Building Your Own Performance Tools

Sameer Shende

Department of Computer and Information Science,
University of Oregon
sameer @cs.uoregon.edu
http://www.cs.uoregon.edu/research/paracomp/tau

Motivation

To discuss issues in instrumentation,
measurement, analysis that highlight the
choices available for building new tools
for evaluating the performance of appli-
cations.

Outline

Introduction to performance evaluation

Instrumentation techniques

Measurement techniques

[Profiling

[1 Tracing, synchronization issues

Analysis techniques

[J Visualization of performance data

Problems

Conclusions

Introduction

[1 Understanding the behavior of parallel programs

[J Performance profiling: What is the relative

contribution of routines?
Tracing: When do events take place?
Bottleneck detection: Where do bottlenecks lie?

Debugging: How can | correct the problem?

Understanding Application Performance

[0 instrumentation or modification of the program to

generate performance data

[measurement of interesting aspects of execution

[analysis of the performance data.

Instrumentation

[What is an event?

[0 When does an event get triggered?

[0 How do we add instrumentation to the program?

When does an event get triggered?

[0 When some point is reached during an execution
[J breakpoint/watchpoint
[1 synchronization operation
[routine entry/exit
[0 When some internal condition is satisfied
[Interrupt (time/counts) for sampling
[0 When some external condition is satisfied

[1 signal by debugger/user

When iIs instrumentation added?

Language
specific

TAU (UO,LANL,FZJ),,

Source code JEWEL (GMD, MSU)

preprocessal_ _ _ TAU/PDT (UO,LANL,FZJ),
AIMS (NAA),
SvPablo (UIUC)

Source code

gprof (GNU)

Object code

Libraries

%

Platform
specific

VampirTrace (Pallas),
PICL (ORNL)

Atom (Compag/DEC)
pixie (SGI)

_ _ _Paradyne/Dyninst (U. Wsc.
U. Maryland)

Virtual Maching~ — — ~ TAU, PerfAnal, Java Worksnhop

Instrumentation Approaches

Manual source code instrumentation

[1 Recompile the application

[Instrumentation API

Preprocessor

[1 Source -to- source transformation

[1 Requires a parser for each language
Compiler

[1 Access to code mappings

Library level instrumentation

[Interposition libraries: wrappers & callbacks
Binary Instrumentation

[J Binary rewriting

[J Runtime instrumentation

Virtual Machine instrumentation

Instrumentation

1 Which is the best instrumentation approach?

[Is a combination better in some cases?

O Simplicity vs. Flexibility?

Multi-Level Instrumentation : Example

[0 Multi-language applications (Java, C++, C, Fortran)

[0 Hybrid execution models (Java threads, MPI)

0 JNI/native Java implementations of MPI Java Interface
[1 Java Virtual Machine Profiler Interface (JVMPI)
[1 Java Native Interface (JNI)

[0 MPI Profiling Interlace

Java Virtual Mac hine Pr ofiler Interface
(JVMPI)

Profiling Hooks into the Virtual Machine
In-process profiling agent instruments Java application

No changes to the Java source code, bytecode, or the

executable code of the JVM
Two-way call interface

Profiler agent is a shared object (libTAU.so) loaded at

runtime
Agent registers events to the JVMPI
JVMPI notifies events to the agent at runtime

Agent uses JNI to invoke JVMPI control routines

JVMPI Events

Method transition events triggered at method entry and
exits

Memory events triggered when an object is allocated,
moved, or deleted

Heap arena events triggered when an arena is created
or destroyed

Garbage collection start and finish events

Loading and unloading in memory events for classes
and compiled methods

JNI global and weak global reference allocation and
deallocation events

Monitor events for contended Java and raw monitors
triggered when a thread attempts to enter, actually
enters, or exits a monitor that is accessed by more than
one thread

Monitor wait events triggered when a thread is about to
wait or finishes waiting on an object

Thread start and end events when a thread starts or
stops executing in the virtual machine

Events that request a dump or resetting of the profiling
data gathered by the in-process profiling agent

Virtual machine initialization and shutdown events

Agent JVMPI interaction

create a daemon thread in the virtual machine
enable or disable the notification of an event

enable, disable or force a garbage collection in the
virtual machine

obtain information regarding the current method call
stack trace for a given thread

obtain the accumulated CPU time consumed by the
current thread

obtain information about the object where a method
took place

get or set a pointer-sized thread-local storage data
structure that can be used to record per-thread profiling
data

create or destroy a raw monitor. Raw monitors are not
associated with Java objects and can be used by the
profiler agent to maintain consistency of multi-threaded
profiling data

enter, exit or wait on a raw monitor for mutual exclusion.
It can also notify all threads that are waiting on a raw
monitor or specify a time-out period while waiting

resume or suspend a thread

exit the virtual machine

Integration of Multi-Level
Instrumentation APIs

Java Program

TAU package mpiJava package
thread API MPI Profiling
Interface

event
notification

TAU wrapper

JVMPI Native MPI library

profile DB

[0 Common TAU database for multiple sources

Outline

Introduction to performance evaluation

Instrumentation techniques

Measurement techniques

[Profiling

[1 Tracing, synchronization issues

Analysis techniques

[J Visualization of performance data

Problems

Conclusions

Measurement : Pr ofiling

shows summary statistics of performance metrics

[CPU time spent in a routine

[1 no. of secondary data cache misses for a statement

[J number of profiled routines invoked by a routine...

presented as sorted lists showing contrib ution of

routines

implemented by sampling or measured process

timing

Profiling T echniques

sampling (PC/Callstack)

[time based (hardware interval timer)

prof, gprof (G\U)
hardware performance counters based (after n

instructions, data cache misses...)

SpeedShop (SA), PCL(FZJ), PAPI (UTK)

Estimates profile, o overhead

measured process timing
[1 routine entry/exit

TAU (U. Oregon, LANL, FZJ)

Accurate, werhead depends on frequgrad invocation

Example of Pr ofiling using T AU

[pprof sorts lists of performance metrics

SEEHE

pyros [~/mc++]% pprof
Eeading Profile files in profile.™

HODE O; CONTEXT 0O; THRERD O:

Exclusiwve Inclusive Inclusive
total msec usec/call

13 1099481722 main int {(int, char**)
2 1066206082 transport code
394442 1066200002 mc_kcode woid (HeutronParti?

0 3915 mc_kcode particle updates
43810 485452 7712 dist_to_ewent wvoid (Cartesi?
43810 6065 particle_xsec_mg wvoid (HNeut?
43810 4888 dist_to_boundary woid {(Cart?
43810 855 new_cell woid (NeutronParti?
43810 0 529 escape woid (NDIndex<3U>, N?
45810 A58 mg _ince oqd [onFPa ied

-1 = s O D = B D O

|-m|-t|-e|-i|-v] [-r] [-s] [-n num] [- ilename] [-1] [node numbers]

-c o according to number of Calls |
-b according to number of suBroutines called by a function
-m : according to Milliseconds {exclusive time total)
-t according to Total milliseconds {inclusive time total) {default)
-a according to Exclusive time per call {msec/call)
-i : according to Inclusiwve time per call {total msec/call)
-v according to Standard Dewiation {excl usec)
-r : Reverse sorting order
-5 ! print only Summary profile information
-n <num> : print only first <num> number of functions

-f filename : specify full path and Filename without node ids

-1 : List all functions and exit

[node numbers prints only info about all contexts/threads of given node numbers
pyros [~/mc++]

l

Example: T AU Profiling P ackage

[RACY

Hile Configure

Field::fillGuardCells() TecField<bool, 3U, UniformCartesian<3U, double>, Cell> v¢
Field::fillGuardCells() TecField<bool, 3U, UniformCartesian<3U, double>, Vert> v
Field::fillGuardCells() TecField<double, 3U, UniformCartesian<3U, double>, Vert:
GuardCellSizes::GuardCellSizes() GuardCellSizes<3U> void (unsigned)
Index::general_intersect() Index (Index)

=
=
| |
|
Ll
\:\ Inform::Inform() void (char *, char *, WriteMode, int)
Ll
=
Ll
=
=

Functions

Inform::display_single_line void (char *)

LField::ReallyCanCompress() LField<SymTenzor<double, 3U>, 3U> bool (SymTe
LField::ReallyCanCompress() LField<Vektor<double, 3U>, 3U> bool (Vektor<dou
LField::ReallyCanCompress() LField<double, 3Ux bool (double)
LField::ReallvUncombressii LField«SvmTenzor«double. 3U>. 3U> void

close

msec total msec #subrs usec/call name

1,373 4. 363783 7 fillbuardbells-send TecPieldddeuble, 3U, UniformCartesiancdU, doubles, Verd
3 175967 fillGuardCells-receive TecField<double, 3U, UniformCartesian<3U, double>, 1
0

0
1, 128010
1 28262

0
103144
1. 141175 169465

Value Mode Help

Field::fillGuardCells() TecField<double, 3U, UniformCartesian<3U, double>, ¥V

28.86% _ mean ﬁﬁm
27.15% [n,c.1 0,00 fle Yalue Qrder Mode =
2925% s nct 100 0,00 &
20.44% S .1 200 "licuar

|
o, 584% [fillGuardCells-send TecField<double, 3U, UniformCartesian<3U
22975853{;0= :’i’: 338 463%[| fillGuardCells-receive TecField<double, 3U, UniformCartesian<
20.08% [n:c:t 5'0:0 4.12% =] Communicate::unpack_message() Message* (int, int, void*)
29.31% [n.c.16,0,0 361% [| DomainMap::iterator::op_pp() DomainMap<NDIndex<3U>, RefCol
29.24%, [n.c. 7,0,0 348%[| fillGuardCells-findreceive TecField<double, 3U, UniformCartesi
e 3.46% | Message::~Message() void (void)

2.75% [[] Communicate::fill_msg_buffer() void (void *, Message, int)
_l\U ge() Compr dBricklteratc

close

Tracing

[0 tracing highlights the temporal aspect of
performance variations, showing when and where in

the code performance is achieved

logging events (routine transitions/messages/user-detf.)
event identifier
timestamp when the event occurred
where it occurred (node, context, thread ids)
optional field of event specific information

plus, event headers (event characteristics)

Architecture of TAU

Tuning and Analysis Utilities

Source - Instsrumented %bjgct E b Stage I:
Code re- ource ode xecutable .
processor Code Compiler Linker Code Instrumentation

Operating
System

Wrapper Virtual
‘ Libraries Machine
Alternative
Instrumentation

Run to
Modes

Generate Data
Profile Trace Run-Time
-l Run-Time Library Modules Data

obesfig MEE S
ata 'es Profile Function Statistics vent Table
Groups Database

Function Hardware User-level
Run-Time Callstack Counters Timers
Measurement

AscClIl Post-process: . Stage lll:
Racy %- Report erge &

Performance
q - " Convert Analysis
Visualization

Stage ll:

svtrace.pv: Global Timelins || PVi Summaric Charc (0.0s-2
95+ 53

THREAD=STGQUIT handlors THREAD GROUP=systom
java/lana/Object wait!

s ey , java/lang/Obiect waic!
61005 protie B

lava/isng/obiect waiy
He vawe orer wode

Javalleny 0b]ect wait
net00s

wio/DatalnputStream readint 01
createMen (L
wio/DatalnputStream readFloat (F
sun‘awvmotit/X11Graphics X11LockViewResources (Lt
svikemal TimeData2D makeVariex (ZIF)V

««kvnpcnnfnﬂ
eanager

o 0000 canvass

B St commmagorsare | e 0OOOO:::::s

] Solsendor broadcasramezo 0V $

: ;
s |

5 Confiquration
] Colisender sv
= Cotabttanager dnis (Lsvsenverav 1 | veerver
(Lsv: 3 n.c100;
+ 2

. : :] o 0 0 0 .)),1 va

Byt

15 16 17 16 19 Tlteiuendler
Cnl\nbManag:v gelPortve DL javaiunirVe

= TiREAD

Example

[Tracing: Visualization in Vampir [http://www.pallas.de]
% prunjava 4 Life
%tau nerge tautrace*.trc Life.trc

% tau _convert -vanpir Life.trc tau. edf
Li fe.pv

% vanpir Life.pv

3.415s .42 s
LRl M THREAD=JYM- MainThrear!; THREAD GROUP=system ETHREAD
g LIS INTHREAD=S1GOUIT handler. =
e Process 2 javaflang/Obj it o HlLife
Process 3 i
Process 4
Process 5

Process 6

mpi
EMPI

Process 3
Process 4
Process 5
Process 6

Process 3
Process 4
Process 5
Process 6

Process 5
Process 6

Analysis of Performance Data

[Pablo (U. lllinois, Urbana)

[1 User-directed analysis using performance data

transformation modules that are interconnected

[http://lwww-pablo.cs.uiuc.edu/

[Vampir (FZJ, Pallas GmbH)

(1 Commercial trace visualization tool

[http://www.pallas.de

[0 ParaGraph (NCSA, UIUC)

[1 Rich set of visualizations, extensible

[http://www.ncsa.uiuc.edu/

Problems...

how do we profile/trace in the presence of

[1 optimizations (PETE/C++, ZPL)

[1 code transformations (Opus/HPF, Fortran-D)?

how can we compensate for the perturbation caused by

the instrumentation?

how can we map performance data between layers?

how can we produce meaningful visualizations that can

scale to thousands of processors?

how can we show performance data at a level of

abstraction that the user understands?

Conclusions

[1 Effective choices

[1 instrumentation

[] measurement

[1 analysis

[J Bridging the “semantic-gap”

[1 Problems and constraints

Unless tools can present performance
data in vays that are meaningful to t
user and are consistent with the use
mental model of abstractions, their

success will be limited.

