

Tuning and Analysis Utilities
Sameer Shende

University of Oregon

General Problems

How do we create robust and ubiquitous
performance technology for the analysis and tuning
of parallel and distributed software and systems in
the presence of (evolving) complexity challenges?

How do we apply performance technology effectively
for the variety and diversity of performance

problems that arise in the context of complex
parallel and distributed computer systems.

Computation Model for Performance Technology

r How to address dual performance technology goals?
¦ Robust capabilities + widely available methodologies

¦ Contend with problems of system diversity

¦ Flexible tool composition/configuration/integration

r Approaches
¦ Restrict computation types / performance problems
Ø limited performance technology coverage

¦ Base technology on abstract computation model
Ø general architecture and software execution features

Ømap features/methods to existing complex system types

Ø develop capabilities that can adapt and be optimized

General Complex System Computation Model

r Node: physically distinct shared memory machine
¦ Message passing node interconnection network

r Context: distinct virtual memory space within node

r Thread: execution threads (user/system) in context

memory memory

Node Node Node

VM
space

Context

SMP

Threads

node memory

…

…

Interconnection Network Inter-node message
communication

*

*

physical
view

model
view

Definitions – Profiling

r Profiling
¦ Recording of summary information during execution
Ø execution time, # calls, hardware statistics, …

¦ Reflects performance behavior of program entities
Ø functions, loops, basic blocks

Ø user-defined “semantic” entities

¦ Very good for low-cost performance assessment

¦ Helps to expose performance bottlenecks and hotspots

¦ Implemented through
Ø sampling: periodic OS interrupts or hardware counter traps

Ø instrumentation: direct insertion of measurement code

Definitions – Tracing

r Tracing
¦ Recording of information about significant points (events)

during program execution
Ø entering/exiting code region (function, loop, block, …)

Ø thread/process interactions (e.g., send/receive message)

¦ Save information in event record
Ø timestamp

ØCPU identifier, thread identifier

ØEvent type and event-specific information

¦ Event trace is a time-sequenced stream of event records

¦ Can be used to reconstruct dynamic program behavior

¦ Typically requires code instrumentation

Definitions – Instrumentation

r Instrumentation
¦ Insertion of extra code (hooks) into program

¦ Source instrumentation
ØDone by compiler, source-to-source translator, or manually

+ portable

+ links back to program code

– re-compile is necessary for (change in) instrumentation

– requires source to be available

– hard to use in standard way for mix-language programs

– source-to-source translators hard to develop for C++, F90

¦ Object code instrumentation
Ø “re-writing” the executable to insert hooks

Definitions – Instrumentation (continued)

¦ Dynamic code instrumentation
Ø a debugger-like instrumentation approach

Ø executable code instrumentation on running program

ØDynInst and DPCL are examples

+/– switch around compared to source instrumentation

¦ Pre-instrumented library
Ø typically used for MPI and PVM program analysis

Ø supported by link-time library interposition

+ easy to use since only re-linking is necessary

– can only record information about library entities

Event Tracing: Instrumentation, Monitor, Trace

1 master

2 slave

3 ...

void slave {
 trace(ENTER, 2);
 ...
 recv(A, tag, buf);
 trace(RECV, A);
 ...
 trace(EXIT, 2);
}

void master {
 trace(ENTER, 1);
 ...
 trace(SEND, B);
 send(B, tag, buf);
 ...
 trace(EXIT, 1);
} MONITOR 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

CPU A:

CPU B:

Event definition

timestamp

Event Tracing: “Timeline” Visualization

1 master

2 slave

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
slave

58 60 62 64 66 68 70

B

A

TAU Performance System Framework

r Tuning and Analysis Utilities

r Performance system framework for scalable parallel and
distributed high-performance computing

r Targets a general complex system computation model
¦ nodes / contexts / threads

¦ Multi-level: system / software / parallelism

¦ Measurement and analysis abstraction

r Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
¦ Portable performance profiling/tracing facility

¦ Open software approach

TAU Performance System Architecture

TAU Instrumentation

r Flexible instrumentation mechanisms at multiple levels
¦ Source code
Ømanual

Ø automatic using Program Database Toolkit (PDT), OPARI

¦ Object code
Ø pre-instrumented libraries (e.g., MPI using PMPI)

Ø statically linked

Ø dynamically linked (e.g., Virtual machine instrumentation)

Ø fast breakpoints (compiler generated)

¦ Executable code
Ø dynamic instrumentation (pre-execution) using DynInstAPI

TAU Instrumentation (continued)

r Targets common measurement interface (TAU API)

r Object-based design and implementation
¦ Macro-based, using constructor/destructor techniques

¦ Program units: function, classes, templates, blocks

¦ Uniquely identify functions and templates
Ø name and type signature (name registration)

Ø static object creates performance entry

Ø dynamic object receives static object pointer

Ø runtime type identification for template instantiations

¦ C and Fortran instrumentation variants

r Instrumentation and measurement optimization

Program Database Toolkit (PDT)

r Program code analysis framework for developing source-
based tools

r High-level interface to source code information

r Integrated toolkit for source code parsing, database
creation, and database query
¦ commercial grade front end parsers

¦ portable IL analyzer, database format, and access API

¦ open software approach for tool development

r Target and integrate multiple source languages

r Use in TAU to build automated performance
instrumentation tools

PDT Architecture and Tools

C/C++
 Fortran

 77/90

PDT Components

r Language front end
¦ Edison Design Group (EDG): C, C++, Java

¦ Mutek Solutions Ltd.: F77, F90

¦ creates an intermediate-language (IL) tree

r IL Analyzer
¦ processes the intermediate language (IL) tree

¦ creates “program database” (PDB) formatted file

r DUCTAPE (Bernd Mohr, ZAM, Germany)
¦ C++ program Database Utilities and Conversion Tools

APplication Environment

¦ processes and merges PDB files

¦ C++ library to access the PDB for PDT applications

TAU Measurement

r Performance information
¦ High-resolution timer library (real-time / virtual clocks)

¦ General software counter library (user-defined events)

¦ Hardware performance counters
ØPCL (Performance Counter Library) (ZAM, Germany)

ØPAPI (Performance API) (UTK, Ptools Consortium)

Ø consistent, portable API

r Organization
¦ Node, context, thread levels

¦ Profile groups for collective events (runtime selective)

¦ Performance data mapping between software levels

TAU Measurement (continued)

r Parallel profiling
¦ Function-level, block-level, statement-level

¦ Supports user-defined events

¦ TAU parallel profile database

¦ Function callstack

¦ Hardware counts values (in replace of time)

r Tracing
¦ All profile-level events

¦ Interprocess communication events

¦ Timestamp synchronization

r User-configurable measurement library (user controlled)

TAU Measurement System Configuration

r configure [OPTIONS]
¦ {-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
¦ {-pthread, -sproc} Use pthread or SGI sproc threads
¦ -openmp Use OpenMP threads
¦ -jdk=<dir> Specify location of Java Dev. Kit
¦ -opari=<dir> Specify location of Opari OpenMP tool
¦ {-pcl, -papi}=<dir> Specify location of PCL or PAPI
¦ -pdt=<dir> Specify location of PDT
¦ -dyninst=<dir> Specify location of DynInst Package
¦ {-mpiinc=<d>, mpilib=<d>}Specify MPI library instrumentation

¦ -TRACE Generate TAU event traces

¦ -PROFILE Generate TAU profiles
¦ -CPUTIME Use usertime+system time
¦ -PAPIWALLCLOCK Use PAPI to access wallclock time
¦ -PAPIVIRTUAL Use PAPI for virtual (user) time

TAU Measurement Configuration – Examples

r ./configure -c++=KCC –SGITIMERS
¦ Use TAU with KCC and fast nanosecond timers on SGI
¦ Enable TAU profiling (default)

r ./configure -TRACE –PROFILE
¦ Enable both TAU profiling and tracing

r ./configure -c++=guidec++ -cc=guidec
 -papi=/usr/local/packages/papi –openmp
 -mpiinc=/usr/packages/mpich/include
 -mpilib=/usr/packages/mpich/lib
¦ Use OpenMP+MPI using KAI's Guide compiler suite and

use PAPI for accessing hardware performance counters
for measurements

r Typically configure multiple measurement libraries

TAU Measurement API

r Initialization and runtime configuration
¦ TAU_PROFILE_INIT(argc, argv);

TAU_PROFILE_SET_NODE(myNode);
TAU_PROFILE_SET_CONTEXT(myContext);
TAU_PROFILE_EXIT(message);
TAU_REGISTER_THREAD();

r Function and class methods
¦ TAU_PROFILE(name, type, group);

r Template
¦ TAU_TYPE_STRING(variable, type);

TAU_PROFILE(name, type, group);
CT(variable);

r User-defined timing
¦ TAU_PROFILE_TIMER(timer, name, type, group);

TAU_PROFILE_START(timer);
TAU_PROFILE_STOP(timer);

TAU Measurement API (continued)

r User-defined events
¦ TAU_REGISTER_EVENT(variable, event_name);

TAU_EVENT(variable, value);
TAU_PROFILE_STMT(statement);

r Mapping
¦ TAU_MAPPING(statement, key);

TAU_MAPPING_OBJECT(funcIdVar);
TAU_MAPPING_LINK(funcIdVar, key);

¦ TAU_MAPPING_PROFILE (funcIdVar);
TAU_MAPPING_PROFILE_TIMER(timer, funcIdVar);
TAU_MAPPING_PROFILE_START(timer);
TAU_MAPPING_PROFILE_STOP(timer);

r Reporting
¦ TAU_REPORT_STATISTICS();

TAU_REPORT_THREAD_STATISTICS();

Compiling: TAU Makefiles

r Include TAU Makefile in the user’s Makefile.
r Variables:

¦ TAU_CXX Specify the C++ compiler
¦ TAU_CC Specify the C compiler used by TAU
¦ TAU_DEFS Defines used by TAU. Add to CFLAGS
¦ TAU_INCLUDE Header files include path. Add to CFLAGS
¦ TAU_LIBS Statically linked TAU library. Add to LIBS
¦ TAU_SHLIBS Dynamically linked TAU library
¦ TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
¦ TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
¦ TAU_FORTRANLIBS Must be linked in with C++ linker for F90.

r Note: Not including TAU_DEFS in CFLAGS disables
instrumentation in C/C++ programs.

Including TAU Makefile - Example

include /usr/tau/sgi64/lib/Makefile.tau-pthread-kcc

CXX = $(TAU_CXX)

CC = $(TAU_CC)

CFLAGS = $(TAU_DEFS)

LIBS = $(TAU_LIBS)

OBJS = ...

TARGET= a.out

TARGET: $(OBJS)

$(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)

.cpp.o:

$(CC) $(CFLAGS) -c $< -o $@

TAU Makefile for PDT

include /usr/tau/include/Makefile

CXX = $(TAU_CXX)

CC = $(TAU_CC)

PDTPARSE = $(PDTDIR)/$(CONFIG_ARCH)/bin/cxxparse

TAUINSTR = $(TAUROOT)/$(CONFIG_ARCH)/bin/tau_instrumentor

CFLAGS = $(TAU_DEFS)

LIBS = $(TAU_LIBS)

OBJS = ...

TARGET= a.out

TARGET: $(OBJS)

$(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)

.cpp.o:

$(PDTPARSE) $<

$(TAUINSTR) $*.pdb $< -o $*.inst.cpp

$(CC) $(CFLAGS) -c $*.inst.cpp -o $@

Setup: Running Applications

% setenv PROFILEDIR /home/data/experiments/profile/01

% setenv TRACEDIR /home/data/experiments/trace/01

% set path=($path <taudir>/<arch>/bin)

% setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\:<taudir>/<arch>/lib

For PAPI/PCL:

% setenv PAPI_EVENT PAPI_FP_INS

% setenv PCL_EVENT PCL_FP_INSTR

For Java (without instrumentation):

% java application

With instrumentation:

% java -XrunTAU application

% java -XrunTAU:exclude=sun/io,java application

For DyninstAPI:

% a.out

% tau_run a.out

% tau_run -XrunTAUsh-papi a.out

TAU Analysis

r Profile analysis
¦ Pprof
Ø parallel profiler with text-based display

¦ Racy
Ø graphical interface to pprof (Tcl/Tk)

¦ jRacy
Ø Java implementation of Racy

r Trace analysis and visualization
¦ Trace merging and clock adjustment (if necessary)

¦ Trace format conversion (ALOG, SDDF, Vampir)

¦ Vampir (Pallas) trace visualization

Pprof Command

r pprof [-c|-b|-m|-t|-e|-i] [-r] [-s] [-n num] [-f file] [-l] [nodes]
¦ -c Sort according to number of calls
¦ -b Sort according to number of subroutines called
¦ -m Sort according to msecs (exclusive time total)
¦ -t Sort according to total msecs (inclusive time total)
¦ -e Sort according to exclusive time per call
¦ -i Sort according to inclusive time per call
¦ -v Sort according to standard deviation (exclusive usec)
¦ -r Reverse sorting order
¦ -s Print only summary profile information
¦ -n num Print only first number of functions
¦ -f file Specify full path and filename without node ids
¦ -l nodes List all functions and exit (prints only info about all

contexts/threads of given node numbers)

Pprof Output (NAS Parallel Benchmark – LU)

r Intel Quad
PIII Xeon,
RedHat,
PGI F90

r F90 +
MPICH

r Profile for:
 Node
 Context
 Thread

r Application
events and
MPI events

jRacy (NAS Parallel Benchmark – LU)

n: node
c: context
t: thread

Global profiles

Individual profile

Routine
profile across
all nodes

TAU and PAPI (NAS Parallel Benchmark – LU)

r Floating
point
operations

r Replaces
execution
time

r Only requires
relinking to
different
measurement
library

Vampir Trace Visualization Tool

r Visualization and
Analysis of MPI
Programs

r Originally developed
by Forschungszentrum
Jülich

r Current development
by Technical
University Dresden

r Distributed by
PALLAS, Germany

r http://www.pallas.de/pages/vampir.htm

Vampir (NAS Parallel Benchmark – LU)

Timeline display Callgraph display

Communications display

Parallelism display

TAU Performance System Status

r Computing platforms
¦ IBM SP, SGI Origin 2K/3K, Intel Teraflop, Cray T3E,

Compaq SC, HP, Sun, Windows, IA-32, IA-64, Linux, …

r Programming languages
¦ C, C++, Fortran 77/90, HPF, Java, OpenMP

r Communication libraries
¦ MPI, PVM, Nexus, Tulip, ACLMPL, MPIJava

r Thread libraries
¦ pthreads, Java,Windows, Tulip, SMARTS, OpenMP

r Compilers
¦ KAI, PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray,

IBM, Compaq

TAU Performance System Status (continued)

r Application libraries
¦ Blitz++, A++/P++, ACLVIS, PAWS, SAMRAI, Overture

r Application frameworks
¦ POOMA, POOMA-2, MC++, Conejo, Uintah, UPS

r Projects
¦ Aurora / SCALEA: ACPC, University of Vienna

r TAU full distribution (Version 2.10, web download)
¦ Measurement library and profile analysis tools

¦ Automatic software installation

¦ Performance analysis examples

¦ Extensive TAU User’s Guide

PDT Status

r Program Database Toolkit (Version 2.0, web download)
¦ EDG C++ front end (Version 2.45.2)

¦ Mutek Fortran 90 front end (Version 2.4.1)

¦ C++ and Fortran 90 IL Analyzer

¦ DUCTAPE library

¦ Standard C++ system header files (KCC Version 4.0f)

r PDT-constructed tools
¦ Automatic TAU performance instrumentation
ØC, C++, Fortran 77, and Fortran 90

¦ Program analysis support for SILOON and CHASM

Information

r TAU (http://www.acl.lanl.gov/tau)

r PDT (http://www.acl.lanl.gov/pdtoolkit)

r Tutorial at SC’01: M11
B. Mohr, A. Malony, S. Shende, “Performance
Technology for Complex Parallel Systems” Nov. 7, 2001,
Denver, CO.

r LANL, NIC Booth, SC’01.

Support Acknowledgement

r TAU and PDT support:
¦ Department of Engergy (DOE)
ØDOE 2000 ACTS contract

ØDOE MICS contract

ØDOE ASCI Level 3 (LANL, LLNL)

¦ DARPA

¦ NSF National Young Investigator (NYI) award

Hands-on session

r On mcurie.nersc.gov, copy files from
/usr/local/pkg/acts/tau/tau2/tau-2.9/training

r See README file

r Set correct path e.g.,
% set path=($path /usr/local/pkg/acts/tau/tau2/tau2.9/t3e/bin)

r Examine the Makefile.

r Type “make” in each directory; then execute the program

r Type “racy” or “vampir”

r Type a project name e.g., “matrix.pmf” and click OK to
see the performance data.

Examples
The training directory contains example programs that illustrate the use of TAU instrumentation and measuremen options.

instrument - This contains a simple C++ example that shows how TAU's API can be used for manually
instrumenting a C++ program. It highlights instrumentation for templates and user defined
events.

threads - A simple multi-threaded program that shows how the main function of a thread is instrumented.
Performance data is generated for each thread of execution. Configure with -pthread.

cthreads - Same as threads above, but for a C program. An instrumented C program may be compiled with
a C compiler, but needs to be linked with a C++ linker. Configure with -pthread.

pi - An MPI program that calculates the value of pi and e. It highlights the use of TAU's MPI
wrapper library. TAU needs to be configured with -mpiinc=<dir> and -mpilib=<dir>. Run using
mpirun -np <procs> cpi <iterations>.

 papi - A matrix multiply example that shows how to use TAU statement level timers for comparing the
performance of two algorithms for matrix multiplication. When used with PAPI or PCL, this

 can highlight the cache behaviors of these algorithms. TAU should be configured with
-papi=<dir> or -pcl=<dir> and the user should set PAPI_EVENT or PCL_EVENT respective
environment variables, to use this.

Examples - (cont.)
papithreads - Same as papi, but uses threads to highlight how hardware

 performance counters may be used in a multi-threaded

 application. When it is used with PAPI, TAU should be

 configured with -papi=<dir> -pthread

autoinstrument - Shows the use of Program Database Toolkit (PDT) for

 automating the insertion of TAU macros in the source code. It

 requires configuring TAU with the -pdt=<dir> option. The

 Makefile is modified to illustrate the use of a source to

 source translator (tau_instrumentor).

NPB2.3 - The NAS Parallel Benchmark 2.3 [from NASA Ames]. It shows how

 to use TAU's MPI wrapper with a manually instrumented Fortran

 program. LU and SP are the two benchmarks. LU is instrumented

 completely, while only parts of the SP program are

 instrumented to contrast the coverage of routines. In both

 cases MPI level instrumentation is complete. TAU needs to be

 configured with -mpiinc=<dir> and -mpilib=<dir> to use this.

