
Building Your Own Performance Tools

Sameer Shende

Department of Computer and Information Science,

University of Oregon

sameer@cs.uoregon.edu

http://www.cs.uoregon.edu/research/paracomp/tau

Motivation

To discuss issues in instrumentation,
measurement, analysis that highlight the
choices available for building new tools
for evaluating the performance of appli-
cations.

Outline

❑ Introduction to performance evaluation

❑ Instrumentation techniques

❑ Measurement techniques

❍ Profiling

❍ Tracing, synchronization issues

❑ Analysis techniques

❍ Visualization of performance data

❑ Problems

❑ Conclusions

Introduction

❑ Understanding the behavior of parallel programs

❍ Performance profiling: What is the relative

contribution of routines?

❍ Tracing: When do events take place?

❍ Bottleneck detection: Where do bottlenecks lie?

❍ Debugging: How can I correct the problem?

Understanding Application Performance

❑ instrumentation or modification of the program to

generate performance data

❑ measurement of interesting aspects of execution

❑ analysis of the performance data.

Instrumentation

❑ What is an event?

❑ When does an event get triggered?

❑ How do we add instrumentation to the program?

When does an event get triggered?

❑ When some point is reached during an execution

❍ breakpoint/watchpoint

❍ synchronization operation

❍ routine entry/exit

❑ When some internal condition is satisfied

❍ Interrupt (time/counts) for sampling

❑ When some external condition is satisfied

❍ signal by debugger/user

When is instrumentation added?

Source code

preprocessor

Source code

Compiler

Object code

Linker

Executable

Execution

TAU/PDT (UO,LANL,FZJ),
AIMS (NASA),

Libraries

TAU (UO,LANL,FZJ),,

gprof (GNU)

VampirTrace (Pallas),

Atom (Compaq/DEC)

Paradyne/DynInst (U. Wisc.
Platform

JEWEL (GMD, MSU)
Language
specific

specific

 SvPablo (UIUC)

PICL (ORNL)

pixie (SGI)

U. Maryland)

Virtual Machine TAU, PerfAnal, Java Workshop

Instrumentation Approaches

❑ Manual source code instrumentation

❍ Recompile the application

❍ Instrumentation API

❑ Preprocessor

❍ Source -to- source transformation

❍ Requires a parser for each language

❑ Compiler

❍ Access to code mappings

❑ Library level instrumentation

❍ Interposition libraries: wrappers & callbacks

❑ Binary Instrumentation

❍ Binary rewriting

❍ Runtime instrumentation

❑ Virtual Machine instrumentation

Instrumentation

❑ Which is the best instrumentation approach?

❑ Is a combination better in some cases?

❑ Simplicity vs. Flexibility?

Multi-Level Instrumentation : Example

❑ Multi-language applications (Java, C++, C, Fortran)

❑ Hybrid execution models (Java threads, MPI)

❑ JNI/native Java implementations of MPI Java Interface

❍ Java Virtual Machine Profiler Interface (JVMPI)

❍ Java Native Interface (JNI)

❍ MPI Profiling Interlace

Java Vir tual Mac hine Pr ofiler Interface
(JVMPI)

❑ Profiling Hooks into the Virtual Machine

❑ In-process profiling agent instruments Java application

❑ No changes to the Java source code, bytecode, or the

executable code of the JVM

❑ Two-way call interface

❑ Profiler agent is a shared object (libTAU.so) loaded at

runtime

❑ Agent registers events to the JVMPI

❑ JVMPI notifies events to the agent at runtime

❑ Agent uses JNI to invoke JVMPI control routines

JVMPI Events

❑ Method transition events triggered at method entry and
exits

❑ Memory events triggered when an object is allocated,
moved, or deleted

❑ Heap arena events triggered when an arena is created
or destroyed

❑ Garbage collection start and finish events

❑ Loading and unloading in memory events for classes
and compiled methods

❑ JNI global and weak global reference allocation and
deallocation events

❑ Monitor events for contended Java and raw monitors
triggered when a thread attempts to enter, actually
enters, or exits a monitor that is accessed by more than
one thread

❑ Monitor wait events triggered when a thread is about to
wait or finishes waiting on an object

❑ Thread start and end events when a thread starts or
stops executing in the virtual machine

❑ Events that request a dump or resetting of the profiling
data gathered by the in-process profiling agent

❑ Virtual machine initialization and shutdown events

Agent JVMPI interaction

❑ create a daemon thread in the virtual machine

❑ enable or disable the notification of an event

❑ enable, disable or force a garbage collection in the
virtual machine

❑ obtain information regarding the current method call
stack trace for a given thread

❑ obtain the accumulated CPU time consumed by the
current thread

❑ obtain information about the object where a method
took place

❑ get or set a pointer-sized thread-local storage data
structure that can be used to record per-thread profiling
data

❑ create or destroy a raw monitor. Raw monitors are not
associated with Java objects and can be used by the
profiler agent to maintain consistency of multi-threaded
profiling data

❑ enter, exit or wait on a raw monitor for mutual exclusion.
It can also notify all threads that are waiting on a raw
monitor or specify a time-out period while waiting

❑ resume or suspend a thread

❑ exit the virtual machine

Integration of Multi-Level
Instrumentation APIs

❑ Common TAU database for multiple sources

Java ProgramJVM

JVMPI

mpiJava package

JNI

TAU wrapper

Native MPI library

 thread API

profile DB

TAU package

TAU

event
notification

MPI Profiling
Interface

Outline

❑ Introduction to performance evaluation

❑ Instrumentation techniques

❑ Measurement techniques

❍ Profiling

❍ Tracing, synchronization issues

❑ Analysis techniques

❍ Visualization of performance data

❑ Problems

❑ Conclusions

Measurement : Pr ofiling

❑ shows summary statistics of performance metrics

❍ CPU time spent in a routine

❍ no. of secondary data cache misses for a statement

❍ number of profiled routines invoked by a routine...

❑ presented as sorted lists showing contrib ution of

routines

❑ implemented by sampling or measured process

timing

Profiling T echniques

❑ sampling (PC/Callstack)

❍ time based (hardware interval timer)

prof, gprof (GNU)

❍ hardware performance counters based (after n

instructions, data cache misses...)

SpeedShop (SGI), PCL(FZJ), PAPI (UTK)

➠ Estimates profile, low overhead

❑ measured process timing

❍ routine entry/exit

TAU (U. Oregon, LANL, FZJ)

➠ Accurate, overhead depends on frequency of invocation

Example of Pr ofiling using T AU

❑ pprof sorts lists of performance metrics

Example: T AU Profiling P ackage

❑ RACY

Tracing

❑ tracing highlights the temporal aspect of

performance variations, showing when and where in

the code performance is achieved

❑ logging events (routine transitions/messages/user-def.)

❍ event identifier

❍ timestamp when the event occurred

❍ where it occurred (node, context, thread ids)

❍ optional field of event specific information

❍ plus, event headers (event characteristics)

Architecture of TAU

Example

❑ Tracing: Visualization in Vampir [http://www.pallas.de]

% prunjava 4 Life

% tau_merge tautrace*.trc Life.trc

% tau_convert -vampir Life.trc tau.edf
Life.pv

% vampir Life.pv

Analysis of Performance Data

❑ Pablo (U. Illinois, Urbana)

❍ User-directed analysis using performance data

transformation modules that are interconnected

❍ http://www-pablo.cs.uiuc.edu/

❑ Vampir (FZJ, Pallas GmbH)

❍ Commercial trace visualization tool

❍ http://www.pallas.de

❑ ParaGraph (NCSA, UIUC)

❍ Rich set of visualizations, extensible

❍ http://www.ncsa.uiuc.edu/

Problems...

❑ how do we profile/trace in the presence of

❍ optimizations (PETE/C++, ZPL)

❍ code transformations (Opus/HPF, Fortran-D)?

❑ how can we compensate for the perturbation caused by

the instrumentation?

❑ how can we map performance data between layers?

❑ how can we produce meaningful visualizations that can

scale to thousands of processors?

❑ how can we show performance data at a level of

abstraction that the user understands?

Conclusions

❑ Effective choices

❍ instrumentation

❍ measurement

❍ analysis

❑ Bridging the “semantic-gap”

❑ Problems and constraints

Unless tools can present performance
data in ways that are meaningful to the
user, and are consistent with the user’s
mental model of abstractions, their
success will be limited.

