
Workload Characterization using the TAU
Performance System

Sameer Shende, Allen D. Malony, and Alan Morris

Performance Research Laboratory,
Department of Computer and Information Science

University of Oregon, Eugene, OR, USA,
{sameer,malony,amorris}@cs.uoregon.edu

Abstract. Workload characterization is an important technique that
helps us understand the performance of parallel applications and the de-
mands they place on the system. It can be used to describe performance
effects due to application parameters, compiler options, and platform
configurations. In this paper, workload characterization features in the
TAU parallel performance system are demonstrated for elucidating the
performance of the MPI library based on the sizes of messages. Such
characterization partitions the time spent in the MPI routines used by
an application based on the type of MPI operation and the message size
involved. It requires a two-level mapping of performance data, a unique
feature implemented in TAU. Results from the NPB LU benchmark are
presented. We also discuss the use of mapping for memory consumption
characterization.
Keywords: Performance mapping, measurement, instrumentation, per-
formance evaluation, workload characterization

1 Introduction

Technology for empirical performance evaluation of parallel programs is driven
by the increasing complexity of high performance computing environments and
programming methodologies. To keep pace with the growing complexity of large
scale parallel supercomputers, performance tools must provide for the effective
instrumentation of complex software and the correlation of runtime performance
data with system characteristics. Workload characterization is an important tool
for understanding the the nature and performance of the workload submitted
to a parallel system. Understanding the workload characteristics helps in cor-
relating the effects of architectural features on workload behavior. It helps us
in planning system capacity based on an assessment of the demands placed
on the system, and in identifying which components in a system may need to
be upgraded. This is a systems perspective on workload characterization. There
is also an application perspective that characterizes application-specific perfor-
mance behavior in the context of workload and platform aspects. For instance, in
this paper, we use workload characterization techniques recently implemented in
the TAU performance system [1] to study message communication performance.



Workload characterization methods collect performance data for each appli-
cation in the workload set. For instance, performance profiles can contain statis-
tics on performance in application regions (e.g., routines) and with respect to
specific behaviors, such as message communication based on the message size.
Profiling tools that focus their attention on capturing aggregate performance
data over all invocations of message communication and I/O routines ignore the
performance variation for small and large buffer sizes. It is this ability to expose
application features and observe their performance effects that we are interested
in supporting as part of a workload characterization methodology.

In this paper, we describe the techniques for measuring the performance of
a parallel application’s message communication based on message buffer sizes.
When this information is gathered from several applications and stored in a per-
formance database, we can classify the performance of the entire system using
histograms that show the time spent in inter-process communication and I/O
routines based on buffer sizes. We discuss the improvements that we made to
the TAU performance system [1] in the areas of instrumentation, measurement
and analysis to support workload characterization. Section §2 describes the re-
lated work in this area, Section §3 describes the TAU performance system, and
describes how performance mapping is applied to characterize the performance
of MPI routines based on the message sizes. Section §5 reports on our experi-
ence with message communication characterization of the NPB LU benchmark.
We have also applied performance mapping to memory usage characterization.
Brief discussion is given to workload characterization of memory consumption.
Section §6 concludes the paper and we discuss future work in this section.

2 Related Work

Workload characterization is a rich area in performance evaluation research. Our
specific interest is in workload characterization for high-performance computing.
There are two projects of related interest to our work.

The OpenWLC [2] system is a scalable, integrated environment for system-
atically collecting the monitored data and applying workload characterization
techniques to raw data produced by monitoring application programs. Open-
WLC’s framework employs a component-based, multi-tier, architecture to cope
with large amounts of monitored data during collection, storage, visualization
and analysis stages.

IPM [3] is an integrated performance monitoring system developed at the
Lawrence Berkeley Laboratory (LBL) for use at the National Energy Research
Supercomputing Center (NERSC). IPM is in active use for application perfor-
mance analysis and workload characterization. Specific to our interests, IPM
can characterize the application performance based on message sizes. It uses li-
brary preloading mechanisms for instrumenting an application under Linux and
on other platforms where preloading of shared libraries is available. The perfor-
mance data is stored in a performance data repository which can be queried for
application characteristics based on a number of parameters such as execution



Fig. 1. Message Size Characterization Instrumentation

date and MPI performance data. LBL has implemented a web-based interface
for this purpose.

Certainly, other application performance measurement tools can be applied
to workload characterization. However, the ability to store multi-experiment
performance data, including metadata about compiler and system parameters,
is important criteria for workload characterization support. PerfSuite [4] is a per-
formance toolkit that builds a performance data repository based on execution
time and hardware performance counters [5] to characterize the performance of
an application and the system. TAU can work with PerfSuite and other tools to
integrate performance results across applications and platforms.

3 Workload Characterization and Performance Mapping

Workload characterization analyzes the effects of application execution in a sys-
tem context. Application measurements could be made of total performance,
such as total execution time, but finer granularity measurements can better
identify workload effects specific to program properties. However, certain prop-
erties require a measurement system that can observe execution parameters and
characterize application performance based on unique parameters instances. The
general concept is one of peformance mapping, wherein an association can be
established between low-level performance data and high-level measurement ab-
stractions, specialized by program semantics. The TAU performance system is
able to support performance mapping for workload characterization.

TAU[1] is an integrated, configurable, and portable profiling and tracing
toolkit. It provides support for portable instrumentation, measurement, and



Fig. 2. MPI (SGI vs. Intel) Message Characterization

analysis. Instrumentation calls can be inserted in TAU at the source level, the
library level, the binary code level, and even in a virtual machine. Unique in
the TAU performance system is an instrumentation API for performance map-
ping. It uses the SEAA model [6] of mapping that provides support for both
embedded and external associations. External associations use an external map
(implemented as a hash table) to access performance data using a user speci-
fied key. The performance data is collected for interval events or atomic events
that are triggered at a certain place in the program code. Performance map-
ping is a powerful concept and technology. It has been used in TAU for callpath
profiling [1] and phase profiling [7]. Context events that map atomic events to
the currently executing application callstack, are also implemented using TAU’s
mapping capabilities. Here we apply performance mapping to MPI communica-
tion characterization.

TAU’s MPI wrapper interposition library helps us track the time spent in
each MPI call. It defines a separate name-shifted MPI interface for each MPI
routine that can be used to invoke timer calls at routine entry and exit. This
mechanism can also be used to access arguments that flow through the MPI
routines. Hence, measurement code could be created to track the sizes of mes-



sages for each MPI call. We have followed this approach using TAU’s mapping
technology to implement a two-level map of the MPI call ID and the size of
the message buffer used in the call. With this data, we can determine if a given
message buffer size and call have occured in the past. If not, a new performance
structure is created with a name that embeds the MPI call ID and buffer size.
At the end of the application, we obtain the performance in each invoked MPI
call for each message size used.

In general, TAU can take any routine parameter and create a performance
mapping. The measurement library implements routines for different parame-
ter types, such as TAU PROFILE PARAM1L(value, "name"). The following code
segment shows how this is used:

void foo(int input) {
TAU_PROFILE("foo", "", TAU_DEFAULT);
TAU_PROFILE_PARAM1L(input, "input");
...

}

When the measurement library is configured with -PROFILEPARAM, the parame-
ter mapping API is enabled.

Figure 1 shows a simple program for message communication of different
sizes. Figure 2 shows profile output characterizing communication performance
for different MPI libraries, SGI and Intel. With such information, we can ob-
tain a better understanding of workload effects. Also shown is the experiment
compilation and run commands.

4 Performance Experimentation

Performance experimentation and results management are important compo-
nents for any workload characterization system. The use of the TAU perfor-
mance system involves the coordination of several steps: instrumentation selec-
tion, measurement configuration, compilation and linking with the application,
application execution and generation of performance data on the target plat-
form, and performance data storage for analysis. We describe the sequence of
these steps as a performance experiment. We use the term experiment generally
to denote a specific choice of instrumentation and measurement for a specific
application code, but what this means exactly should be left to the user. We
define the term trial to mean an instance of an experiment. A trial might either
repeat an experiment run (e.g., to determine performance variation) or mod-
ify an experiment run parameter (e.g., number of processors), which would not
represent such a significant change as to constitute a new experiment.

The performance data gathered from executing the application is stored in
TAU’s performance database, PerfDMF [8] which is then queried by the Para-
Prof profile browser and other analysis tools such as PerfExplorer [9] for per-
formance data mining operations. The performance data stored in PerDMF is
multi-variate and multi-dimensional, both within single trials and experiments as



Fig. 3. Profile of LU Benchmark on SGI Altix

well as across experiments, applications, and platforms. PerfExplorer is a frame-
work for parallel performance data mining and knowledge discovery – finding
out new performance facts and relationships as the outcome of searching and
analyzing the stored performance data.

5 Workload Characterization Experiments

To demonstrate TAU’s mapping support for workload characterization, the NAS
parallel benchmark LU is used as a testcase. Specifically, we are interested in
understanding how this MPI benchmark behaves respective of its message com-
munication. TAU’s message size mapping was enabled and experiments were
run on a SGI Altix platform. We also can capture memory usage statistics using
mapping technologies.

5.1 MPI Message Size Characterization

Each performance experiment ran captured execution time performance for the
LU routines. For the MPI routines, execution time performance was broken
down based on message size. Figure 3 shows an example (flat) parallel profile for
one process of a 16-process LU exectuion. Seen are the times spent in routines
in decreasing order. Most of the time is spent in computation, but message
communication is also significant. The communication event IDs encode the size
of the message in the names. The majority of the MPI Recv time was spent
receiving messages with 4040 bytes.



Fig. 4. Message Size Characterization for LU Benchmark

Further analysis of the message characterization shows the distribution of
each MPI operation across the message size used for that operation. Figure 4
highlights the inclusive time of MPI Send and the number of calls for one LU
process. Here is it seen that relatively large number of small messages were sent,
accounting for approximately 37% of MPI Send’s total time.

5.2 LU Memory Usage Characterization

TAU performance mapping can also be used to characterize memory usage. This
can show how memory is allocated, in what size chunks, and the amount of free
space available. Figures 5 displays the heap memory utlization for LU on four
processes.

6 Conclusion

In the process of workload characterization for high performance parallel sys-
tems, it is important to have portable and configurable tools that can target the
different performance features and experiments of interest. Presently, the TAU
performance system has such capabilities for steps in this process, from common
event instrumentation, profile and trace measurements, and data analysis to
meet workload characterization objectives. A novel feature of TAU is its perfor-
mance mapping technology. The presentation above demonstrates how mapping
can be used to characterize message communication and memory usage.



Fig. 5. Memory Consumption Tracking for LU Benchmark

Our objectives in the future include better support for experiment automa-
tion and knowledge discovery for workload characterization. We are also working
to integrate our tools with IPM.

7 Acknowledgments

Research at the University of Oregon is sponsored by contracts (DE-FG02-
05ER25663, DE-FG02-05ER25680) from the MICS program of the U.S. Dept.
of Energy, Office of Science.

References

1. S. Shende and A. D. Malony, ”The TAU Parallel Performance System,” Interna-
tional Journal of High Performance Computing Applications, SAGE Publications,
20(2), pp. 287–331, Summer 2006.

2. H. Ong, R Subramaniyan, C. Leangsuksun, and S. Studham, “OpenWLC: A
Scalable Workload Characterization System,” High Availability and Performance
Workshop, in conjunction with Sixth LACSI Symposium, Oct. 11-13, 2005. http:
//xcr.cenit.latech.edu/wlc/index.php?title=PUBLICATIONS

3. J. Borrill, J. Carter, L. Oliker, D. Skinner, R. Biswas, “Integrated Performance
Monitoring of a Cosmology Application on Leading HEC Platforms,” In Proc. of
International Conference on Parallel Processing (ICPP 2005), pp. 119–128, IEEE,
2005.

4. R. Kufrin, “PerfSuite: An Accessible, Open Source Performance Analysis Envi-
ronment for Linux,” In Proceedings of the 6th International Conference on Linux
Clusters: The HPC Revolution 2005 (LCI-05), 2005.

5. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable Program-
ming Interface for Performance Evaluation on Modern Processors,” International
Journal of High Performance Computing Applications, 14(3):189–204, Fall 2000.

6. S. Shende, “The Role of Instrumentation and Mapping in Performance Measure-
ment,” Ph.D. Dissertation, University of Oregon, August 2001.



7. A. D. Malony, S. Shende, and A. Morris, “Phase-Based Parallel Performance Pro-
filing,” In Proceedings of the PARCO 2005 conference, 2005.

8. K. A. Huck, A. D. Malony, R. Bell, and A. Morris, “Design and Implementation
of a Parallel Performance Data Management Framework,” In Proceedings of Inter-
national Conference on Parallel Processing (ICPP 2005), IEEE Computer Society,
2005.

9. K. A. Huck, and A. D. Malony, “PerfExplorer: A Performance Data Mining Frame-
work for Large-Scale Parallel Computing,” In Proceedings of SC 2005 conference,
ACM, 2005.


