
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2008; 0:1–15 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

A Framework for Scalable,
Parallel Performance
Monitoring

Aroon Nataraj1,∗ Allen D. Malony1, Alan Morris1,
Dorian C. Arnold2 and Barton P. Miller2

1 Department of Computer and Information Science, University of Oregon, Eugene, OR, USA
2 Computer Sciences Department, University of Wisconsin, Madison, WI, USA

SUMMARY

Performance monitoring of HPC applications offers opportunities for adaptive optimization based on
dynamic performance behavior, unavailable in purely post-mortem performance views. However, a parallel
performance monitoring system must have low overhead and high efficiency to make these opportunities
tangible. We describe a scalable parallel performance monitor called TAUoverMRNet (ToM), created from
the integration of the TAU performance system and the Multicast Reduction Network (MRNet). The
integration is achieved through a plug-in architecture in TAU that allows selection of different transport
substrates to offload online performance data. A method to establish the transport overlay structure of the
monitor from within TAU, one that requires no added support from the job manager or application, is
presented. We demonstrate the distribution of performance analysis from the sink to the overlay nodes and
the reduction in large-scale profile data that could otherwise overwhelm any single sink. Results show low
perturbation and significant savings accrued from reduction at large processor-counts.

KEY WORDS: performance, monitoring, tree-based, overlay, TAU, MRNet

Introduction

With the advent of multi-core, heterogeneous, and extreme scale parallel computing, there has been
a recent shift in perspective [1] of parallel performance analysis as a purely static, offline process
to one requiring online support for dynamic monitoring and adaptive performance optimization.
Given the prerequisites of low overhead and low perturbation for performance measurement methods,
the addition of runtime performance query and analysis capabilities would seem antithetical to the
performance tool orthodoxy. What is surprising, however, is the willingness in the neo-performance

∗Correspondence to: Department of Computer and Information Science, University of Oregon, Eugene, OR, USA

Copyright c© 2008 John Wiley & Sons, Ltd.

2 A. NATARAJ ET AL.

perspective to consider the allocation of additional system resources to make dynamic performance-
driven optimization viable. Indeed, as parallel systems grow in complexity and scale, this may be the
only way to reach optimal performance.

A parallel performance monitor couples a system for performance measurement with runtime
infrastructure for accessing performance data during program execution. Parallel performance
measurement systems, such as the TAU Performance SystemTM[15], can scale efficiently by keeping
performance data local to where threads of execution are measured. Providing low-overhead access to
the execution-time performance data for dynamic analysis is a different challenge because it requires
global program interaction. If additional system resources can be utilized, a robust parallel performance
monitor can be built.

How performance monitoring is used in practice (e.g., frequency of interaction, amount of
performance data, # processors) will define architectural guidelines for a monitor’s design. However, to
optimize the tradeoff of monitoring overhead versus additional resource assignment, a comprehensive
characterization of monitor operation is required. It is important to provide a flexible framework for
scalable monitoring and a methodology for evaluation that would allow engineering optimizations to
be determined given choices of acceptable levels of overhead and resource allocation.

The TAU over MRNet (ToM) performance monitor integrates TAU with the MRNet scalable
infrastructure for runtime program interaction. This paper reports our experiences building a scalable
parallel monitor (based on the ToM prototype) and evaluating its function and performance. Section 1
presents the system design and operational model. Here we define an abstract monitoring interface to
support infrastructure interoperability and leverage MRNet’s programming capabilities for analysis-
filter development. Section 2 describes how the transport network is instantiated at the start of program
execution. Once in place, ToM can be used in a variety of ways for performance data analysis.
Section 3 discusses the different methods for distributed analysis and reduction we have implemented.
In Section 4 we assess monitor performance using benchmark codes and the FLASH application. Our
goal is to evaluate different parameters of ToM’s configuration and use. We survey related work in
Section 5 and conclude in Section 6.

1. Scalable Monitor Design

The problem of scalable, online parallel monitoring naturally decomposes into measurement and
transport concerns. With TAU performing the measurement, the choice of a transport needs to consider
several factors including, i) the availability of specialized physical networks, ii) the nature and size
of performance data (e.g. profile vs. trace) and feasibility of distributed analyses and data reduction,
iii) availability of monitoring/transport resources and iv) the perturbation constraints. An extensible
plugin-based architecture that allows composition of the measurement system with multiple, different
transports allows flexibility in the choice of a transport based on these factors. Our current work,
an extension of TAUoverSupermon [3], generalizes that approach and goes further in exploring the
Tree-Based Overlay Network (TBON) model with an emphasis on programmability of the transport
(distributed analysis/reduction) and a transparent solution to allocation of transport/application
resources. We demonstrate scalable monitor design using the TAUoverMRNet (ToM) prototype. The
main components and the data/control paths of the system (shown in Figure 1) are described next.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

TAU OVER MRNET 3

MRNET
Comm Node

+
Filter

MRNET
Comm Node

+
Filter

TAU
Front-End

Streams

Streams

Back
End

Back
End

Data

Co
nt

ro
l -

->

Data

Control -->

Figure 1. The TAUoverMRNet System

1.1. Back-End

Figure 2 shows the currently available bindings (NFS, Supermon and MRNet). The profile output
routine (TAU DB DUMP) in TAU uses a generic interface which is implemented by each of the
specific transport adaptors. In the case of a NFS, the implementation directly falls through to the
standard library implementation of FILE I/O. The choice of the transport can be made at runtime
using environment variables. The MRNet adapter in TAU uses two streams, one each for data and
control. The data stream is used to send packetized profiles from the application backends to the sink
(monitor). The offloading of profile data is based on a push-pull model, wherein the instrumented
applications push data into the transport, which is in turn drained out by the monitor. The application
offloads profile information at application-specific points (such as every iteration) or at periodic timer
intervals. The control stream is meant to provide a reverse channel from monitor to application ranks. It
is polled to check for control messages on every invocation of the TAU DB DUMP() routine. Control

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

4 A. NATARAJ ET AL.

Figure 2. ToM Backend

traffic includes messages for startup/finalization of transport and to set measurement/instrumentation
options.

1.2. Front-End

The ToM front-end (FE) invokes the MRNet API to instantiate the network and the streams (data,
control). It sends an INIT on both streams to the application back-ends (BE) allowing the BEs to
discover the streams. In the simplest case, the data from the application is transported as-is, without
transformations. The FE continues to receive data until reception of a FIN from every BE. It then
broadcasts a FINACK and proceeds to destroy the MRNet network. The simplest FE just unpacks
and writes the profiles to disk. More sophisticated FEsaccept and interpret statistical data including
histograms and functionally-classified profiles. These FEs are associated with special intermediate
filters.

1.3. Filters

MRNet provides the capability to perform transformations on the data as it travels through intermediate
nodes in the transport topology. ToM uses this capability to i) distribute statistical analyses traditionally
performed at the sink and ii) to reduce the amount of performance data that reaches the monitor.
UpStream filters (USF) can intercept data going from Back-Ends (BE) to the Front-End (FE) and

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

TAU OVER MRNET 5

Rank 0

TAU MPI_Init() Wrapper
S1 : Call PMPI_Init()
S2 : Split Tree/App Comm
S3 : Recv Inter. Hostnames
S4 : Create Tree Topology file
S5 : Fork/Exec Front-End
S6 : Read Host/Port from FE
S7 : Send Host/Port to Appl.
S8 : waitpid() on Front-End
S9 : Send fini to Tree-ranks
S10 : Call PMPI_Finalize()

Tree Ranks 1 to (K-1)

TAU MPI_Init() Wrapper
S0 : Call PMPI_Init()
S1 : Split Tree/App Comm
S2 : Send Hostname to Rank0
S3 : Call MPI_Irecv(fini)
S4 : sleep 5
S5 : if(MPI_Test() == false)

 goto S4
S6 : Call PMPI_Finalize()

Application Ranks
TAU MPI_Init() Wrapper

S0 : Call PMPI_Init()
S1 : Split Tree/App Comm
S2 : Recv Host/Port Parent
S3 : return

Other TAU MPI Wrapper
S0 : if(comm ==
MPI_COMM_WORLD)
 comm = userComm;
S1 : Call PMPI routine
S3 : return

Figure 3. Transport Instantiation

DownStream filters (DSF) intercept data flowing in the opposite direction. We discuss the use of
filtering in ToM including distributed histogramming and functional classification in Section 3.

2. Monitor Transport Instantiation

A scalable monitor design that utilizes additional tool-specific resources raises the issue of effectively
co-allocating nodes required for efficient transport and analysis alongside the primary nodes of the
target application. This is especially important in a non-interactive (batch) environment where the set
of nodes allocated is not known a priori and also where multi-step setup procedures (for monitor and
separately for application) are difficult to implement. In addition, the batch environments’ command-
line options and scripting interfaces vary widely.

We provide a transparent method for transport instantiation in MPI programs that takes advantage
of the fact that TAU intercepts MPI calls (using the PMPI interface) for measurement purposes. Our
method allocates the total set of resources together, both for monitoring and application, and then
assigns roles to the resources through splitting of MPI communicators. As the required steps are all
performed within the initialization of the measurement subsystem (which is linked into the application),
the procedure is kept independent of both the application and the batch environment.

Given two classes (transport and application), the nodes must be made aware of their roles and the
identities of their neighbors in the network topology. To function correctly the system requires that i)
an additional set of nodes to be allocated for the purposes of transport and analysis, ii) the topology
of the transport be constructed correctly from the allocated set of nodes, iii) the application back-ends
discover and connect to their respective parents in the transport topology and iv) importantly, these
requirements are met transparently to both the application and the job scheduling system.

In the context of the ToM prototype, the steps taken by Rank-0, other tree-ranks and application
ranks are listed in Figure 3. When an application calls MPI Init(), TAU intercepts the call on all of the
nodes and first calls PMPI Init(). Based on the parameters of the transport topology and the number of
nodes in the application, the required number of transport nodes is calculated. New communicators are
created by splitting COMM WORLD into transport (tomCOMM) and application (userCOMM) ranks.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

6 A. NATARAJ ET AL.

Node 2

A

A

B

B

C

C

AFE USF

Node 0

A

A

DSF

USF

B

Node 1

BE

BE

Node 3

Node 4

A

A

USF

DSF

B

BE

BE

Node 5

Node 6

: Back End
: Front End

: UpStream Filter
: DownStream Filter

BE
FE

USF
DSF

A
Phase A
B
Phase B
C

Phase C

KEY

C

Figure 4. Distributed Analysis

The tree ranks (still within MPI Init()) register their hostnames with Rank-0 using MPI
communication, which constructs a topology file and spawns a ToM FE. The FE in turn uses the
MRNet API to instantiate a tree-network and provides to Rank-0 the list of hosts and ports that the
application BEs need to connect to. Rank-0 sends this information to each BE rank so it can connect to
the transport. Rank-0 then waits for the FE’s termination. The BEs return from MPI Init() and execute
the rest of the application. Every MPI call from an application rank (BE) on the COMM WORLD
communicator is intercepted by TAU and the corresponding PMPI call is issued by TAU using the
userCOMM in place of COMM WORLD. This ensures that no changes are required to the application.

At this stage all the other intermediate tree-ranks could proceed directly to Finalize() (as the transport
processes on those nodes have been spawned). But on many user-level networking solutions (e.g.
using Infiniband [2]) blocking MPI calls (like finalize, barrier, recv, and wait) poll continuously to
avoid context-switch latency. Hence calling MPI Finalize() would consume 100% cpu, starving the
intermediate transport processes. To prevent this the intermediate ranks repeatedly perform a non-
blocking check for a FINI from Rank-0 using MPI Irecv, MPI Test and sleep calls. The tree-ranks
never return from MPI Init() and instead call PMPI Finalize() inside the TAU MPI Init() wrapper
once the FINI is received.

3. Distributed Analysis and Reduction

Ideally, one would want to retrieve and store as much performance detail as the measurement system
can provide. But the perturbation caused to the measured application and the transport and storage

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

TAU OVER MRNET 7

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 50 100 150 200 250 300 350

Ti
m

e
(u

se
cs

)

Step

FLASH3 SOD | Allreduce

min
max

mean
sd

Figure 5. Allreduce Summary Statistics

costs associated with the performance data, require that we trade-off measurement data granularity (in
terms of events, time intervals and application ranks) against the costs. One method to vary the level
of performance detail is through performance data reduction as the data flows through the transport.
This is feasible by distributing performance analyses traditionally performed at the front-end, out to
the intermediate transport nodes. ToM implements three such filtering schemes, each building upon
and extending the previous one. Figure 4 describes the data paths used by the distributed analyses and
reductions we examine next.

3.1. Statistical Filter

The StatsFilter, the simplest ToM filter, is an Upstream Filter (USF) that calculates global summary
statistics across the ranks including mean, standard deviation, maximum and minimum for every event
in the profile. Performance data is assumed to arrive in rounds (i.e. a round is one profile-offload from
every rank). The summary statistics are calculated by an intermediate node over the data from all its
children. The resulting measures are passed up to its parent which in turn calculates the measures over
the data from all its children and so on until a single set of statistical measures for each event arrives
at the monitor. This corresponds to Phase A of the data path in Figure 4. The StatsFilter consists
of a front-end Stats FE, derived from ToM FE and a filter shared object StatsFilter.so loaded on the
intermediate nodes. An example of the output from such a reduction when monitoring the FLASH
application running a 2-D Sod problem is shown in Figure 5. The event shown is that of cumulative
MPI Allreduce() time at each application iteration. This data uncovered an anomaly that caused the
Allreduce performance to drop (probably due to external factors) during a single iteration at Step 100.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

8 A. NATARAJ ET AL.

 0

 50

 100

 150

 200

 250

 300

 350
FLASH Sod 2-D | Event: Allreduce | N=1024

 50 75 100 125 150
Application Iteration #

 0

 3

 6

 9

 12

 15

 18

To
ta

l E
ve

nt
 R

un
tim

e
(s

ec
s)

No. of Ranks

Figure 6. Allreduce Histogram

3.2. Histogramming Filter

The StatsFilter while providing global summary statistics for every event, loses considerable spatial
distribution information. A histogram is one method of reducing data while still maintaining a level of
distribution information. The HistFilter extends the StatsFilter and provides histograms for each event
in addition to the summary statistics. Given a number of bins, to perform histogramming accurately,
the global min/max must be known (so that the ranges of the bins may be calculated). Below the root of
the ToM tree, global information is not available. To be able to distribute the histogramming function
across the intermediate nodes in the ToM tree, the global min/max first needs to be ascertained.

Figure 4 shows the 3-phase approach used. Here in Phase-A, unlike for summary statistic
calculation, i) it is sufficient to only determine the global min/max and ii) the USF continues to buffer
the original performance data after Phase-A. Once the root of the tree (Hist FE FE) receives the global
min/max, it is packetized and pushed down the tree in Phase-B. On this reverse path downstream-filters
(DSF) intercept this packet, retrieve the min/max and pass it on to the USF (whose memory address
space they share as threads). In Phase-C, the USF at the lowest level first performs the binning of event
data using appropriately sized bins. It pushes the resulting histograms up to its parent. In every round,
the parent receives one histogram from each child, merges them and pushes upward again. The process
repeats until a single histogram reaches the monitor at the root of the tree. Internal buffering within
the filters ensures that the phases are non-blocking and can be pipelined. Figure 6 shows a portion of
the histogram (from Step 50 to 150) corresponding to the summary statistic in Figure 5. The HistFilter
was configured to use 10 bins to monitor 1024 MPI ranks with a ToM fanout of 8. The figure shows
how the Allreduce time is unevenly distributed across the ranks and how that distribution evolves over
time. The sudden increase in Allreduce time at Step 100 is seen here as well.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

TAU OVER MRNET 9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 20 40 60 80 100

R
e

d
u

c
ti
o

n
 F

a
c
to

r

Step

[BRF] Single Class
[RF] Default

[RF] Patch Only
[RF] AMR L1 Patch Only

[RF] MPI Only

 0

 10

 20

 30

 40

 50

 60

 70
N

o
.

o
f

C
la

s
s
e

s
Reduction from Classified Histograms | Uintah

Default
Patch Only

AMR L1 Patch Only
MPI Only

Figure 7. Functional Classification

3.3. Functional Classification Filter

As an example, the spatial unevenness of the Allreduce across the ranks seen in Figure 6 may be
attributable to network performance issues, load-imbalance issues or the existence of different classes
of application ranks performing specific roles (i.e. not a purely SPMD model). In the latter two cases,
it is important to distinguish between imbalance within the classes versus across them. The ClassFilter
groups the ranks into classes using a purely functional definition of a class. Given a performance profile,
all of the event names are concatenated together and a hash of the resultant string is found. This is used
as a class-id. Ranks with profiles that generate the same class-id are assumed to belong to the same
functional class. Further, within these classes distributed histogramming using the 3-Phase approach
is carried out. The output, then, is a set of histograms per event, one for each class. The method of
classification can be application-specific or tailored to what the observer wishes. For instance, the
class-id can be generated based only on a subset of application events (e.g. based on depth in the call-
tree or if they are MPI routines). It must be noted that classification provides more information than
simple histogramming. And it allows control of that detail through the class-id generation scheme.
Hence, again, the type of classification must be traded-off against the extra data that it generates.

We use the Uintah Computational Framework (UCF) [7] for demonstration of varying functional
classification schemes. The TAU profiling strategy for Uintah is to observe the performance of the
framework at the level of patches, the unit of spatial domain partitioning. UCF is instrumented with
events where the event name contains the AMR level and patch index. This case focuses on a 3
dimensional validation problem for a compressible CFD code. The domain decomposition in this case

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

10 A. NATARAJ ET AL.

% Overhead DUMP() (msec)
Type N=64 N=512 N=64 N=512

Tau-PM 0.049 0.23 - -
ToM 0.56 0.77 3.49 3.60

ToM Reduce 0.17 0.70 3.29 3.55
Table I. Perturbation Overheads

results in outer cubes that enclose eight (2x2x2) level 0 patches. Inner cubes cover the interesting
portions of the domain that have been selected by the AMR subsystem for mesh refinement on level
1. Events are given names such as ”Patch 1 -> 1” which represents the 2nd patch on level 1. The
application is run over 64 ranks and monitored with a ToM fanout of 8 using the ClassFilter under
different classification schemes. In the Default scheme all events in the profile are considered for
creating the class-id. Only overall patch events are considered in Patch Only. The AMR L1 Patch
Only scheme goes a step further and restricts class-id calculation to level-1 AMR patches. Lastly, MPI
Only looks at only the MPI events. In all the schemes, complete profile information from all events is
still preserved.

Figure 7 plots the no. of classes (top) and the reduction factor RF (bottom) . The RF is the total
non-reduced data size divided by data size with reduction. The no. of classes is plotted for every
application iteration. The RF is plotted for every 10th iteration, cumulative upto that iteration. The
number of histogram bins is 5. The base-reduction factor (BRF) plots the reduction in profile data size
achieved by performing histogramming without classification. The Default scheme eventually results
in 64 unique classes (as the ranks diverge over time). Because there are as many unique patches created
as available ranks, the Patch Only scheme behaves similarly. The RF in both the schemes reduces to
0.98 since there are as many classes as ranks and there is some overhead to histogramming. MPI Only
results in 13 unique classes in the worst case with a resultant RF of 3. AMR L1 Patch Only results
in an overall RF of 12 times and a maximum of 3 classes – class0: rank 0, class1: ranks that work on
the first 8 large level 1 patches and class2: all other ranks. Larger number of ranks should increase the
overall reduction factor. This example serves to demostrate the ability to control the trade-off between
savings from reduction and the resultant performance detail.

4. Evaluation

4.1. Perturbation

Any measurement scheme, in particular online monitoring, raises the issue of perturbation. The
perturbation caused is due to overheads from both measurement and performance data offloads. Our
real-world workload to evaluate perturbation is the FLASH3 [12] application running a 2-D Sod
problem. The problem is scaled weakly from 64 processors to 512 processors. The different modes
are: i) uninstrumented to acquire a baseline, ii) TAU-PM: with TAU instrumentation and data offload
at termination, iii) ToM: with online data offload per iteration and iv) ToM Reduce: with online

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

TAU OVER MRNET 11

time = get_time();
for(i=0; i<iterations; i++) {

work(usecs);
TAU_DB_DUMP();
MPI_Barrier();

}
avg.time = ((get_time()-time) - (usecs*iterations)) / iterations;

Figure 8. Offload Benchmark

data offload per iteration along with histogramming. ToM was configured with a Fanout of 8. All
experiments were run on the Atlas cluster at Lawrence Livermore National Laboratory. The mean
(over 3 runs) of the % overhead over the baseline for the three cases are reported in Table I. With over
120 application events (including all MPI events) in a real, complex parallel application the overheads
in all cases were under 1%. For completeness the cost of performing the TAU DB DUMP() operation
is also reported.

4.2. Data Reduction Costs

The different types of performance data reduction in ToM were demonstrated in Section 3. In each
case extra work is performed in order to achieve the reduction (e.g. the 3-Phase histogram). Under
what circumstances is reduction beneficial, if at all? We evaluate the costs of performing that reduction
versus the savings obtained from doing so. The metric used is the average time taken to perform a
single offload at the BE. As the rate at which offloads occur increases beyond the service rate offered
by ToM (and the underlying physical network), persistent queuing leads to buffer exhaustion and
eventually to a blocked send() call. This cost is reflected in the average time to offload data onto ToM.
While a non-blocking send() may not directly suffer these costs, the system will still require the same
amount of time (or possibly more since offload rate will not be reduced by blocking) to eventually
transfer the queued performance data. It should be noted that the experiments in this section are a
severe stress-test of ToM.

We use a simple offload benchmark summarized in Figure 8. The avg.time variable is a measure
of the mean of the worst offload time suffered per round across the ranks and is plotted as the
Benchmark Performance in Figures 9 and 10. The x-axis (Profile Period) represents the interval
between offloads in microseconds. The y-axis is the ToM Fanout. The ToM curve represents the the
avg.time with no reduction and the ToM Reduce curve represents the case with reduction using
histogramming.

In Figure 9 (application ranks N=64), at relatively low offload rates both curves are overlaid. The
knee observed in the curves is due to the offload rate increasing above the service rate. At Fanout=2,
the knee in ToM Reduce occurs later than that in ToM. And at Fanout=4, while the knee occurs
at the same rate, the magnitude of increase in ToM Reduce is smaller. In both cases, savings from

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

12 A. NATARAJ ET AL.

 25000

 50000

 75000

 100000

 125000 2

 4

 8

 10
 20
 30
 40
 50
 60
 70
 80

Benchmark Performance (msecs)

Offload Benchmark | N=64

ToM
ToM Reduce

Profile Period

Fan-Out

Benchmark Performance (msecs)

Figure 9. Offload Performance: Small N (64)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 25000 50000 75000 100000 125000

Be
nc

hm
ar

k
Pe

rfo
rm

an
ce

 (m
se

cs
)

Profile Period

Offload Benchmak | Large N

N=512 FO=8
N=512 FO=8 Reduce

N=256 FO=16
N=256 FO=16 Reduce

Figure 10. Offload Performance: Larger N (256, 512)

data reduction clearly trump the costs of performing histogramming. At Fanout=8 ToM Reduce loses
its advantage from data reduction. Reduction using histogramming has its own costs. For instance, it
requires that each intermediate ToM rank has double the number of threads (due to the DownStream
Filter). As Fanout increases the costs dominate the savings obtained from data reduction, suggesting
that with low N and high Fanout, reduction does not help. In contrast, in Figure 10 where N is larger
(256, 512), even with double the Fanout (16), ToM Reduce performs an order of magnitude better
than ToM. As N increases, the savings obtained from reduction proportionally increases. Whereas the

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

TAU OVER MRNET 13

Fanout remains fixed and so too the cost of performing the reduction. This also suggests that at lower
offload rates, much higher fanouts can be used, effectively reducing transport resource usage.

These experiments were run with a modest number of events (20). Repeating the runs with 50 and
150 events (results not shown here) had similar results. At small N, the cost of performing the reduction
increased to be larger than the savings obtained. But with large N, the results closely resembled
Figure 10, confirming that reduction is beneficial with relatively large processor counts.

5. Related Work

On-line automated computational steering frameworks (such as [18], [14], [17], [5]) use a distributed
system of sensors to collect data about an application’s behavior and actuators to make modifications
to application variables. While we have not applied our framework to steering, it is conceivable that
higher-level methods provided by these tools could also be layered over ToM. Paradyn’s Distributed
Performance Consultant [4] supports introspective online performance diagnosis and, like ToM , uses
the high-performance data transport and reduction system, MRNet [10], to address scalability issues
[11].

The TAUg [6] project demonstrated scalable, online global performance data access for introspective
or application-level consumption by building access and transport capabilities in a MPI library linked
with the application. On the other hand, monitoring systems to be used by external clients require
support for client network communications, in addition to source monitoring scalability. Our first
generation TAUoverSupermon [3] system used the same underlying virtual transport layer as ToM,
binding TAU with the Supermon cluster monitor [16]. There are several differences in the architecture
and implementation of the MRNet and Supermon systems including the connection model (thread-per-
connection versus a single-threaded select()-based model) and packetization (packed binary format
versus s-expression name-value pairs). The key advantage of MRNet over Supermon, from the
perspective of online application performance monitoring using TAU, is the programmability of the
transport allowing for the scalable reduction and distributed analysis of parallel performance data.

The On-line Monitoring Interface Specification (OMIS) [8] and the OMIS compliant monitoring
(OCM) [13] system target the problem of providing a universal interface between online, external
tools and a monitoring system. OMIS supports an event-action paradigm to map events to requests
and response to actions, and OCM implements a distributed client-server system for these monitoring
services. However, the scalability of the monitoring sources and their efficient channeling to off-system
clients are not the primary problems considered by the OMIS/OCM project. Periscope [9] addresses
both the scalability and external access problems by using hierarchical monitoring agents executing
in concert with the application and client. The agents are configured to implement data reduction
and evaluate performance properties, routing the results to interactive clients for use in performance
diagnosis and steering.

While several of the above discussed tools perform reductions on performance data (either traces
or profiles), we introduce two new online methods for parallel profile reduction through distributed
generation of histograms and classified histograms not used before. These methods allow control (for
example, through the class-id generation scheme) of the trade-off between savings from reduction
and the resultant performance detail. In addition the existing tools do not address the problem of
spawning and co-allocation of monitor resources in a general way. We provide a transparent and generic

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

14 A. NATARAJ ET AL.

mechanism for instantiation of monitor resources in MPI programs that is not specific to and requires
no modification of the application or batch environment. Lastly, in contrast to these systems that have
built-in, specialized transport support, TAU, by exposing an underlying virtual transport layer that
allows adaptors (such as, currently, for filesystem, Supermon and MRNet), provides portability and
flexibility in transport choice.

6. Conclusion

Our experiences with the ToM prototype confirm the high return on investment of additional system
resources in support of performance monitoring. For instance, with a fanout of 64, overhead for
additional transport nodes is just over 1.5% – a reasonable price to pay for the performance benefits.
In addition to providing a scalable tree-structured network for consolidated data transfer, the ability
to program MRNet for data analysis and reduction relieves the burden on front end processing. The
ToM architecture and implementation provides a solid foundation for porting ToM to other platforms
and evolving its capabilities in the future. Our immediate interest is to test ToM on extreme scale
systems with tens of thousands of nodes. We will also develop new MRNet analysis components,
especially ones that support feedback to the application on performance dynamics, such as for use in
load balancing and resource (re-)allocation. In future, we envision connection of ToM to an interactive
graphical monitor for real-time performance visualization and steering.

ACKNOWLEDGEMENT

We would like to thank Michael J. Brim from the University of Wisconsin for his assistance with MRNet
debugging and development.

REFERENCES

1. SDTPC: Workshop on Software Development Tools for Petascale Computing, Washington D.C, 1-2 August 2007.
http://www.csm.ornl.gov/workshops/Petascale07/.

2. J. Liu et al. . Design and implementation of MPICH2 over InfiniBand with RDMA support. In International Parallel and
Distributed Processing Symposium (IPDPS 04), April 2004.

3. A. Nataraj et al. TAUoverSupermon : Low-Overhead Online Parallel Performance Monitoring. In Europar’07: European
Conference on Parallel Processing, 2007.

4. B. Miller et al. . The paradyn parallel performance measurement tool. Computer, 28(11):37–46, 1995.
5. G. Eisenhauer et al. An object-based infrastructure for program monitoring and steering. In Symposium on Parallel and

Distributed Tools (SPDT’98), 1998.
6. Kevin A. Huck, Allen D. Malony, Sameer Shende, and Alan Morris. TAUg: Runtime Global Performance Data Access

Using MPI. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume 4192/2006 of Lecture
Notes in Computer Science, pages 313–321, Bonn, Germany, 2006. Springer Berlin / Heidelberg.

7. J. Davison de St. Germain et al. Uintah: A massively parallel problem solving environment. In HPDC’00: International
Symposium on High Performance Distributed Computing, pages 33–42, 2000.

8. T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. Omis – on-line monitoring interface specification (version 2.0).
LRR-TUM Research Report Series, 9, 1998.

9. M. Gerndt et al. Periscope: Advanced techniques for performance analysis. In Parallel Computing: Current & Future
Issues of High-End Computing, ParCo 2005, 13-16 September 2005, Malaga, Spain, pages 15–26, 2005.

10. P. Roth et al. Mrnet: A software-based multicast/reduction network for scalable tools. In SC’03: ACM/IEEE conference
on Supercomputing, 2003.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

TAU OVER MRNET 15

11. P. Roth et al. On-line automated performance diagnosis on thousands of processes. In Symposium on Principles and
Practice of Parallel Programming, 2006.

12. R. Rosner et. al. Flash Code: Studying Astrophysical Thermonuclear Flashes. Computing in Science and Engineering,
2:33–41, 2000.

13. R. Wismuller et al. Ocm – a monitoring system for interoperable tools. In 2nd SIGMETRICS Symposium on Parallel and
Distributed Tools (SPDT’98), 1998.

14. R. Ribler, H. Simitci, and D. Reed. The Autopilot performance-directed adaptive control system. Future Generation
Computer Systems, 18(1):175–187, 2001.

15. S. Shende et al. The TAU parallel performance system. The International Journal of High Performance Computing
Applications, 20(2):287–331, Summer 2006.

16. Matthew Sottile and Ronald Minnich. Supermon: A high-speed cluster monitoring system. In CLUSTER’02: International
Conference on Cluster Computing, 2002.

17. C. Tapus, I-H. Chung, and J. Hollingworth. Active harmony: Towards automated performance tuning. In SC’02:
ACM/IEEE conference on Supercomputing, 2002.

18. W. Gu et. al. Falcon: On-line monitoring and steering of large-scale parallel programs. In 5th Symposium of the Frontiers
of Massively Parallel Computing, McLean, VA,, pages 422–429, 1995.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 0:1–15
Prepared using cpeauth.cls

