

http://www.acl.lanl.gov/tau


TAU: New Directions


Sameer Shende
Department of Computer and Information Science,


University of Oregon


sameer@cs.uoregon.edu







http://www.acl.lanl.gov/tau


Overview


❑ Introduction to TAU (Tuning and Analysis Utilities)


❍ Goals and Challenges


❍ Architecture


❍ Instrumentation


❍ Measurement


❍ Analysis


❑ New research directions


❍ Multi-level instrumentation


❍ Micro-instrumentation


❍ Mapping performance data


❍ Hybrid execution models


❍ New measurement options


❍ Proposed extensions







http://www.acl.lanl.gov/tau


What is TAU?


❑ Performance analysis framework for scalable parallel


and distributed high performance computing


❑ Targets a general parallel computation model [HPC++]


❍ computer (SMP) nodes


❍ shared address space contexts


❍ threads of execution


❑ Integrated toolkit for performance instrumentation,


measurement, analysis and visualization


❑ Portable performance profiling and tracing toolkit


❑ Tools associated with TAU


❍ PDT (Program Database Toolkit)


❍ Distributed monitoring framework


❑ Uses portable, open interfaces







http://www.acl.lanl.gov/tau


Goal and Challeng es


Create robust performance technology for the
analysis and tuning of parallel software.


❑ Challenges


❍ different scalable computing platforms


❍ different programming languages and compilers


❍ different thread models and runtime systems


❍ different instrumentation strategies


❍ different measurement requirements


❍ common, portable framework for analysis


❍ extensible, retargetable tool technology


❍ complex set of requirements


❍ performance experimentation







http://www.acl.lanl.gov/tau


Architecture of T AU







http://www.acl.lanl.gov/tau


TAU Instrumentation


❑ Flexible, multiple instrumentation mechanisms


❍ source code


✰ manual (TAU API)


✰ automatic using PDT (tau_instrumentor)


❍ object code


✰ pre-instrumented libraries (ACLMPL)


✰ statically linked: MPI Profiling Interface
(libTauMpi.a)


❍ executable code


✰ dynamic instrumentation using DyninstAPI
(tau_run)


❍ virtual machine


✰ Java instrumentation using JVMPI and TAU shared
object dynamically loaded in the JVM


❑ Ability to combine multiple instrumentation options!







http://www.acl.lanl.gov/tau


TAU Measurement


❑ Configuration options


❍ High resolution wall clock time [PAPI, SGITIMERS]


❍ CPU time (user+system)


❍ Process virtual time (user) [PAPI]


❍ Hardware performance counters
(primary/sec. data cache misses, etc.) [PAPI, PCL]


❑ PAPI (Performance API) provides low-overhead access


to counters and timers (U. Tenn. Knoxville)


(http://icl.cs.utk.edu/projects/papi/)







http://www.acl.lanl.gov/tau


TAU Measurement


❑ Profiling


❍ aggregate summaries of performance metrics


❍ function-level, block-level, statement-level


❍ supports user-defined events


❍ measured process timing (as opposed to sampling)


❍ statistics (standard deviation)


❑ Tracing


❍ event logs


❍ same instrumentation for both profiling and tracing


❍ inter-process communication events


❍ trace merge and conversion


❍ output to Vampir trace format







http://www.acl.lanl.gov/tau


TAU Anal ysis


❑ Profile analysis


❍ pprof


✰ parallel profiler with text based display


❍ racy


✰ graphical interface to pprof


❑ Trace analysis


❍ Vampir


✰ trace analysis and visualization tool (Pallas GmbH)







http://www.acl.lanl.gov/tau


TAU Status


Available for download now (ver. TAU 2.8b10)


❑ Languages


❍ C++, C, F90, Java.


❍ HPF, pC++, HPC++, ZPL


❑ Platforms


❍ SGI, IBM, SUN, HP, Compaq, Alpha/Pentium Linux
clusters, PC Windows, Intel ASCI Red, Cray T3E


❑ Thread libraries


❍ pthread, OpenMP, Java, Windows, SMARTS, Tulip


❑ Communication libraries


❍ MPI, PVM, ACLMPL, Nexus, Tulip


❑ Compilers


❍ KAI’s KCC & Guide, PGI, SUN, IBM, SGI, GNU,
MS, Fujitsu, Cray


❑ 550 registered downloads (not users)







http://www.acl.lanl.gov/tau


Program Database T oolkit (PDT)







http://www.acl.lanl.gov/tau


Program Database T oolkit (PDT)


❑ Program code analysis framework for developing


source-based tools


❑ High-level interface to source code information


❑ Integrated toolkit for source code parsing, database


creation, and database query


❍ commercial grade front end parsers (EDG, Mutek)


❍ portable IL analyzer, database format, and access
API


❍ open software approach for tool development


❑ Target and integrate multiple source languages


❑ C++ version available. F90 version to be released soon.


❑ http://www .acl.lanl.go v/pdtoolkit







http://www.acl.lanl.gov/tau


New Resear ch Directions


❑ Multi-level instrumentation


❑ Micro-instrumentation


❑ Mapping performance data


❑ Hybrid execution models


❑ New measurement options


❑ Proposed extensions







http://www.acl.lanl.gov/tau


Multi-le vel instrumentation


❑ Combine instrumentation APIs


❍ executable (DyninstAPI) + source code


❍ virtual machine (JVMPI) + library level (MPI
Wrapper)


❍ automated source code (PDT) + library level (MPI)


❑ Better coverage and level of abstraction







http://www.acl.lanl.gov/tau


Micr o-instrumentation


❑ Crossing “routine” boundaries for instrumentation


❑ Basic block, statement level probes


❑ Problems:


❍ Optimizations may be affected


❍ How do we profile in the presence of code
transforming optimizations?


❍ Source to source translations (ZPL+TAU)


❍ Compiler transformations


❍ Instrumentation using mapping tables after
optimizations have been applied


❍ How should compilers and performance tools
“share” mapping information?


❍ New mapping models for performance data







http://www.acl.lanl.gov/tau


Mapping P erformance Data


❑ Traditional mapping scenarios [Irvin/Miller, Adve et.al]


❍ one-one (straightforward)


❍ one-many (aggregate costs)


❍ many-one (amortize/aggregate costs)


❍ many-many (aggregate)


❑ Real life situations have some more information


(optimizations)


❑ How can we use that to refine mapping models?







http://www.acl.lanl.gov/tau


TAU Mapping of Async hronous
Execution


❑ POOMA II and SMARTS







http://www.acl.lanl.gov/tau


Mapping Async hronous Ex ecutions


❑ All Array statements (composed into iterates) map to


the ExpressionKernel class (many - one mapping)


❑ Each Iterate has its own object


❑ Profiling at the level of iterate objects reveals statement


level profile


❑ Mapping asynchronous performance data to the array


statements







http://www.acl.lanl.gov/tau


POOMA+SMARTS: Without Mappings


❑ Expression Templates produce long names


(embedding the parse tree of the expression in the


expression evaluation template)







http://www.acl.lanl.gov/tau


Without Mappings


❑ “Array=constant” expressions take 29.2 %


(lumped together for A=1, B=2, C=3, D=4, E=5)


❑ “C=E-A+2*B” is incomprehensible (big expression)







http://www.acl.lanl.gov/tau


Mapping P erformance Data using T AU


❑ Time spent in each statement (A=1, B=2, C=3, D=4...)


❑ Works in presence of asynchronous execution


❑ Across different “compute” threads


❑ Closing the semantic-gap!







http://www.acl.lanl.gov/tau


Hybrid e xecution models


❑ Mixed model programming merge execution models


❑ Threads + MPI (pthreads+MPI, OpenMPI, mpiJava)


❑ Problems:


❍ Incomplete information


❍ MPI doesn’t know about threads, threads don’t
know which node they’re running on


❍ TAU allows different modules to “advertise” all
information they know and “share” it


❍ Sender doesn’t know which thread in the receiver
received the message and vice versa


❍ Matching sends and receives during post-
processing allows for execution model “corrections”


❑ Problems for message passing and shared memory


programs are well understood in isolation


❑ When models are mixed, we encounter different kinds


of problems







http://www.acl.lanl.gov/tau


TAU suppor ts OpenMP+MPI


❑ Vampir [http://www.pallas.de] is used to visualize TAU


traces







http://www.acl.lanl.gov/tau


Integrated P erformance Vie ws







http://www.acl.lanl.gov/tau


Profiling MPI+Ja va


❑ No changes to the Java source/bytecode/JVM!


❑ JVMPI+MPI (mixed-model programming)







http://www.acl.lanl.gov/tau


Tracing mpiJa va







http://www.acl.lanl.gov/tau


Dynamic CallT ree







http://www.acl.lanl.gov/tau


New Measurement Options


❑ Fast access to wall-clock time using PAPI


❍ TAU overhead measured at 830 nanosecs per entry
or exit (Profiling with g++ -O2 PIII/550MHz Linux
2.4.0-test4 Kernel)


❑ CPU Time measurements for multi-threaded


applications using Linux


❑ Thread-safe hardware performance counters [PAPI]


❑ TAU generic thread layer interfaces with PAPI for


supporting thread-safe counters for all thread packages


supported by TAU







http://www.acl.lanl.gov/tau


Future W ork & Pr oposed Extensions


❑ TAU free probe class server for SPM


❑ Dyninst support for MPI applications in TAU


❑ Cheetah runtime system


❑ UPS (Unified Parallel Software)


❑ OpenMP hooks for instrumentation


❑ Distributed monitoring framework


❑ DPCL support


❑ Application codes







http://www.acl.lanl.gov/tau


Conc lusions


❑ Complex parallel computing environments require


robust program analysis tools


❍ portable, cross-platform, multi-level, integrated


❍ able to bridge and reuse existing technology


❍ technology savvy


❑ TAU offers a performance technology framework for


complex parallel computing systems


❍ flexible instrumentation and measurement


❍ extendable profile and trace performance analysis


❍ integration with other performance technology







http://www.acl.lanl.gov/tau


Ackno wledgments






