Performance Technology for Tera-Class Parallel Computers: Evolution of the TAU Performance System

TAU Performance System Status
- Platforms: IBM SP3, SGI Origin 2K/UK, Compaq Alpha Tran4Linux Cluster, Gray TIE, Linux x86/IA-64 clusters, Hewlett-Packard Superdome/Non-cluster, Hitachi SR8000, NEC SX-5
- Languages: C/C++, Fortran 77, F90, OpenMP, Java, Python
- Thread libraries: pthreads, SGI spec, OpenMP, Java, Windows
- Communications libraries: MPI, PVM, SHMEM
- Parallelism paradigms: shared memory multi-threading, distributed memory message passing, mixed-mode
- Performance technologies: Dynamic instrumentation, PAPI, and PCL, hardware counter libraries, Opari automatic, OpenMP instrumentation, EPILOG tracing library, EXPERT trace analyzer, Vampir trace visualization, Paraview trace visualization

Performance Mapping in Uintah
- Dr. Allen D. Malony
- Dr. Sameer Shende
- Kai Li
- Robert Bell

- Taskgraph macro
- Automatic source instrumentation
- Uses OpenMP performance tools interface
- Automatic instrumentation with Opari

Performance Profiling of EVH1
- Enhanced Virginia Hydrodynamics #1 benchmark
- IBM SP3, 16 processors
- Racy parallel profile display tools
- Automatic instrumentation using PDT, MPI wrapper library
- Uses OpenMP performance tools interface
- Automatic instrumentation with Opari

Performance Mapping in Uintah
- Performance
- Enhanced
- Taskgraph macro
- Automatic

Performance Profiling of EVH1
- Enhanced Virginia Hydrodynamics #1 benchmark
- IBM SP3, 16 processors
- Racy parallel profile display tools
- Automatic instrumentation using PDT, MPI wrapper library
- Uses OpenMP performance tools interface
- Automatic instrumentation with Opari

Mixed-Mode Performance Analysis (OpenMP + MPI)
- 2-D Stommel model of ocean circulation
- Jacoby iteration, 5-point stencil
- Uses OpenMP performance tools interface
- Automatic instrumentation with Opari

TAU Integration in SAMRAI
- Structured Adaptive Mesh Refinement Application Infrastructure
- Group-based SAMRAI performance timers and events
- Seamless integration in routine and MPI performance measurement

Project Goals and Recent Accomplishments
- Dynamic performance measurement control
 - Dynamic event grouping
 - Multiple configurable counters
 - Selective instrumentation
- Application-Level Performance Access
 - Incremental profile dumping
 - Runtime profile access
- Multi-Level Performance Instrumentation and Mapping
 - Optimized instrumentation
 - Tracing library enhancement
 - Performance mapping profile display
- Software and Hardware Performance Integration
 - Callback registration for system and hardware counters
 - Trace recording of counts

TAU Performance Database Framework
- Raw performance data
- Performance analysis programs
 - PerfDLR data description
 - PerfDLR analysis and query toolkit
 - XUL data representation
 - Multiple experiment database

TAU Performance System Status
- Platforms: IBM SP3, SGI Origin 2K/UK, Compaq Alpha Tran4Linux Cluster, Gray TIE, Linux x86/IA-64 clusters, Hewlett-Packard Superdome/Non-cluster, Hitachi SR8000, NEC SX-5
- Languages: C/C++, Fortran 77, F90, OpenMP, Java, Python
- Thread libraries: pthreads, SGI spec, OpenMP, Java, Windows
- Communications libraries: MPI, PVM, SHMEM
- Parallelism paradigms: shared memory multi-threading, distributed memory message passing, mixed-mode
- Performance technologies: Dynamic instrumentation, PAPI, and PCL, hardware counter libraries, Opari automatic, OpenMP instrumentation, EPILOG tracing library, EXPERT trace analyzer, Vampir trace visualization, Paraview trace visualization

TAU Applications
- SAMRAI (LLNL, Andy Wisniski). TAU is being integrated in SAMRAI framework as the main performance measurement facility, replacing hand-instrumented counters and timers. TAU is included as part of the SAMRAI distribution.
- OVERTUNE (LLNL, Brian Miller). TAU is being used in the Overture framework for object-oriented performance measurement. Miller has also integrated TAU in the adaptive mesh refinement simulator, AMRSim, and is using TAU for another (undisclosed) software development project.
- ALPS (LLNL, James Scheck). The Adaptive Linear Plasma Simulator uses SAMRAI as a software component. It gains access to TAU’s measurement support in SAMRAI as well as uses TAU directly in other ALPS code.
- TAU Performance Database Framework
- Raw performance data
- Performance analysis programs
 - PerfDLR data description
 - PerfDLR analysis and query toolkit
 - XUL data representation
 - Multiple experiment database
- Dynamic performance measurement control
 - Dynamic event grouping
 - Multiple configurable counters
 - Selective instrumentation
- Application-Level Performance Access
 - Incremental profile dumping
 - Runtime profile access
- Multi-Level Performance Instrumentation and Mapping
 - Optimized instrumentation
 - Tracing library enhancement
 - Performance mapping profile display
- Software and Hardware Performance Integration
 - Callback registration for system and hardware counters
 - Trace recording of counts

Performance Profiling of EVH1
- Enhanced Virginia Hydrodynamics #1 benchmark
- IBM SP3, 16 processors
- Racy parallel profile display tools
- Automatic instrumentation using PDT, MPI wrapper library
- Uses OpenMP performance tools interface
- Automatic instrumentation with Opari

Mixed-Mode Performance Analysis (OpenMP + MPI)
- 2-D Stommel model of ocean circulation
- Jacoby iteration, 5-point stencil
- Uses OpenMP performance tools interface
- Automatic instrumentation with Opari

TAU Performance System Status
- Platforms: IBM SP3, SGI Origin 2K/UK, Compaq Alpha Tran4Linux Cluster, Gray TIE, Linux x86/IA-64 clusters, Hewlett-Packard Superdome/Non-cluster, Hitachi SR8000, NEC SX-5
- Languages: C/C++, Fortran 77, F90, OpenMP, Java, Python
- Thread libraries: pthreads, SGI spec, OpenMP, Java, Windows
- Communications libraries: MPI, PVM, SHMEM
- Parallelism paradigms: shared memory multi-threading, distributed memory message passing, mixed-mode
- Performance technologies: Dynamic instrumentation, PAPI, and PCL, hardware counter libraries, Opari automatic, OpenMP instrumentation, EPILOG tracing library, EXPERT trace analyzer, Vampir trace visualization, Paraview trace visualization

TAU Applications
- SAMRAI (LLNL, Andy Wisniski). TAU is being integrated in SAMRAI framework as the main performance measurement facility, replacing hand-instrumented counters and timers. TAU is included as part of the SAMRAI distribution.
- OVERTUNE (LLNL, Brian Miller). TAU is being used in the Overture framework for object-oriented performance measurement. Miller has also integrated TAU in the adaptive mesh refinement simulator, AMRSim, and is using TAU for another (undisclosed) software development project.
- ALPS (LLNL, James Scheck). The Adaptive Linear Plasma Simulator uses SAMRAI as a software component. It gains access to TAU’s measurement support in SAMRAI as well as uses TAU directly in other ALPS code.
- TAU Integration in SAMRAI
 - Structured Adaptive Mesh Refinement Application Infrastructure
 - Group-based SAMRAI performance timers and events
 - Seamless integration in routine and MPI performance measurement

Performance Profiling of EVH1
- Enhanced Virginia Hydrodynamics #1 benchmark
- IBM SP3, 16 processors
- Racy parallel profile display tools
- Automatic instrumentation using PDT, MPI wrapper library
- Uses OpenMP performance tools interface
- Automatic instrumentation with Opari

Mixed-Mode Performance Analysis (OpenMP + MPI)
- 2-D Stommel model of ocean circulation
- Jacoby iteration, 5-point stencil
- Uses OpenMP performance tools interface
- Automatic instrumentation with Opari

TAU Performance System Status
- Platforms: IBM SP3, SGI Origin 2K/UK, Compaq Alpha Tran4Linux Cluster, Gray TIE, Linux x86/IA-64 clusters, Hewlett-Packard Superdome/Non-cluster, Hitachi SR8000, NEC SX-5
- Languages: C/C++, Fortran 77, F90, OpenMP, Java, Python
- Thread libraries: pthreads, SGI spec, OpenMP, Java, Windows
- Communications libraries: MPI, PVM, SHMEM
- Parallelism paradigms: shared memory multi-threading, distributed memory message passing, mixed-mode
- Performance technologies: Dynamic instrumentation, PAPI, and PCL, hardware counter libraries, Opari automatic, OpenMP instrumentation, EPILOG tracing library, EXPERT trace analyzer, Vampir trace visualization, Paraview trace visualization

TAU Integration in SAMRAI
- Structured Adaptive Mesh Refinement Application Infrastructure
- Group-based SAMRAI performance timers and events
- Seamless integration in routine and MPI performance measurement

Performance Profiling of EVH1
- Enhanced Virginia Hydrodynamics #1 benchmark
- IBM SP3, 16 processors
- Racy parallel profile display tools
- Automatic instrumentation using PDT, MPI wrapper library
- Uses OpenMP performance tools interface
- Automatic instrumentation with Opari

Mixed-Mode Performance Analysis (OpenMP + MPI)
- 2-D Stommel model of ocean circulation
- Jacoby iteration, 5-point stencil
- Uses OpenMP performance tools interface
- Automatic instrumentation with Opari