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Motivation
 Performance problem analysis increasingly complex

 Multi-core, heterogeneous, and extreme scale computing
 Shift of performance measurement and analysis perspective

 Static, offline       dynamic, online
 Support for performance monitoring (measurement + query)
 Enabling of adaptive applications

 Prerequisites for performance measurement
 Low overhead and low perturbation
 Runtime analysis antithetical to performance tool orthodoxy

 Neo-performance perspective
 Co-allocation of additional (tool specific) system resources
 Make dynamic, performance-driven optimization viable
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Performance Observation Needs
 Performance problem type determines observation approach 

 Translates to requirements for measurement and analysis
  Standard offline performance diagnosis/tuning process

 Compile-execute-measure-analyze cycle
 Pre-determined performance experiment (events, measures)
 Static application execution and optimization

  Standard approach difficult to apply to complex execution
 Dynamic applications where performance changes
 Extreme scale, heterogenous systems with high dimensionality

 Requires extended online performance measurement support
 Dynamic monitoring and performance feedback
 Raises vital concerns of overhead and perturbation

 bigger issue in online systems due to global effects 
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Performance Observation Modes
 Post-mortem

 Performance data interpreted offline
 May lack temporal detail (e.g., using profiles only)

 Post-mortem with temporal detail
 Still offline interpretation
 Can generate prodigious data volumes (e.g., using tracing)

 Online
 Performance data queried, interpreted at runtime
 Suitable to long running applications (especially at scale)
 Similar in spirit to real-time visualization

 Online with feedback into ...
Measurement subsystem (optimize, distribute analysis)
Application (steering)



TAUoverMRNet (ToM)   STHEC 2008, Kos, Greece 5

Monitoring for Performance Dynamics
 Runtime access to parallel performance data

 Scalable and lightweight
 Support for performance-adaptive, dynamic applications
 Focus on parallel profile data

 Alternative 1: Extend existing performance measurement
 Create own monitoring infrastructure
 Integrate with measurement system
 Disadvantage: maintain own monitoring framework

 Alternative 2: Couple other with monitoring infrastructure
 Leverage scalable middleware from other supported projects
 Challenge: measurement/monitor integration
 TAU over Supemon (ToS) (UO, LANL)
 TAU over MRNet (ToM) (UO, University of Wisconsin)
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Talk Outline
 Motivation
 Performance observation needs
 Performance observation modes
 Monitoring for performance dynamics
 Separation of concerns and MRNet
 TAUoverMRNet (ToM)

 System design
 Monitor instantiation problem
 ToM filters: distributed analysis, reduction

 System characterization
 Future plans and conclusion
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Separation of Concerns
 Online performance monitoring decomposes into

 Measurement
 Access / Transport

 Measurement sub-system
 Measures application performance

 parallel profile per context (MPI ranks, processes, threads)
 Maintains performance state locally (global performance data)

 Access / Transport
 Query of distributed performance state (frequency, selection)
 Bridges application (source) with monitors / front ends (sinks)
 Moves performance data from source to sink
 Distributed performance data processing (MRNet)

 distributed performance analysis / reduction also feasible
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What is MRNet?
 Multicast Reduction Network

 Software infrastructure, API, utilities (written in C++)
 Create and manage network overlay trees (TBON model)
 Efficient control through root-to-leaf multicast path
 Reductions (transformations) on leaf-to-root data path
 Packed binary data representation

 Uses thread-per-connection model
 Supports multiple concurrent “streams”  

 Filters on intermediate nodes
 Default filters (e.g., sum, average)
 Loads custom filters through shared-object interface

 MRNet-base tools (Paradyn, STAT debugger, ToM)



TAUoverMRNet (ToM)   STHEC 2008, Kos, Greece

TAU Transport Abstraction Layer
 Application calls into TAU (TAU_DB_DUMP())

 Application specific intervals
 example: per-iteration or phase

 Regular periodic intervals
 Configuration specific

 Compile or runtime
 One per thread

 Develop abstract transport
interface
 Adaptors to alternative monitor infrastructure

 Push-Pull model
 Source pushes and sink pulls

9

to MRNet monitor 
infrastructure
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MRNet Back-End Adapter
 Adapter responsibilities

 Initialization
 Finalization
 Control
 Performance data output

 TAU MRNet Back-End
 Two streams

 data
 control

 Packetization
 Non-blocking receive for control

10

to TAU
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Components and Data/Control Flow
 Components

 Back-End (BE) adapter
 Filters

 reduction
 distributed Analysis
 up / down stream

Front-End (FE)
 unpacks, interprets, stores

 Data path
 Reverse reduction path

 Control path
 Forward multicast path
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Monitor Instantiation Problem
 How to co-allocate nodes (cores) for monitoring?

 Monitor performs transport and analysis
 General problem when utilizing additional resources

 tool specific
 Important especially in non-interactive (batch) environments

 Set of allocated nodes not known a priori
 Multi-step setup procedures difficult / awkward
 Environments vary widely

 command-line / script interfaces and capabilities
 Need an approach ...

 To instantiate application, transport, and front-end
 ... that is independent of batch environment
 ... that requires no changes to application



TAUoverMRNet (ToM)   STHEC 2008, Kos, Greece

Monitor Instantiation: Required Steps

13
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Monitor Instantiation: Required Steps
 Calculate (monitor + application) and request total resources
 Apportion resources based on role (monitor, application)
 Construct transport topology (Front-End, Filters)
 Help Back-Ends discover and connect to parents
 Do so transparently to application
 Do so transparently to queue manager and scheduler

13
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 Total resource calculation easy
 Do so manually or through script (based on FanOut)

 MRNet already does transport topology construction and 
filter instantiation for us
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Transparent Monitor Instantiation
 Solution for MPI Applications
 Based on interception of MPI Calls

 PMPI interface
 Separate roles

 Tree: Rank-0 and Ranks 1..k-1
 Application: Ranks k..N+k

 Three parts to method:
 Initialization
 Application execution
 Finalization
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Transparent Monitor: Initialization
 COMM_WORLD split based on role of rank
 Intermediate nodes register with ToM on Rank-0 using MPI
 Rank-0 uses MRNet API to instantiate transport
 Rank-0 MPI bcasts tree info to application BEs to join
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Rank 0

TAU MPI_Init() Wrapper

S1 :   Call PMPI_Init()

S2 :   Split Tree/App Comm

S3 :   Recv Inter. Hostnames

S4 :   Create Tree Topology file

S5 :   Fork/Exec Front-End

S6 :   Read Host/Port from FE

S7 :   Send Host/Port to Appl.

S8 :   waitpid() on Front-End

S9 :   Send fini to Tree-ranks

S10 : Call PMPI_Finalize()

Tree Ranks 1 to (K-1)

TAU MPI_Init() Wrapper

S0 :   Call PMPI_Init()

S1 :   Split Tree/App Comm

S2 :   Send Hostname to Rank0

S3 :   Call MPI_Irecv(fini)

S4 :   sleep 5

S5 :   if(MPI_Test() == false)

  goto S4 

S6 :   Call PMPI_Finalize()

Application Ranks

TAU MPI_Init() Wrapper

S0 :   Call PMPI_Init()

S1 :   Split Tree/App Comm

S2 :   Recv Host/Port Parent

S3 :   return

Other TAU MPI Wrapper

S0 :   if(comm == 

MPI_COMM_WORLD)

            comm = userComm; 

S1 :   Call PMPI routine

S3 :   return



TAUoverMRNet (ToM)   STHEC 2008, Kos, Greece

Transparent Monitor: Application Execution
 Application on Back-Ends proceeds normally
 MPI calls on COMM_WORLD are converted

 Intercepted to use userComm
 MPI jobs on Ranks 0 to k-1 idle
 MRNet processes active
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Transparent Monitor: Finalization
 Application ranks call MPI_Finalize
 ToM tree destruction initiated
 Eventually Ranks 0..k-1 also call MPI_Finalize to end job.
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Rank 0

TAU MPI_Init() Wrapper

S1 :   Call PMPI_Init()

S2 :   Split Tree/App Comm

S3 :   Recv Inter. Hostnames

S4 :   Create Tree Topology file

S5 :   Fork/Exec Front-End

S6 :   Read Host/Port from FE

S7 :   Send Host/Port to Appl.

S8 :   waitpid() on Front-End

S9 :   Send fini to Tree-ranks

S10 : Call PMPI_Finalize()

Tree Ranks 1 to (K-1)

TAU MPI_Init() Wrapper

S0 :   Call PMPI_Init()

S1 :   Split Tree/App Comm

S2 :   Send Hostname to Rank0

S3 :   Call MPI_Irecv(fini)

S4 :   sleep 5

S5 :   if(MPI_Test() == false)

  goto S4 

S6 :   Call PMPI_Finalize()

Application Ranks

TAU MPI_Init() Wrapper

S0 :   Call PMPI_Init()

S1 :   Split Tree/App Comm

S2 :   Recv Host/Port Parent

S3 :   return

Other TAU MPI Wrapper

S0 :   if(comm == 

MPI_COMM_WORLD)

            comm = userComm; 

S1 :   Call PMPI routine

S3 :   return

Calls MPI_Finalize()
{

Send ToM FIN to FE
Call PMPI_Finalize()

}
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ToM Filters
 Ideally there would be no need for filtering

 Retrieve and store all performance data provided
 Acceptability depends on performance monitor use

 High application perturbation, transport and storage costs
 Need to trade-off queried performance data granularity
 Which events, time intervals, application ranks?

 Reduce performance data as it flows through transport
 Distribute Front-End analysis out to intermediate filters

 Three filtering schemes developed for ToM
 Each builds upon and extends previous
 Progressively provide increased temporal and spatial detail

 Upstream and downstream filters
18
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Summary Statistics Filter
 Global summary statistics

 Across ranks (N)
 For each profile event
 N parallel profiles reduced

  to E event statistics
 Functions:

 mean, min, max
 standard deviation

 Single phase (A)
Up-stream filter

 Intermediate node
 Summarize children’s data
 Recursively arrive at FE

19
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Example: Summary Statistics Filter
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Example: Summary Statistics Filter
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Histogram Filter
 Maintain specified level of 

spatial information (# bins)
 Accurate histogram needs 

global min/max (range)
 Global unknown below root
 Three Phase (A, B, C)

 A: Push up min/max; buffer
 B: Push min/max to DSF
 C: Histogram recursively

 Model
 Non-blocking, pipelined
 Data parallel
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Example: Histogram Filter
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Classified Histogram Filter
 What was the cause for the unevenness in last example?
 Are there “classes” of ranks performing specific roles?
 Can we identify them from the performance profile?
 Definition of class

 Class-id: hash of concatenated event-names
 Ranks with same class-id belong to same class
 Application-specific or tailored to observer’s wishes
 Class-id generated based on call-depth or only for MPI events

 Histograms generated within class
 Output: set of histograms per-event, one for each class

 More detail than simple histograms
 Trade-off detail from classification scheme against the costs

23
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Example: Uintah (Hot Blob)
 Uintah Computational Framework UCF (University of Utah) 
 Computational Fluid Dynamics (CFD) code

 3 dimensional validation problem
 Spatial domain decomposition

 Patch - unit of partitioning 
 8 outer patches at AMR level 0
 Inner cubes selected at level 1

 TAU instrumentation strategy
 Map low-level performance to patches
 Mapping expressed through event-name

 Patch index + AMR Level 0        “Patch 2 -> 0”

24

4 S. Shende

Figure 1. Adaptive Mesh Refinement in a parallel CFD simulation in the Uintah Computational

Framework

3.6. User-defined Events

Besides timers and phases that measure the time spent between a pair of start and stop calls in

the code, TAU also provides support for user-defined atomic events. After an event is registered

with a name, it may be triggered with a value at a given point in the source code. At the

application level, we can use user-defined events to track the progress of the simulation by

keeping track of application specific parameters that explain program dynamics, for example,

the number of iterations required for convergence of a solver at each time step, or the number

of cells in each iteration of an adaptive mesh refinement application.

4. Case Study: Uintah

We have applied TAU’s phase profiling capabilities to evaluate the performance of the Uintah

computational framework (UCF) [2]. The TAU profiling strategy for Uintah is to observe the

performance of the framework at the level of patches, the unit of spatial domain partitioning.

Thus, we instrument UCF with dynamic phases where the phase name contains the AMR level
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Example: Uintah (Hot Blob)
 Classification scheme

 Default  : all event names used for class-id
 Patch Only  : only high-level Patch events used
 AMR L0 Patch Only : only “* -> 0” type events
 MPI Only  : only MPI events

 Depending on scheme ...
 Different number of classes generated
 Different reduction ractor = unreduced bytes / reduced bytes

 Classification scheme allows control of trade-off
 Savings from reduction
 Performance detail

25
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Example: Classified Histogram Filter | Uintah
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Characterization
 Performance monitoring parameters

 Frequency of interaction
 Performance data granularity and size
 # of processors

 In what circumstances is doing reduction beneficial?
 No free lunch - requires extra work and resources

 Characterization methodology to optimize trade-off
 Monitoring overhead
 Additional resource assignment

 Compare reduced (ToM Hist) vs. non-reduced (ToM) runs
 Amount of data is usually less (that’s the point)
 Need a better metric

27
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Characterization: Metric, Benchmark
 Average time for global offload

 Increasing offload rate (function of usecs above)
 Overtakes service rate of ToM (and underlying system)
 Eventually lead to queueing and blocked send() call
 Reflected in the average time for offload (dump.time)

 Stress test of ToM
28

time = get_time();
for(i=0; i<iterations; i++) {

work(usecs);
TAU_DB_DUMP();
MPI_Barrier();

}
tot.time = get_time()-time;
tot.dump.time = time - work_time - barrier_time;
dump.time = tot.dump.time/iterations;

Figure 8. Offload Benchmark

Any measurement scheme, in particular online mon-
itoring, raises the issue of perturbation. The perturba-
tion caused is due to overheads from both measurement
and performance data offloads. Our real-world work-
load to evaluate perturbation is the FLASH3 [7] applica-
tion running a 2-D Sod problem. The problem is scaled
weakly from 64 processors to 512 processors. The dif-
ferent modes are: i) uninstrumented to acquire a baseline,
ii) TAU-PM: with TAU instrumentation and data offload
at termination, iii) ToM: with online data offload per it-
eration and iv) ToM Reduce: with online data offload per
iteration along with histogramming. ToM was configured
with a Fanout of 8. All experiments were run on the Atlas
cluster at Lawrence Livermore National Laboratory. The
mean (over 3 runs) of the % overhead over the baseline for
the three cases are reported in Table 1. With over 120 ap-
plication events (including all MPI events) in a real, com-
plex parallel application the overheads in all cases were
under 1%. For completeness the cost of performing the
TAU DB DUMP() operation is also reported.

5.2 Data Reduction Costs

The different types of performance data reduction in
ToM were demonstrated in Section 4. In each case ex-
tra work is performed in order to achieve the reduction
(e.g. the 3-Phase histogram). Under what circumstances
is reduction beneficial, if at all? We evaluate the costs
of performing that reduction versus the savings obtained
from doing so. The metric used is the average time taken
to perform a single offload at the BE. As the rate at which
offloads occur increases beyond the service rate offered
by ToM (and the underlying physical network), persis-
tent queuing leads to buffer exhaustion and eventually to

a blocked send() call. This cost is reflected in the aver-
age time to offload data onto ToM. While a non-blocking
send() may not directly suffer these costs, the system
will still require the same amount of time (or possibly
more since offload rate will not be reduced by blocking)
to eventually transfer the queued performance data. It
should be noted that the experiments in this section are
a severe stress-test of ToM.

We use a simple offload benchmark summarized in
Figure 8. The avg.time variable is a measure of the
mean of the worst offload time suffered per round across
the ranks and is plotted as the Benchmark Performance
in Figure 9. The x-axis (Profile Period) represents the
interval between offloads in microseconds. The y-axis
is the ToM Fanout. The ToM curve represents the the
avg.timewith no reduction and the ToM Reduce curve
represents the case with reduction using histogramming.

In Figure 9(A) (application ranks, N=64), at relatively
low offload rates both curves are overlaid. The knee ob-
served in the curves is due to the offload rate increasing
above the service rate. At Fanout=2, the knee in ToM
Reduce occurs later than that in ToM. And at Fanout=4,
while the knee occurs at the same rate, the magnitude of
increase in ToM Reduce is smaller. In both cases, savings
from data reduction clearly trump the costs of performing
histogramming. At Fanout=8 ToM Reduce loses its ad-
vantage from data reduction. Reduction using histogram-
ming has its own costs. For instance, it requires that each
intermediate ToM rank has double the number of threads
(due to the DownStream Filter). As Fanout increases the
costs dominate the savings obtained from data reduction,
suggesting that with low N and high Fanout, reduction
does not help. In contrast, in Figure 9(B) where N is larger
(256, 512), even with double the Fanout (16), ToM Re-
duce performs an order of magnitude better than ToM. As
N increases, the savings obtained from reduction propor-
tionally increases. Whereas the Fanout remains fixed and
so too the cost of performing the reduction. This also sug-
gests that at lower offload rates, much higher fanouts can
be used, effectively reducing transport resource usage.

These experiments were run with a modest number of
events (20). Repeating the runs with 50 and 150 events
(results not shown here) had similar results. At small N,
the cost of performing the reduction increased to be larger
than the savings obtained. But with large N, the results
closely resembled Figure 9(B), confirming that reduction

7
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Conclusion and Future Work
 High return on investment from additional resources

 Fan-out of 64 is only 1.5% extra resources
 Have only scratched the surface

 Interesting distributed performance analysis to explore
 Support of feedback into application

 based on performance dynamics
Load-balancing and resource (re-)allocation

 Interest in experimentation on very large scales
 Looking for candidate applications

 Would like to hookup system to real-time visualizations



TAUoverMRNet (ToM)   STHEC 2008, Kos, Greece 32

Credits
 University of Oregon

Aroon Nataraj
Alan Morris
Allen D. Malony
TAU group members

 University of Wisconsin
Dorian C. Arnold
Michael Brim
Barton P. Miller


