Filter
 Maintain specified level of 

spatial information (# bins)
 Accurate histogram needs 

global min/max (range)
 Global unknown below root
 Three Phase (A, B, C)

 A: Push up min/max; buffer
 B: Push min/max to DSF
 C: Histogram recursively

 Model
 Non-blocking, pipelined
 Data parallel
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Example: Histogram Filter
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Example: Histogram Filter
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Example: Histogram Filter
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Classified Histogram Filter
 What was the cause for the unevenness in last example?
 Are there “classes” of ranks performing specific roles?
 Can we identify them from the performance profile?
 Definition of class

 Class-id: hash of concatenated event-names
 Ranks with same class-id belong to same class
 Application-specific or tailored to observer’s wishes
 Class-id generated based on call-depth or only for MPI events

 Histograms generated within class
 Output: set of histograms per-event, one for each class

 More detail than simple histograms
 Trade-off detail from classification scheme against the costs

23
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Example: Uintah (Hot Blob)
 Uintah Computational Framework UCF (University of Utah) 
 Computational Fluid Dynamics (CFD) code

 3 dimensional validation problem
 Spatial domain decomposition

 Patch - unit of partitioning 
 8 outer patches at AMR level 0
 Inner cubes selected at level 1

 TAU instrumentation strategy
 Map low-level performance to patches
 Mapping expressed through event-name

 Patch index + AMR Level 0        “Patch 2 -> 0”

24

4 S. Shende

Figure 1. Adaptive Mesh Refinement in a parallel CFD simulation in the Uintah Computational

Framework

3.6. User-defined Events

Besides timers and phases that measure the time spent between a pair of start and stop calls in

the code, TAU also provides support for user-defined atomic events. After an event is registered

with a name, it may be triggered with a value at a given point in the source code. At the

application level, we can use user-defined events to track the progress of the simulation by

keeping track of application specific parameters that explain program dynamics, for example,

the number of iterations required for convergence of a solver at each time step, or the number

of cells in each iteration of an adaptive mesh refinement application.

4. Case Study: Uintah

We have applied TAU’s phase profiling capabilities to evaluate the performance of the Uintah

computational framework (UCF) [2]. The TAU profiling strategy for Uintah is to observe the

performance of the framework at the level of patches, the unit of spatial domain partitioning.

Thus, we instrument UCF with dynamic phases where the phase name contains the AMR level
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Example: Uintah (Hot Blob)
 Classification scheme

 Default  : all event names used for class-id
 Patch Only  : only high-level Patch events used
 AMR L0 Patch Only : only “* -> 0” type events
 MPI Only  : only MPI events

 Depending on scheme ...
 Different number of classes generated
 Different reduction ractor = unreduced bytes / reduced bytes

 Classification scheme allows control of trade-off
 Savings from reduction
 Performance detail

25
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Example: Classified Histogram Filter | Uintah
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Characterization
 Performance monitoring parameters

 Frequency of interaction
 Performance data granularity and size
 # of processors

 In what circumstances is doing reduction beneficial?
 No free lunch - requires extra work and resources

 Characterization methodology to optimize trade-off
 Monitoring overhead
 Additional resource assignment

 Compare reduced (ToM Hist) vs. non-reduced (ToM) runs
 Amount of data is usually less (that’s the point)
 Need a better metric

27
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Characterization: Metric, Benchmark
 Average time for global offload

 Increasing offload rate (function of usecs above)
 Overtakes service rate of ToM (and underlying system)
 Eventually lead to queueing and blocked send() call
 Reflected in the average time for offload (dump.time)

 Stress test of ToM
28

time = get_time();
for(i=0; i<iterations; i++) {

work(usecs);
TAU_DB_DUMP();
MPI_Barrier();

}
tot.time = get_time()-time;
tot.dump.time = time - work_time - barrier_time;
dump.time = tot.dump.time/iterations;

Figure 8. Offload Benchmark

Any measurement scheme, in particular online mon-
itoring, raises the issue of perturbation. The perturba-
tion caused is due to overheads from both measurement
and performance data offloads. Our real-world work-
load to evaluate perturbation is the FLASH3 [7] applica-
tion running a 2-D Sod problem. The problem is scaled
weakly from 64 processors to 512 processors. The dif-
ferent modes are: i) uninstrumented to acquire a baseline,
ii) TAU-PM: with TAU instrumentation and data offload
at termination, iii) ToM: with online data offload per it-
eration and iv) ToM Reduce: with online data offload per
iteration along with histogramming. ToM was configured
with a Fanout of 8. All experiments were run on the Atlas
cluster at Lawrence Livermore National Laboratory. The
mean (over 3 runs) of the % overhead over the baseline for
the three cases are reported in Table 1. With over 120 ap-
plication events (including all MPI events) in a real, com-
plex parallel application the overheads in all cases were
under 1%. For completeness the cost of performing the
TAU DB DUMP() operation is also reported.

5.2 Data Reduction Costs

The different types of performance data reduction in
ToM were demonstrated in Section 4. In each case ex-
tra work is performed in order to achieve the reduction
(e.g. the 3-Phase histogram). Under what circumstances
is reduction beneficial, if at all? We evaluate the costs
of performing that reduction versus the savings obtained
from doing so. The metric used is the average time taken
to perform a single offload at the BE. As the rate at which
offloads occur increases beyond the service rate offered
by ToM (and the underlying physical network), persis-
tent queuing leads to buffer exhaustion and eventually to

a blocked send() call. This cost is reflected in the aver-
age time to offload data onto ToM. While a non-blocking
send() may not directly suffer these costs, the system
will still require the same amount of time (or possibly
more since offload rate will not be reduced by blocking)
to eventually transfer the queued performance data. It
should be noted that the experiments in this section are
a severe stress-test of ToM.

We use a simple offload benchmark summarized in
Figure 8. The avg.time variable is a measure of the
mean of the worst offload time suffered per round across
the ranks and is plotted as the Benchmark Performance
in Figure 9. The x-axis (Profile Period) represents the
interval between offloads in microseconds. The y-axis
is the ToM Fanout. The ToM curve represents the the
avg.timewith no reduction and the ToM Reduce curve
represents the case with reduction using histogramming.

In Figure 9(A) (application ranks, N=64), at relatively
low offload rates both curves are overlaid. The knee ob-
served in the curves is due to the offload rate increasing
above the service rate. At Fanout=2, the knee in ToM
Reduce occurs later than that in ToM. And at Fanout=4,
while the knee occurs at the same rate, the magnitude of
increase in ToM Reduce is smaller. In both cases, savings
from data reduction clearly trump the costs of performing
histogramming. At Fanout=8 ToM Reduce loses its ad-
vantage from data reduction. Reduction using histogram-
ming has its own costs. For instance, it requires that each
intermediate ToM rank has double the number of threads
(due to the DownStream Filter). As Fanout increases the
costs dominate the savings obtained from data reduction,
suggesting that with low N and high Fanout, reduction
does not help. In contrast, in Figure 9(B) where N is larger
(256, 512), even with double the Fanout (16), ToM Re-
duce performs an order of magnitude better than ToM. As
N increases, the savings obtained from reduction propor-
tionally increases. Whereas the Fanout remains fixed and
so too the cost of performing the reduction. This also sug-
gests that at lower offload rates, much higher fanouts can
be used, effectively reducing transport resource usage.

These experiments were run with a modest number of
events (20). Repeating the runs with 50 and 150 events
(results not shown here) had similar results. At small N,
the cost of performing the reduction increased to be larger
than the savings obtained. But with large N, the results
closely resembled Figure 9(B), confirming that reduction

7
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Characterization: N=64, FO=8
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Characterization: N=64, FO=8
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Characterization: N=64, FO=8
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Characterization: N=64, FO=8
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Characterization: Large N (256, 512)
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Characterization: Large N (256, 512)
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At relatively large N
- ToM-Reduce significantly out-performs ToM
- Even at much larger fan-outs than before
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Conclusion and Future Work
 High return on investment from additional resources

 Fan-out of 64 is only 1.5% extra resources
 Have only scratched the surface

 Interesting distributed performance analysis to explore
 Support of feedback into application

 based on performance dynamics
Load-balancing and resource (re-)allocation

 Interest in experimentation on very large scales
 Looking for candidate applications

 Would like to hookup system to real-time visualizations
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