
 Allen D. Malony, Sameer Shende

 {malony,sameer}@cs.uoregon.edu

Department of Computer and
Information Science

University of Oregon

Performance Technology for
Complex Parallel Systems

Bernd Mohr

b.mohr@fz-juelich.de

Forschungszentrum Jülich

John von Neumann - Institut für Computing

Zentralinstitut für Angewandte Mathematik

Nov. 7, 2001 SC’01 Tutorial

Tutorial Outline – Part 1

Overview and Introduction (Malony, 1 hour)
r Introduction

¦ Performance technology

¦ Complexity challenges and general problems

r Computation Model for Performance Technology
¦ Framework for performance problem solving

r TAU Performance System
¦ Model-oriented framework architecture

¦ TAU performance system toolkit

¦ TAU measurement API and library configuration

¦ Performance mapping

Nov. 7, 2001 SC’01 Tutorial

Tutorial Outline – Part 2

Complexity Scenarios (Shende, 1 hour)
r Message passing computation

r Multi-threaded computation

r Mixed-mode parallel computation
¦ OpenMP+MPI

¦ Java+MPI

r Object-oriented programming and C++

r Hierarchical parallel software frameworks
¦ Task-based parallelism

¦ Module coupling

r Evolution of the TAU performance system

Nov. 7, 2001 SC’01 Tutorial

Tutorial Outline – Part 3

Alternative Tools and Frameworks (Mohr, 1 hour)
r Commercial solutions

¦ Vampir

¦ Guideview

¦ VGV

r Smart event trace analysis
¦ KOJAK/EXPERT

r OpenMP performance interface (OPARI)

r APART European Commission IST working group

r Parallel performance tool integration
¦ Integration of TAU and EXPERT

Nov. 7, 2001 SC’01 Tutorial

Tutorial Goals

r Develop an appreciation for performance problem
solving in complex computational environments

r Learn about the TAU performance system: measurement
API, configuration, and analysis tools

r Understand how TAU is applied in complex parallel
computation scenarios

r Learn about other tools and frameworks for performance
analysis in complex parallel systems

r Consider how TAU and other tools may be applied to
performance problems of tutorial participants and
provide opportunity for follow-on interaction

Performance Technology for
Complex Parallel Systems

Part 1 – Overview and TAU Introduction

Allen D. Malony

Nov. 7, 2001 SC’01 Tutorial

Performance Needs ∅∅ Performance Technology

r Observe/analyze/understand performance behavior
¦ Multiple levels of software and hardware

¦ Different types and detail of performance data

¦ Alternative performance problem solving methods

¦ Multiple targets of software and system application

r Robust AND ubiquitous performance technology
¦ Broad scope of performance observability

¦ Flexible and configurable mechanisms

¦ Technology integration and extension

¦ Cross-platform portability

¦ Open, layered, and modular framework architecture

Nov. 7, 2001 SC’01 Tutorial

Parallel Performance Technology

r Performance instrumentation tools
¦ Different program code levels

¦ Different system levels

r Performance measurement tools
¦ Profiling and tracing of SW/HW performance events

¦ Different SW and HW levels

r Performance analysis tools
¦ Performance data analysis and presentation

¦ Online and offline tools

r Performance experimentation

r Performance modeling and prediction tools

Nov. 7, 2001 SC’01 Tutorial

Complex Parallel Systems

r Complexity in computing system architecture
¦ Diverse parallel system architectures

ØShared / distributed memory, cluster, hybrid, NOW, …

¦ Sophisticated processor and memory architectures

¦ Advanced network interface and switching architecture

r Complexity in parallel software environment
¦ Diverse parallel programming paradigms
ØShared memory multi-threading, message passing, hybrid

¦ Hierarchical, multi-level software architectures

¦ Optimizing compilers and sophisticated runtime systems

¦ Advanced numerical libraries and application frameworks

Nov. 7, 2001 SC’01 Tutorial

Complexity Challenges

r Computing system environment complexity
¦ Observation integration and optimization

¦ Access, accuracy, and granularity constraints

¦ Diverse/specialized observation capabilities/technology

¦ Restricted modes limit performance problem solving

r Sophisticated software development environments
¦ Programming paradigms and performance models

¦ Performance data mapping to software abstractions

¦ Uniformity of performance abstraction across platforms

¦ Rich observation capabilities and flexible configuration

¦ Common performance problem solving methods

Nov. 7, 2001 SC’01 Tutorial

General Problems

How do we create robust and ubiquitous
performance technology for the analysis and tuning
of parallel and distributed software and systems in
the presence of (evolving) complexity challenges?

How do we apply performance technology effectively
for the variety and diversity of performance

problems that arise in the context of complex
parallel and distributed computer systems.

Nov. 7, 2001 SC’01 Tutorial

Computation Model for Performance Technology

r How to address dual performance technology goals?
¦ Robust capabilities + widely available methodologies

¦ Contend with problems of system diversity

¦ Flexible tool composition/configuration/integration

r Approaches
¦ Restrict computation types / performance problems
Ø limited performance technology coverage

¦ Base technology on abstract computation model
Ø general architecture and software execution features

Ømap features/methods to existing complex system types

Ø develop capabilities that can adapt and be optimized

Nov. 7, 2001 SC’01 Tutorial

General Complex System Computation Model

r Node: physically distinct shared memory machine
¦ Message passing node interconnection network

r Context: distinct virtual memory space within node

r Thread: execution threads (user/system) in context

memory

�

memory

�

Node Node Node

VM
space

Context

SMP

Threads

node memory

≤
…

…

Interconnection Network Inter-node message
communication

*

*

physical
view

model
view

Nov. 7, 2001 SC’01 Tutorial

Framework for Performance Problem Solving

r Model-based composition
¦ Instrumentation / measurement / execution models

Ø performance observability constraints

Ø performance data types and events

¦ Analysis / presentation model
Ø performance data processing

Ø performance views and model mapping

¦ Integration model
Ø performance tool component configuration / integration

r Can performance problem solving framework be
designed based on general complex system model?

Nov. 7, 2001 SC’01 Tutorial

Definitions – Profiling

r Profiling
¦ Recording of summary information during execution

Ø execution time, # calls, hardware statistics, …

¦ Reflects performance behavior of program entities
Ø functions, loops, basic blocks

Ø user-defined “semantic” entities

¦ Very good for low-cost performance assessment

¦ Helps to expose performance bottlenecks and hotspots

¦ Implemented through
Ø sampling: periodic OS interrupts or hardware counter traps

Ø instrumentation: direct insertion of measurement code

Nov. 7, 2001 SC’01 Tutorial

Definitions – Tracing

r Tracing
¦ Recording of information about significant points (events)

during program execution
Ø entering/exiting code region (function, loop, block, …)

Ø thread/process interactions (e.g., send/receive message)

¦ Save information in event record
Ø timestamp

ØCPU identifier, thread identifier

ØEvent type and event-specific information

¦ Event trace is a time-sequenced stream of event records

¦ Can be used to reconstruct dynamic program behavior

¦ Typically requires code instrumentation

Nov. 7, 2001 SC’01 Tutorial

Definitions – Instrumentation

r Instrumentation
¦ Insertion of extra code (hooks) into program

¦ Source instrumentation
ØDone by compiler, source-to-source translator, or manually

+ portable

+ links back to program code

– re-compile is necessary for (change in) instrumentation

– requires source to be available

– hard to use in standard way for mix-language programs

– source-to-source translators hard to develop for C++, F90

¦ Object code instrumentation
Ø “re-writing” the executable to insert hooks

Nov. 7, 2001 SC’01 Tutorial

Definitions – Instrumentation (continued)

¦ Dynamic code instrumentation
Ø a debugger-like instrumentation approach

Ø executable code instrumentation on running program

ØDynInst and DPCL are examples

+/– switch around compared to source instrumentation

¦ Pre-instrumented library
Ø typically used for MPI and PVM program analysis

Ø supported by link-time library interposition

+ easy to use since only re-linking is necessary

– can only record information about library entities

Nov. 7, 2001 SC’01 Tutorial

Event Tracing: Instrumentation, Monitor, Trace

1 master

2 slave

3 ...

void slave {
 trace(ENTER, 2);
 ...
 recv(A, tag, buf);
 trace(RECV, A);
 ...
 trace(EXIT, 2);
}

void master {
 trace(ENTER, 1);
 ...
 trace(SEND, B);
 send(B, tag, buf);
 ...
 trace(EXIT, 1);
} MONITOR 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

CPU A:

CPU B:

Event definition

timestamp

Nov. 7, 2001 SC’01 Tutorial

Event Tracing: “Timeline” Visualization

1 master

2 slave

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
slave

58 60 62 64 66 68 70

B

A

Nov. 7, 2001 SC’01 Tutorial

TAU Performance System Framework

r Tuning and Analysis Utilities

r Performance system framework for scalable parallel and
distributed high-performance computing

r Targets a general complex system computation model
¦ nodes / contexts / threads

¦ Multi-level: system / software / parallelism

¦ Measurement and analysis abstraction

r Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
¦ Portable performance profiling/tracing facility

¦ Open software approach

Nov. 7, 2001 SC’01 Tutorial

TAU Performance System Architecture

Nov. 7, 2001 SC’01 Tutorial

TAU Instrumentation

r Flexible instrumentation mechanisms at multiple levels
¦ Source code

Ømanual

Ø automatic using Program Database Toolkit (PDT)

¦ Object code
Ø pre-instrumented libraries (e.g., MPI using PMPI)

Ø statically linked

Ø dynamically linked

Ø fast breakpoints (compiler generated)

¦ Executable code
Ø dynamic instrumentation (pre-execution) using DynInstAPI

Nov. 7, 2001 SC’01 Tutorial

TAU Instrumentation (continued)

r Targets common measurement interface (TAU API)

r Object-based design and implementation
¦ Macro-based, using constructor/destructor techniques

¦ Program units: function, classes, templates, blocks

¦ Uniquely identify functions and templates
Ø name and type signature (name registration)

Ø static object creates performance entry

Ø dynamic object receives static object pointer

Ø runtime type identification for template instantiations

¦ C and Fortran instrumentation variants

r Instrumentation and measurement optimization

Nov. 7, 2001 SC’01 Tutorial

Program Database Toolkit (PDT)

r Program code analysis framework for developing source-
based tools

r High-level interface to source code information

r Integrated toolkit for source code parsing, database
creation, and database query
¦ commercial grade front end parsers

¦ portable IL analyzer, database format, and access API

¦ open software approach for tool development

r Target and integrate multiple source languages

r Use in TAU to build automated performance
instrumentation tools

Nov. 7, 2001 SC’01 Tutorial

PDT Architecture and Tools

C/C++
 Fortran

 77/90

Nov. 7, 2001 SC’01 Tutorial

PDT Components

r Language front end
¦ Edison Design Group (EDG): C, C++, Java

¦ Mutek Solutions Ltd.: F77, F90

¦ creates an intermediate-language (IL) tree

r IL Analyzer
¦ processes the intermediate language (IL) tree

¦ creates “program database” (PDB) formatted file

r DUCTAPE (Bernd Mohr, ZAM, Germany)
¦ C++ program Database Utilities and Conversion Tools

APplication Environment

¦ processes and merges PDB files

¦ C++ library to access the PDB for PDT applications

Nov. 7, 2001 SC’01 Tutorial

TAU Measurement

r Performance information
¦ High-resolution timer library (real-time / virtual clocks)

¦ General software counter library (user-defined events)

¦ Hardware performance counters
ØPCL (Performance Counter Library) (ZAM, Germany)

ØPAPI (Performance API) (UTK, Ptools Consortium)

Ø consistent, portable API

r Organization
¦ Node, context, thread levels

¦ Profile groups for collective events (runtime selective)

¦ Performance data mapping between software levels

Nov. 7, 2001 SC’01 Tutorial

TAU Measurement (continued)

r Parallel profiling
¦ Function-level, block-level, statement-level

¦ Supports user-defined events

¦ TAU parallel profile database

¦ Function callstack

¦ Hardware counts values (in replace of time)

r Tracing
¦ All profile-level events

¦ Interprocess communication events

¦ Timestamp synchronization

r User-configurable measurement library (user controlled)

Nov. 7, 2001 SC’01 Tutorial

TAU Measurement System Configuration

r configure [OPTIONS TAU-OPTIONS]
¦ {-pthread, -sproc} Use pthread or SGI sproc threads
¦ -smarts Use SMARTS API for threads
¦ -openmp Use OpenMP threads
¦ -opari=<dir> Specify location of Opari OpenMP tool
¦ {-pcl, -papi}=<dir> Specify location of PCL or PAPI
¦ -pdt=<dir> Specify location of PDT
¦ -dyninst=<dir> Specify location of DynInst Package

¦ -TRACE Generate TAU event traces

¦ -PROFILE Generate TAU profiles

¦ -PROFILECOUNTERS Use hardware performance counters
¦ -SGITIMERS Use fast nsec timers on SGI systems
¦ -CPUTIME Use usertime+system time
¦ -PAPIWALLCLOCK Use PAPI to access wallclock time
¦ -PAPIVIRTUAL Use PAPI for virtual (user) time

Nov. 7, 2001 SC’01 Tutorial

TAU Measurement Configuration – Examples

r ./configure -c++=KCC –SGITIMERS
¦ Use TAU with KCC and fast nanosecond timers on SGI
¦ Enable TAU profiling (default)

r ./configure -TRACE –PROFILE
¦ Enable both TAU profiling and tracing

r ./configure -c++=guidec++ -cc=guidec
 -papi=/usr/local/packages/papi –openmp
 -mpiinc=/usr/packages/mpich/include
 -mpilib=/usr/packages/mpich/lib
¦ Use OpenMP+MPI using KAI's Guide compiler suite and

use PAPI for accessing hardware performance counters
for measurements

r Typically configure multiple measurement libraries

Nov. 7, 2001 SC’01 Tutorial

TAU Measurement API

r Initialization and runtime configuration
¦ TAU_PROFILE_INIT(argc, argv);

TAU_PROFILE_SET_NODE(myNode);
TAU_PROFILE_SET_CONTEXT(myContext);
TAU_PROFILE_EXIT(message);

r Function and class methods
¦ TAU_PROFILE(name, type, group);

r Template
¦ TAU_TYPE_STRING(variable, type);

TAU_PROFILE(name, type, group);
CT(variable);

r User-defined timing
¦ TAU_PROFILE_TIMER(timer, name, type, group);

TAU_PROFILE_START(timer);
TAU_PROFILE_STOP(timer);

Nov. 7, 2001 SC’01 Tutorial

TAU Measurement API (continued)

r User-defined events
¦ TAU_REGISTER_EVENT(variable, event_name);

TAU_EVENT(variable, value);
TAU_PROFILE_STMT(statement);

r Mapping
¦ TAU_MAPPING(statement, key);

TAU_MAPPING_OBJECT(funcIdVar);
TAU_MAPPING_LINK(funcIdVar, key);

¦ TAU_MAPPING_PROFILE (funcIdVar);
TAU_MAPPING_PROFILE_TIMER(timer, funcIdVar);
TAU_MAPPING_PROFILE_START(timer);
TAU_MAPPING_PROFILE_STOP(timer);

r Reporting
¦ TAU_REPORT_STATISTICS();

TAU_REPORT_THREAD_STATISTICS();

Nov. 7, 2001 SC’01 Tutorial

TAU Analysis

r Profile analysis
¦ Pprof

Ø parallel profiler with text-based display

¦ Racy
Ø graphical interface to pprof (Tcl/Tk)

¦ jRacy
Ø Java implementation of Racy

r Trace analysis and visualization
¦ Trace merging and clock adjustment (if necessary)

¦ Trace format conversion (ALOG, SDDF, Vampir)

¦ Vampir (Pallas) trace visualization

Nov. 7, 2001 SC’01 Tutorial

Pprof Command

r pprof [-c|-b|-m|-t|-e|-i] [-r] [-s] [-n num] [-f file] [-l] [nodes]
¦ -c Sort according to number of calls
¦ -b Sort according to number of subroutines called
¦ -m Sort according to msecs (exclusive time total)
¦ -t Sort according to total msecs (inclusive time total)
¦ -e Sort according to exclusive time per call
¦ -i Sort according to inclusive time per call
¦ -v Sort according to standard deviation (exclusive usec)
¦ -r Reverse sorting order
¦ -s Print only summary profile information
¦ -n num Print only first number of functions
¦ -f file Specify full path and filename without node ids
¦ -l nodes List all functions and exit (prints only info about all

contexts/threads of given node numbers)

Nov. 7, 2001 SC’01 Tutorial

Pprof Output (NAS Parallel Benchmark – LU)

r Intel Quad
PIII Xeon,
RedHat,
PGI F90

r F90 +
MPICH

r Profile for:
 Node
 Context
 Thread

r Application
events and
MPI events

Nov. 7, 2001 SC’01 Tutorial

jRacy (NAS Parallel Benchmark – LU)

n: node
c: context
t: thread

Global profiles

Individual profile

Routine
profile across
all nodes

Nov. 7, 2001 SC’01 Tutorial

TAU and PAPI (NAS Parallel Benchmark – LU)

r Floating
point
operations

r Replaces
execution
time

r Only requires
relinking to
different
measurement
library

Nov. 7, 2001 SC’01 Tutorial

Vampir Trace Visualization Tool

r Visualization and
Analysis of MPI
Programs

r Originally developed
by Forschungszentrum
Jülich

r Current development
by Technical
University Dresden

r Distributed by
PALLAS, Germany

r http://www.pallas.de/pages/vampir.htm

Nov. 7, 2001 SC’01 Tutorial

Vampir (NAS Parallel Benchmark – LU)

Timeline display Callgraph display

Communications display

Parallelism display

Nov. 7, 2001 SC’01 Tutorial

Semantic Performance Mapping

r Associate
performance
measurements
with high-level
semantic
abstractions

r Need mapping
support in the
performance
measurement
system to assign
data correctly

Nov. 7, 2001 SC’01 Tutorial

Semantic Entities/Attributes/Associations (SEAA)

r New dynamic mapping scheme (S. Shende, Ph.D. thesis)
¦ Contrast with ParaMap (Miller and Irvin)

¦ Entities defined at any level of abstraction

¦ Attribute entity with semantic information

¦ Entity-to-entity associations

r Two association types (implemented in TAU API)
¦ Embedded – extends data structure of associated object to

store performance measurement entity

¦ External – creates an external look-up table using address
of object as the key to locate performance measurement
entity

Nov. 7, 2001 SC’01 Tutorial

Hypothetical Mapping Example

q Particles distributed on surfaces of a cube
Particle* P[MAX]; /* Array of particles */

int GenerateParticles() {

/* distribute particles over all faces of the cube */

for (int face=0, last=0; face < 6; face++){

/* particles on this face */

int particles_on_this_face = num(face);

for (int i=last; i < particles_on_this_face; i++) {

/* particle properties are a function of face */
P[i] = ... f(face);

...

}

last+= particles_on_this_face;

}

}

Nov. 7, 2001 SC’01 Tutorial

Hypothetical Mapping Example (continued)

q How much time is spent processing face i particles?

q What is the distribution of performance among faces?

int ProcessParticle(Particle *p) {

/* perform some computation on p */

}

int main() {

GenerateParticles();

/* create a list of particles */

for (int i = 0; i < N; i++)

/* iterates over the list */

ProcessParticle(P[i]);

}

Nov. 7, 2001 SC’01 Tutorial

No Performance Mapping versus Mapping

r Typical performance
tools report performance
with respect to routines

r Does not provide support
for mapping

r Performance tools with
SEAA mapping can
observe performance with
respect to scientist’s
programming and
problem abstractions

TAU (no mapping) TAU (w/ mapping)

Nov. 7, 2001 SC’01 Tutorial

TAU Performance System Status

r Computing platforms
¦ IBM SP, SGI Origin 2K/3K, Intel Teraflop, Cray T3E,

Compaq SC, HP, Sun, Windows, IA-32, IA-64, Linux, …

r Programming languages
¦ C, C++, Fortran 77/90, HPF, Java, OpenMP

r Communication libraries
¦ MPI, PVM, Nexus, Tulip, ACLMPL, MPIJava

r Thread libraries
¦ pthreads, Java,Windows, Tulip, SMARTS, OpenMP

r Compilers
¦ KAI, PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray,

IBM, Compaq

Nov. 7, 2001 SC’01 Tutorial

TAU Performance System Status (continued)

r Application libraries
¦ Blitz++, A++/P++, ACLVIS, PAWS, SAMRAI, Overture

r Application frameworks
¦ POOMA, POOMA-2, MC++, Conejo, Uintah, UPS

r Projects
¦ Aurora / SCALEA: ACPC, University of Vienna

r TAU full distribution (Version 2.10, web download)
¦ Measurement library and profile analysis tools

¦ Automatic software installation

¦ Performance analysis examples

¦ Extensive TAU User’s Guide

Nov. 7, 2001 SC’01 Tutorial

PDT Status

r Program Database Toolkit (Version 2.0, web download)
¦ EDG C++ front end (Version 2.45.2)

¦ Mutek Fortran 90 front end (Version 2.4.1)

¦ C++ and Fortran 90 IL Analyzer

¦ DUCTAPE library

¦ Standard C++ system header files (KCC Version 4.0f)

r PDT-constructed tools
¦ Automatic TAU performance instrumentation
ØC, C++, Fortran 77, and Fortran 90

¦ Program analysis support for SILOON and CHASM

Performance Technology for
Complex Parallel Systems

Part 2 – Complexity Scenarios

Sameer Shende

Nov. 7, 2001 SC’01 Tutorial

Goals

r Explore performance analysis issues in different parallel
computing and programming contexts

r Demonstrate TAU’s usage in different complex parallel
system contexts and application case studies

r Explore how to bridge the semantic gap between
performance data that tools capture, and user and system
programming and execution abstractions

r Highlight TAU performance mapping API
¦ C++ template instrumentation

¦ Hierarchical software systems

r Discuss TAU performance system evolution

Nov. 7, 2001 SC’01 Tutorial

Complexity Scenarios

r Message passing computation
¦ Observe message communication events

¦ Associate messaging events with program events

¦ SPMD applications with multiple processes

¦ SIMPLE hydrodynamics application (C, MPI)

r Multi-threaded computation
¦ (Abstract) thread-based performance measurement

¦ Multi-threaded parallel execution

¦ Asynchronous runtime system scheduling

¦ Multi-threading performance analysis in Java

Nov. 7, 2001 SC’01 Tutorial

Complexity Scenarios (continued)

r Mixed-mode parallel computation
¦ Portable shared memory and message passing APIs

¦ Integrate messaging events with multi-threading events

¦ OpenMP + MPI and Java + MPI case studies

r Object-oriented programming and C++
¦ Object-based performance analysis

¦ Performance measurement of template-derived code

¦ Array classes and expression transformation

r Hierarchical parallel software frameworks
¦ Multi-level software framework and work scheduling

¦ Module-specific performance mapping

Nov. 7, 2001 SC’01 Tutorial

Strategies for Empirical Performance Evaluation

r Empirical performance evaluation as a series of
performance experiments
¦ Experiment trials describing instrumentation and

measurement requirements
¦ Where/When/How axes of empirical performance space
Øwhere are performance measurements made in program
Øwhen is performance instrumentation done
Ø how are performance measurement/instrumentation chosen

r Strategies for achieving flexibility and portability goals
¦ Limited performance methods restrict evaluation scope
¦ Non-portable methods force use of different techniques
¦ Integration and combination of strategies

Nov. 7, 2001 SC’01 Tutorial

Multi-Level Instrumentation in TAU

Nov. 7, 2001 SC’01 Tutorial

Multi-Level Instrumentation

r Uses multiple instrumentation interfaces

r Shares information: cooperation between interfaces

r Taps information at multiple levels

r Provides selective instrumentation at each level

r Targets a common performance model

r Presents a unified view of execution

Nov. 7, 2001 SC’01 Tutorial

SIMPLE Performance Analysis

r SIMPLE hydrodynamics benchmark
¦ C code with MPI message communication

¦ Multiple instrumentation methods
Ø source-to-source translation (PDT)

ØMPI wrapper library level instrumentation (PMPI)

Ø pre-execution binary instrumentation (DyninstAPI)

¦ Alternative measurement strategies
Ø statistical profiles of software actions

Ø statistical profiles of hardware actions (PCL, PAPI)

Ø program event tracing

Ø choice of time source

l gettimeofday, high-res physical, CPU, process virtual

Nov. 7, 2001 SC’01 Tutorial

r Similarly, for all other routines in SIMPLE program

SIMPLE Source Instrumentation (Preprocessed)

int compute_heat_conduction(
double theta_hat[X][Y], double deltat, double new_r[X][Y],
double new_z[X][Y], double new_alpha[X][Y],

double new_rho[X][Y], double theta_l[X][Y],
double Gamma_k[X][Y], double Gamma_l[X][Y])

{

TAU_PROFILE("int compute_heat_conduction(
double (*)[259], double, double (*)[259],
double (*)[259], double (*)[259], double (*)[259],

double (*)[259], double (*)[259], double (*)[259])",
" ", TAU_USER);

...

}

Nov. 7, 2001 SC’01 Tutorial

MPI Library Instrumentation (MPI_Send)

int MPI_Send(…)
...
{

int returnVal, typesize;
TAU_PROFILE_TIMER(tautimer, "MPI_Send()", " ", TAU_MESSAGE);
TAU_PROFILE_START(tautimer);
if (dest != MPI_PROC_NULL) {

PMPI_Type_size(datatype, &typesize);

TAU_TRACE_SENDMSG(tag, dest, typesize*count);
}
returnVal = PMPI_Send(buf, count, datatype, dest, tag, comm);
TAU_PROFILE_STOP(tautimer);
return returnVal;

}

Nov. 7, 2001 SC’01 Tutorial

MPI Library Instrumentation (MPI_Recv)

int MPI_Recv(…)
...
{

int returnVal, size;
TAU_PROFILE_TIMER(tautimer, "MPI_Recv()", " ", TAU_MESSAGE);
TAU_PROFILE_START(tautimer);
returnVal = PMPI_Recv(buf, count, datatype, src, tag, comm,

status);
if (src != MPI_PROC_NULL && returnVal == MPI_SUCCESS) {

PMPI_Get_count(status, MPI_BYTE, &size);
TAU_TRACE_RECVMSG(status->MPI_TAG, status->MPI_SOURCE,

size);
}
TAU_PROFILE_STOP(tautimer);
return returnVal;

}

Nov. 7, 2001 SC’01 Tutorial

Multi-Level Instrumentation (Profiling)

SC’01 Tutorial

four
processes

profile
per

process

global
routine
profile

Nov. 7, 2001 SC’01 Tutorial

Multi-Level Instrumentation (Tracing)

r No modification of source instrumentation!

TAU performance groups

Nov. 7, 2001 SC’01 Tutorial

Dynamic Instrumentation of SIMPLE

r Uses DynInstAPI for runtime code patching

r Mutator loads measurement library, instruments mutatee
¦ one mutator (tau_run) per executable image

¦ mpirun –np <n> tau.shell

Nov. 7, 2001 SC’01 Tutorial

Multi-Threading Performance Measurement

r General issues
¦ Thread identity and per-thread data storage

¦ Performance measurement support and synchronization

¦ Fine-grained parallelism
Ø different forms and levels of threading

Ø greater need for efficient instrumentation

r TAU general threading and measurement model
¦ Common thread layer and measurement support

¦ Interface to system specific libraries (reg, id, sync)

r Target different thread systems with core functionality
¦ Pthreads, Windows, Java, SMARTS, Tulip, OpenMP

Nov. 7, 2001 SC’01 Tutorial

Java Multi-Threading Performance (Test Case)

r Profile and trace Java (JDK 1.2+) applications

r Observe user-level and system-level threads

r Observe events for different Java packages
¦ /lang, /io, /awt, …

r Test application
¦ SciVis, NPAC, Syracuse University

% ./configure -jdk=<dir_where_jdk_is_installed>

% setenv LD_LIBRARY_PATH
$LD_LIBRARY_PATH\:<taudir>/<arch>/lib

% java -XrunTAU svserver

Nov. 7, 2001 SC’01 Tutorial

TAU Profiling of Java Application (SciVis)

24 threads of execution!

Profile for each
Java thread

Captures events
for different
Java packages

Global
routine
profile

Nov. 7, 2001 SC’01 Tutorial

TAU Tracing of Java Application (SciVis)

Timeline display

Parallelism view

Performance groups

Nov. 7, 2001 SC’01 Tutorial

Vampir Dynamic Call Tree View (SciVis)

Per thread call tree

Expanded
call tree

Annotated performarnce

Nov. 7, 2001 SC’01 Tutorial

Virtual Machine Performance Instrumentation

r Integrate performance system with VM
¦ Captures robust performance data (e.g., thread events)

¦ Maintain features of environment
Ø portability, concurrency, extensibility, interoperation

¦ Allow use in optimization methods

r JVM Profiling Interface (JVMPI)
¦ Generation of JVM events and hooks into JVM

¦ Profiler agent (TAU) loaded as shared object
Ø registers events of interest and address of callback routine

¦ Access to information on dynamically loaded classes

¦ No need to modify Java source, bytecode, or JVM

Nov. 7, 2001 SC’01 Tutorial

JVMPI Events

r Method transition events
r Memory events
r Heap arena events
r Garbage collection events
r Class events
r Global reference events
r Monitor events
r Monitor wait events
r Thread events
r Dump events
r Virtual machine events

Nov. 7, 2001 SC’01 Tutorial

TAU Java JVM Instrumentation Architecture

Java program

Profile DB

JNI

TAU

JVMPI

Thread API

Event
notification

r Robust set of events

r Portability

r Access to thread info

r Measurement options

r Limitations

¦ Overhead

¦ Many events

¦ Event control

¦ No user-defined
events

Nov. 7, 2001 SC’01 Tutorial

TAU Java Source Instrumentation Architecture

r Any code section can
be measured

r Portability

r Measurement options
¦ Profiling, tracing

r Limitations
¦ Source access only

¦ Lack of thread
information

¦ Lack of node
information

Java program

TAU.Profile class
(init, data, output) TAU package

Profile database
stored in JVM heap

TAU as dynamic
shared object

JNI C bindings

Profile DB

JNI

TAU

Nov. 7, 2001 SC’01 Tutorial

Java Source-Level Instrumentation

r TAU Java
package

r User-defined
events

r TAU.Profile
class for new
“timers”
¦ Start/Stop

r Performance
data output
at end

Nov. 7, 2001 SC’01 Tutorial

Mixed-mode Parallel Programs (OpenMPI + MPI)

r Portable mixed-mode parallel programming
¦ Multi-threaded shared memory programming

¦ Inter-node message passing

r Performance measurement
¦ Access to runtime system and communication events

¦ Associate communication and application events

r 2-Dimensional Stommel model of ocean circulation
¦ OpenMP for shared memory parallel programming

¦ MPI for cross-box message-based parallelism

¦ Jacobi iteration, 5-point stencil

¦ Timothy Kaiser (San Diego Supercomputing Center)

Nov. 7, 2001 SC’01 Tutorial

Stommel Instrumentation

r OpenMP directive instrumentation (see OPARI in Part 3)
pomp_for_enter(&omp_rd_2);

#line 252 "stommel.c"

#pragma omp for schedule(static) reduction(+: diff) private(j)
firstprivate (a1,a2,a3,a4,a5) nowait

for(i=i1;i<=i2;i++) {

for(j=j1;j<=j2;j++){

new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1]

+ a4*psi[i][j-1] - a5*the_for[i][j];

diff=diff+fabs(new_psi[i][j]-psi[i][j]);

}

}

pomp_barrier_enter(&omp_rd_2);

#pragma omp barrier

pomp_barrier_exit(&omp_rd_2);

pomp_for_exit(&omp_rd_2);

#line 261 "stommel.c"

Nov. 7, 2001 SC’01 Tutorial

OpenMP + MPI Ocean Modeling (Trace)

Thread
message
passing

Integrated
OpenMP +
MPI events

Nov. 7, 2001 SC’01 Tutorial

OpenMP + MPI Ocean Modeling (HW Profile)

% configure -papi=../packages/papi -openmp -c++=pgCC -cc=pgcc
 -mpiinc=../packages/mpich/include -mpilib=../packages/mpich/lib

FP
instructions

Integrated
OpenMP +
MPI events

Integrated
OpenMP +
MPI events

Nov. 7, 2001 SC’01 Tutorial

Mixed-mode Parallel Programs (Java + MPI)

r Explicit message communication libraries for Java

r MPI performance measurement
¦ MPI profiling interface - link-time interposition library

¦ TAU wrappers in native profiling interface library

¦ Send/Receive events and communication statistics

r mpiJava (Syracuse, JavaGrande, 1999)
¦ Java wrapper package

¦ JNI C bindings to MPI communication library

¦ Dynamic shared object (libmpijava.so) loaded in JVM

¦ prunjava calls mpirun to distribute program to nodes

¦ Contrast to Java RMI-based schemes (MPJ, CCJ)

Nov. 7, 2001 SC’01 Tutorial

TAU mpiJava Instrumentation Architecture

r No source
instrumentation
required

r Portability

r Measurement options

r Limitations

¦MPI events only

¦No mpiJava events

¦Node info only

¦No thread info

mpiJava package

Native MPI library

Java program

JNI

Profile DB

TAU

TAU package

TAU wrapper

Native MPI library

MPI profiling interface

Nov. 7, 2001 SC’01 Tutorial

Java Multi-threading and Message Passing

r Java threads and MPI communications
¦ Shared-memory multi-threading events

¦ Message communications events

r Unified performance measurement and views
¦ Integration of performance mechanisms

¦ Integrated association of performance events
Ø thread event and communication events

Ø user-defined (source-level) performance events

Ø JVM events

r Requires instrumentation and measurement cooperation

Nov. 7, 2001 SC’01 Tutorial

Instrumentation and Measurement Cooperation

r Problem
¦ JVMPI doesn’t see MPI events (e.g., rank (node))

¦ MPI profiling interfaces doesn’t see threads

¦ Source instrumentation doesn’t see either!

r Need cooperation between interfaces
¦ MPI exposes rank and gets thread information

¦ JVMPI exposes thread information and gets rank

¦ Source instrumentation gets both

¦ Post-mortem matching of sends and receives

r Selective instrumentation
¦ java -XrunTAU:exclude=java/io,sun

Nov. 7, 2001 SC’01 Tutorial

JVMPI

Thread API

Event
notification

TAU Java Instrumentation Architecture

Java program

TAU package mpiJava package

MPI profiling interface

TAU wrapper

Native MPI library

Profile DB

JNI

TAU

Nov. 7, 2001 SC’01 Tutorial

Parallel Java Game of Life (Profile)

r mpiJava
testcase

r 4 nodes,
28 threads

Node 0

Node 1

Node 2

Only thread 4
executes MPI_Init

Merged Java
and MPI event
profiles

Merged Java
and MPI event
profiles

Nov. 7, 2001 SC’01 Tutorial

Parallel Java Game of Life (Trace)

r Integrated event tracing

r Merged
trace viz

r Node
process
grouping

r Thread
message
pairing

r Vampir
display

r Multi-level event grouping

Nov. 7, 2001 SC’01 Tutorial

Integrated Performance View (Callgraph)

r Source
level

r MPI
level

r Java
packages
level

Nov. 7, 2001 SC’01 Tutorial

Object-Oriented Programming and C++

r Object-oriented programming is based on concepts of
abstract data types, encapsulation, inheritance, …

r Languages (such as C++) provide support implementing
domain-specific abstractions in the form of class libraries

r Furthermore, generic programming mechanisms allow
for efficient coding abstractions and compile-time
transformations

r Creates a semantic gap between the transformed code and
what the user expects (and describes in source code)

r Need a mechanism to expose the nature of high-level
abstract computation to the performance tools

r Map low-level performance data to high-level semantics

Nov. 7, 2001 SC’01 Tutorial

C++ Template Instrumentation (Blitz++, PETE)

r High-level objects
¦ Array classes

¦ Templates (Blitz++)

r Optimizations
¦ Array processing

¦ Expressions (PETE)

r Relate performance
data to high-level
statement

r Complexity of
template evaluation

Array
expressions
Array
expressions

Nov. 7, 2001 SC’01 Tutorial

Standard Template Instrumentation Difficulties

r Instantiated templates result in mangled identifiers

r Standard profiling techniques / tools are deficient
¦ Integrated with proprietary compilers

¦ Specific systems platforms and programming models

Uninterpretable routine namesVery long!

Nov. 7, 2001 SC’01 Tutorial

Blitz++ Library Instrumentation

r Expression templates embed the form of the expression in
a template name

r In Blitz++, the library describes the structure of the
expression template to the profiling toolkit

r Allows for pretty printing the expression templates

+

B -

+

2.0 D

C

BinOp<Add,
 B, <BinOp<Subtract,
 C, <BinOp<Multiply,
 Scalar<2.0>, D>>>

Expression: B + C - 2.0 * D

Nov. 7, 2001 SC’01 Tutorial

Blitz++ Library Instrumentation (example)

#ifdef BZ_TAU_PROFILING

static string exprDescription;
if (!exprDescription.length()) {

exprDescription = "A";

prettyPrintFormat format(_bz_true); // Terse mode on
format.nextArrayOperandSymbol();

T_update::prettyPrint(exprDescription);
expr.prettyPrint(exprDescription, format);

}

TAU_PROFILE(" ", exprDescription, TAU_BLITZ);

#endif

Nov. 7, 2001 SC’01 Tutorial

TAU Instrumentation and Profiling for C++

Profile of
expression
types

Performance data presented
with respect to high-level
array expression types

Performance data presented
with respect to high-level
array expression types

Nov. 7, 2001 SC’01 Tutorial

Hierarchical Parallel Software (C-SAFE/Uintah)

r Center for Simulation of Accidental Fires & Explosions
¦ ASCI Level 1 center

¦ PSE for multi-model simulation high-energy explosion

r Uintah parallel programming framework
¦ Component-based and object-parallel

¦ Multi-model task-graph scheduling and execution

¦ Shared-memory (thread), distributed-memory (MPI), and
mixed-model parallelization

¦ Integrated with SCIRun framework

r TAU integration in Uintah
¦ Mapping: task object 1 grid object 1 patch object

Nov. 7, 2001 SC’01 Tutorial

Task Execution in Uintah Parallel Scheduler

Task execution time
dominates (what task?)

MPI communication
overheads (where?)

Nov. 7, 2001 SC’01 Tutorial

Task Computation and Mapping

r Task computations on individual particles generate work
packets that are scheduled and executed
¦ Work packets that “interpolate particles to grid”

r Assign semantic name to a task abstraction
¦ SerialMPM::interpolateParticleToGrid

r Partition execution time among different tasks
¦ Need to relate the performance of each particle

computation (work packet) to the associated task
¦ Map TAU timer object to task (abstract) computation

r Further partition the performance data along different
domain-specific axes (task, patches, …)

r Helps bridge the semantic-gap!

Nov. 7, 2001 SC’01 Tutorial

Mapping Instrumentation (example)

void MPIScheduler::execute(const ProcessorGroup * pc,

DataWarehouseP & old_dw,
DataWarehouseP & dw) {

...

TAU_MAPPING_CREATE(

task->getName(), "[MPIScheduler::execute()]",
(TauGroup_t)(void*)task->getName(), task->getName(), 0);

...

TAU_MAPPING_OBJECT(tautimer)

TAU_MAPPING_LINK(tautimer,TauGroup_t)(void*)task->getName());

 // EXTERNAL ASSOCIATION

...

TAU_MAPPING_PROFILE_TIMER(doitprofiler, tautimer, 0)

TAU_MAPPING_PROFILE_START(doitprofiler,0);

task->doit(pc);

TAU_MAPPING_PROFILE_STOP(0);

...

}

Nov. 7, 2001 SC’01 Tutorial

Work Packet – to – Task Mapping (Profile)

Performance
mapping for
different tasks

Mapped task
performance
across processes

Nov. 7, 2001 SC’01 Tutorial

Work Packet – to – Task Mapping (Trace)

Work packet
computation
events colored
by task type

Distinct phases of
computation can be
identifed based on task

Nov. 7, 2001 SC’01 Tutorial

Statistics for Relative Task Contributions

Nov. 7, 2001 SC’01 Tutorial

Comparing Uintah Traces for Scalability Analysis

8 processes

8 processes

32 processes32 processes

32 processes

Nov. 7, 2001 SC’01 Tutorial

Evolution of the TAU Performance System

r Future parallel computing environments need to be more
adaptive to achieve and sustain high performance levels

r TAU’s existing strength lies in its robust support for
performance instrumentation and measurement

r TAU will evolve to support new performance capabilities
¦ Online performance data access via application-level API

¦ Whole-system, integrative performance monitoring

¦ Dynamic performance measurement control

¦ Generalize performance mapping

¦ Runtime performance analysis and visualization

r Three-year DOE MICS research and development grant

Performance Technology for
Complex Parallel Systems

Part 3 – Alternative Tools and Frameworks

Bernd Mohr

Nov. 7, 2001 SC’01 Tutorial

Goals

r Learn about commercial performance analysis products
for complex parallel systems
¦ Vampir event trace visualization and analysis tool

¦ Vampirtrace event trace recording library

¦ GuideView OpenMP performance analysis tool

¦ VGV (integrated Vampir / GuideView environment)

r Learn about future advanced components for automatic
performance analysis and guidance
¦ EXPERT automatic event trace analyzer

r Discuss plans for performance tool integration

Nov. 7, 2001 SC’01 Tutorial

Vampir

rr VVisualization and
AAnalysis of MPIMPI
PRRograms

r Originally developed
by Forschungszentrum
Jülich

r Current development
by Technical
University Dresden

r Distributed by
PALLAS, Germany

r http://www.pallas.de/pages/vampir.htm

Nov. 7, 2001 SC’01 Tutorial

Vampir: General Description

r Offline trace analysis for message passing trace files

r Convenient user–interface / easy customization

r Scalability in time and processor–space

r Excellent zooming and filtering

r Display and analysis of MPI and application events:
¦ User subroutines

¦ Point–to–point communication

¦ Collective communication

¦ MPI–2 I/O operations

r Large variety of customizable (via context menus)
displays for ANY part of the trace

Nov. 7, 2001 SC’01 Tutorial

Vampir: Main Window

r Trace file loading can be
¦ Interrupted at any time
¦ Resumed
¦ Started at a specified time offset

r Provides main menu
¦ Access to global and process local displays
¦ Preferences
¦ Help

r Trace file can be re–written (re–grouped symbols)

Nov. 7, 2001 SC’01 Tutorial

Vampir: Timeline Diagram

r Functions
organized into
groups

r Coloring by
group

r Message lines
can be colored
by tag or size

r Information about states, messages, collective, and I/O
operations available by clicking on the representation

Nov. 7, 2001 SC’01 Tutorial

Vampir: Timeline Diagram (Message Info)

r Source–code references are displayed if recorded in trace

Nov. 7, 2001 SC’01 Tutorial

Vampir: Support for Collective Communication

r For each process: locally mark operation

r Connect start/stop points by lines

4 Data being sent 4Data being received

<Start of op

< Stop of op

Nov. 7, 2001 SC’01 Tutorial

Vampir: Collective Communication Display

Nov. 7, 2001 SC’01 Tutorial

Vampir: MPI-I/O Support

r MPI I/O operations shown as message lines to separate
I/O system time line

Nov. 7, 2001 SC’01 Tutorial

Vampir: Execution Statistics Displays

r Aggregated
profiling
information: execution time, # calls, inclusive/exclusive

r Available for all/any group (activity)

r Available for all routines (symbols)

r Available for any trace part (select in timeline diagram)

Nov. 7, 2001 SC’01 Tutorial

Vampir: Communication Statistics Displays

r Bytes sent/received for
collective operations

r Message length statistics

r Available for any trace part

r Byte and message count,
min/max/avg message length
and min/max/avg bandwidth
for each process pair

Nov. 7, 2001 SC’01 Tutorial

Vampir: Other Features

r Parallelism display

r Powerful filtering and
trace comparison features

r All diagrams highly
customizable (through
context menus)

r Dynamic global call
graph tree

Nov. 7, 2001 SC’01 Tutorial

Vampir: Process Displays

r Activity chart
r Call tree

r Timeline

r For all selected processes in the global displays

Nov. 7, 2001 SC’01 Tutorial

Vampir: New Features

r New Vampir versions (3 and 4)
¦ New core (dramatic timeline speedup,

significantly reduced memory footprint)

¦ Load–balance analysis display

¦ Hardware counter value displays

¦ Thread analysis

¦ show hardware and grouping structure

¦ Improved statistics displays

¦ Raised scalability limits:
can now analyse 100s of processes/threads

Nov. 7, 2001 SC’01 Tutorial

Vampir: Load Balance Analysis

r State Chart display

r Aggregated profiling
information:
execution time, # calls,
inclusive/exclusive

r For all/any group
(activity)

r For all routines
(symbols)

r For any trace part

Nov. 7, 2001 SC’01 Tutorial

Vampir: HPM Counter

r Counter Timeline Display

r Process Timeline Display

Nov. 7, 2001 SC’01 Tutorial

Vampir: Cluster Timeline

r Display of whole system

Parallelism
Display

Communication
Volume Display

Nov. 7, 2001 SC’01 Tutorial

Vampir: Cluster Timeline

r SMP or Grid Nodes Display

Intra–node
Communication

Volume

Parallelism
Display

for each Node

Parallelism
Display

for each Node

Nov. 7, 2001 SC’01 Tutorial

Vampir: Cluster Timeline(2)

r Display of messages between nodes enabled

Nov. 7, 2001 SC’01 Tutorial

Vampir: Improved Message Statistics Display

r Process View

r NodeView

Nov. 7, 2001 SC’01 Tutorial

Release Schedule

r Vampir/SX and Vampirtrace/SX
¦ Version 1 available via NEC Japan

¦ Version 2 is ready for release

r Vampir/SC and Vampirtrace/SC
¦ Version 3 is available from Pallas

¦ Version 4 scheduled for Q4/2001

r Vampir and Vampirtrace
¦ Version 3 is scheduled for Q4/2001

¦ Version 4 will follow in 2002

Nov. 7, 2001 SC’01 Tutorial

Vampir Feature Matrix

Vampir Vampir/SC Vampir/SX

3 4 3 4 1 2

New core yes yes yes yes yes yes

Load–balance
displays no yes no yes no yes

Counter analysis no yes yes yes yes yes

Thread analysis no yes no yes no no

Grouping support no partial partial yes partial partial

Improved statistics
displays yes yes yes yes yes yes

Scalability
(processes) 200 500 500 1000 500 1000

Nov. 7, 2001 SC’01 Tutorial

Vampirtrace

r Commercial product of Pallas, Germany

r Library for Tracing of MPI and Application Events
¦ Records MPI point-to-point communication

¦ Records MPI collective communication

¦ Records MPI–2 I/O operations

¦ Records user subroutines (on request)

¦ Records source–code information (some platforms)

¦ Support for shmem (Cray T3E)

r Uses the PMPI profiling interface
r http://www.pallas.de/pages/vampirt.htm

Nov. 7, 2001 SC’01 Tutorial

Vampirtrace: Usage

r Record MPI–related information
¦ Re–link a compiled MPI application (no re-compilation)

Ø{f90,cc,CC} *.o -o myprog
-L$(VTHOME)/lib -lVT -lpmpi -lmpi

¦ Re-link with -vt option to MPICH compiler scripts
Ø{mpif90,mpicc,mpiCC} -vt *.o -o myprog

¦ Execute MPI binary as usual

r Record user subroutines
¦ Insert calls to Vampirtrace API (portable, but

inconvenient)
¦ Use automatic instrumentation

(NEC SX, Fujitsu VPP, Hitachi SR)
¦ Use instrumentation tool (Cray PAT, dyninst, ...)

Nov. 7, 2001 SC’01 Tutorial

Vampirtrace Instrumentation API (C / C++)

r Calls for recording user subroutines

r VT calls can only be used between
MPI_Init and MPI_Finalize!

r Event numbers used must be globally unique
r Selective tracing: VT_traceoff(),VT_traceon()

#include "VT.h"
/* Symbols defined with/without source information */
VT_symdefl(123, "foo", "USER", "foo.c:6");
VT_symdef (123, "foo", "USER");

void foo {
 VT_begin(123); /* 1st executable line */
 ...
 VT_end(123); /* at EVERY exit point! */
}

Nov. 7, 2001 SC’01 Tutorial

VT++.h – C++ Class Wrapper for Vampirtrace

r Same tricks can be used to wrap other C++ tracing APIs

r Usage:

#ifndef __VT_PLUSPLUS_
#define __VT_PLUSPLUS_
#include "VT.h"
class VT_Trace {
 public: VT_Trace(int code) {VT_begin(code_ = code);}
 ~VT_Trace() {VT_end(code_);}
 private: int code_;
};
#endif /* __VT_PLUSPLUS_ */

VT_symdef(123, "foo", "USER"); // symbol definition as before
void foo(void) { // user subroutine to monitor
 VT_Trace vt(123); // declare VT_Trace object in 1st line
 ... // => automatic tracing by ctor/dtor
}

Nov. 7, 2001 SC’01 Tutorial

Vampirtrace Instrumentation API (Fortran)

r Calls for recording user subroutines

r Selective tracing: VTTRACEOFF(),VTTRACEON()

 include 'VT.inc'
 integer ierr
 call VTSYMDEF(123, "foo", "USER", ierr) !or
 call VTSYMDEFL(123, "foo", "USER", "foo.f:8", ierr)
C
 SUBROUTINE foo(...)
 include 'VT.inc'
 integer ierr
 call VTBEGIN(123, ierr)
C ...
 call VTEND(123, ierr);
 END

Nov. 7, 2001 SC’01 Tutorial

Vampirtrace: Runtime Configuration

r Trace file collection and generation can be controlled by
using a configuration file
¦ Trace file name, location, size, flush behavior
¦ Activation/deactivation of trace recording for specific

processes, activities (groups of symbols), and symbols

r Activate a configuration file with environment variables
VT_CONFIG name of configuration file

(use absolute pathname if possible)
VT_CONFIG_RANK MPI rank of process which should

read and process configuration file

r Reduce trace file sizes
¦ Restrict event collection in a configuration file
¦ Use selective tracing functions

Nov. 7, 2001 SC’01 Tutorial

Vampirtrace: Configuration File Example

r Be careful to record complete message transfers!

r See Vampirtrace User's Guide for complete description

collect traces only for MPI ranks 1 to 5
TRACERANKS 1:5:1
record at most 20000 records per rank
MAX-RECORDS 20000

do not collect administrative MPI calls
SYMBOL MPI_comm* off
SYMBOL MPI_cart* off
SYMBOL MPI_group* off
SYMBOL MPI_type* off

do not collect USER events
ACTIVITY USER off
except routine foo
SYMBOL foo on

Nov. 7, 2001 SC’01 Tutorial

New Features – Tracing

r New Vampirtrace versions (3 and 4)
¦ New core (significantly reduce memory

and runtime overhead)

¦ Better control of trace buffering and flush files

¦ New filtering options

¦ Event recording by thread

¦ Support of MPI–I/O

¦ Hardware counter data recording (PAPI)

¦ Support of process/thread groups

Nov. 7, 2001 SC’01 Tutorial

Vampirtrace Feature Matrix

Vampirtrace Vampirtrace/SC Vampirtrace/SX

3 4 3 4 1 2

New core yes yes yes yes yes yes

Buffer control yes yes yes yes yes yes

Recover trace no yes no yes no yes

New filter
options

partial yes partial yes partial yes

Thread events no yes no yes no no

MPI–I/O yes yes no yes no yes

Counter data no yes yes yes yes yes

Thread/process
grouping

no yes partial yes partial yes

Scalability
(processes)

200 500 500 1000 500 1000

Nov. 7, 2001 SC’01 Tutorial

GuideView

r Commercial product of KAI

r OpenMP Performance Analysis Tool

r Part of KAP/Pro Toolset for OpenMP

r Looks for OpenMP performance problems
¦ Load imbalance, synchronization, false sharing

r Works from execution trace(s)

r Compile with Guide, link with instrumented library
¦ guidec++ -WGstats myprog.cpp -o myprog

¦ guidef90 -WGstats myprog.f90 -o myprog
¦ Run with real input data sets
¦ View traces with guideview

r http://www.kai.com/parallel/kappro/

Nov. 7, 2001 SC’01 Tutorial

GuideView: Whole Application View

r Different
¦ Number of processors

¦ Datasets

¦ Platforms

Identify bottlenecks
(barriers, locks, seq. time)

Compare actual vs. ideal
performance

Compare multiple runs

Nov. 7, 2001 SC’01 Tutorial

GuideView: Per Thread View

Show scalability
problems

Analyse each
thread’s

performance

Nov. 7, 2001 SC’01 Tutorial

GuideView: Per Section View

Identify serial regions that
hurt scalability

Analyse each parallel
region

Sort or filter regions to
navigate to performance

hotspots

Nov. 7, 2001 SC’01 Tutorial

GuideView: Analysis of hybrid Applications

r Generate different Guide execution traces for each node
¦ Run with node-local file system as current directory

¦ Set trace file name with environment variable
KMP_STATSFILE

Ø point to file in node-local file system
KMP_STATSFILE=/node-local/guide.gvs

Ø use special meta-character sequences
(%H: hostname, %I: pid, %P: number of threads used)
KMP_STATSFILE=guide-%H.gvs

r Use "compare-multiple-run" feature to display together

r Just a hack, better: use VGV!

Nov. 7, 2001 SC’01 Tutorial

VGV – Architecture

r Combine well–established tools
¦ Guide and GuideView from KAI/Intel

¦ Vampir/Vampirtrace from Pallas

r Guide compiler inserts instrumentation

r Guide runtime system collects thread–statistics

r PAPI is used to collect HPM data

r Vampirtrace handles event–based performance data
acquisition and storage

r Vampir is extended by GuideView–style displays

Nov. 7, 2001 SC’01 Tutorial

VGV – Architecture

Application
source

Guide
compiler

Object files

Vampirtrace
library

Guide
libraries

Linker

Trace
file

Executable
VGV

MPI
displays

OpenMP
displays

Config
file

Run

inserts calls to
Vampirtrace API

collects thread
statistics

records event
data

unmodified
source code

controls
tracing

Nov. 7, 2001 SC’01 Tutorial

VGV – Usage

r Use Guide compilers by KAI
¦ guidef77, guidef90
¦ guidec, guidec++

r Include instrumentation flags
(links with Guide RTS
and Vampirtrace)

r Instrumentation can record
¦ Parallel regions
¦ MPI activity
¦ Application routine calls
¦ HPM data

r Trace file collection and
generation controlled by
configuration file

Instrumentation flags for Guide

 –WGtrace
compile and link with
Vampirtrace

–WGprof
include routine
entry/exit profiling

– WGprof_leafprune=N
minimum size of procedures
to retain in profile

Nov. 7, 2001 SC’01 Tutorial

Vampir: MPI Performance Analysis
~~~~~~ indicates
OpenMP region



Nov. 7, 2001 SC’01 Tutorial

GuideView:  OpenMP Performance Analysis



Nov. 7, 2001 SC’01 Tutorial

Vampir:  Detailed Thread Analysis



Nov. 7, 2001 SC’01 Tutorial

Availability and Roadmap

r β–version available (register with Pallas or KAI/Intel)
¦ IBM SP running AIX

¦ IA 32 running Linux

¦ Compaq Alpha running Tru64

r General release scheduled for Q1/2002

r Improvements in the pipeline
¦ Scalability enhancements

¦ Ports to other platforms



Nov. 7, 2001 SC’01 Tutorial

KOJAK Overview

rr KKit for OObjective JJudgement and AAutomatic
KKnowledge-based detection of bottlenecks

r Long-term goal:
Design and Implementation of a
¦ Portable, Generic, Automatic

Performance Analysis Environment

r Current Focus
¦ Event Tracing

¦ Clusters of SMP

¦ MPI, OpenMP, and Hybrid Programming Model

r http://www.fz-juelich.de/zam/kojak/



Nov. 7, 2001 SC’01 Tutorial

Motivation Automatic Performance Analysis

Traditional
      Tools:



Nov. 7, 2001 SC’01 Tutorial

Motivation Automatic Performance Analysis (2)

!

After lots
of zooming

and selecting:

!



Nov. 7, 2001 SC’01 Tutorial

Automatic Analysis Example: Late Sender



Nov. 7, 2001 SC’01 Tutorial

Automatic Analysis Example (2): Wait at NxN



Nov. 7, 2001 SC’01 Tutorial

Semi-automatic
Preparation

EXPERT: Current Architecture

user
program

OPARI
instrumented

program

executable
POMP+PMPI

libraries

EPILOG
library

Compiler /
Linker

run

trace
files

Automatic
Analysis

EXPERT
analyzer

EARL

analysis
results

EXPERT
presenter



Nov. 7, 2001 SC’01 Tutorial

Event Tracing

rr EEvent PProcessing, IInvestigation, and LOGLOGging (EPILOG)

r Open (public) event trace format and
API for reading/writing trace records

r Event Types: region enter and exit, collective region enter
and exit, message send and receive, parallel region fork
and join, and lock aquire and release

r Supports
¦ Hierarchical cluster hardware

¦ Source code information

¦ Performance counter values

r Thread-safe implementation



Nov. 7, 2001 SC’01 Tutorial

Instrumentation

r Instrument user application with EPILOG calls

r Done: basic instrumentation
¦ User functions and regions:

Ø undocumented PGI compiler (and manual) instrumentation

¦ MPI calls:
Øwrapper library utilizing PMPI

¦ OpenMP:
Ø source-to-source instrumentation

r Future work:
¦ Tools for Fortran, C, C++ user function instrumentation

¦ Object code and dynamic instrumentation



Nov. 7, 2001 SC’01 Tutorial

Instrumentation of OpenMP Constructs

rr OOpenMP PPragma AAnd RRegion IInstrumentor

r Source-to-Source translator to insert POMP calls
around OpenMP constructs and API functions

r Done:  Supports
¦ Fortran77 and Fortran90, OpenMP 2.0

¦ C and C++, OpenMP 1.0

¦ POMP Extensions

¦ EPILOG and TAU POMP implementations
¦ Preserves source code information (#line line file)

r Work in Progress:
Investigating standardization through OpenMP Forum



Nov. 7, 2001 SC’01 Tutorial

POMP OpenMP Performance Tool Interface

r OpenMP Instrumentation
¦ OpenMP Directive Instrumentation

¦ OpenMP Runtime Library Routine Instrumentation

r POMP Extensions
¦ Runtime Library Control (init, finalize, on, off)

¦ (Manual) User Code Instrumentation (begin, end)

¦ Conditional Compilation (#ifdef _POMP, !$P)

¦ Conditional / Selective Transformations
([no]instrument)



Nov. 7, 2001 SC’01 Tutorial

!$OMP PARALLEL DO clauses...

do loop

!$OMP END PARALLEL DO

!$OMP PARALLEL other-clauses...

!$OMP DO schedule-clauses, ordered-clauses,
   lastprivate-clauses
do loop

!$OMP END DO

!$OMP END PARALLEL DO

             NOWAIT

!$OMP BARRIER

call pomp_parallel_fork(d)

call pomp_parallel_begin(d)

             

call pomp_parallel_end(d)

call pomp_parallel_join(d)

call pomp_do_enter(d)

             

call pomp_do_exit(d)

             
call pomp_barrier_enter(d)

call pomp_barrier_exit(d)

Example:  !$OMP PARALLEL DO



Nov. 7, 2001 SC’01 Tutorial

OpenMP API Instrumentation

r Transform
¦ omp_#_lock()        →→   pomp_#_lock()

¦ omp_#_nest_lock()→→   pomp_#_nest_lock()

[ #  =  init | destroy | set | unset | test ]

r POMP version
¦ Calls omp version internally

¦ Can do extra stuff before and after call



Nov. 7, 2001 SC’01 Tutorial

Example:  TAU POMP Implementation

TAU_GLOBAL_TIMER(tfor, "for enter/exit",
                 "[OpenMP]", OpenMP);

void pomp_for_enter(OMPRegDescr* r) {
  #ifdef TAU_AGGREGATE_OPENMP_TIMINGS
    TAU_GLOBAL_TIMER_START(tfor)
  #endif
  #ifdef TAU_OPENMP_REGION_VIEW
    TauStartOpenMPRegionTimer(r);
  #endif
}
void pomp_for_exit(OMPRegDescr* r) {
  #ifdef TAU_AGGREGATE_OPENMP_TIMINGS
    TAU_GLOBAL_TIMER_STOP(tfor)
  #endif
  #ifdef TAU_OPENMP_REGION_VIEW
    TauStopOpenMPRegionTimer(r);
  #endif
}



Nov. 7, 2001 SC’01 Tutorial

OPARI: Basic Usage (f90)

r Reset OPARI state information
¦ rm -f opari.rc

r Call OPARI for each input source file
¦ opari file1.f90
...
opari fileN.f90

r Generate OPARI runtime table, compile it with ANSI C
¦ opari -table opari.tab.c
cc -c opari.tab.c

r Compile modified files *.mod.f90 using OpenMP

r Link the resulting object files, the OPARI runtime table
opari.tab.o and the TAU POMP RTL



Nov. 7, 2001 SC’01 Tutorial

OPARI: Makefile Template (C/C++)

OMPCC  = ... # insert C OpenMP compiler here
OMPCXX = ... # insert C++ OpenMP compiler here

.c.o:
opari $<
$(OMPCC) $(CFLAGS) -c $*.mod.c

.cc.o:
opari $<
$(OMPCXX) $(CXXFLAGS) -c $*.mod.cc

opari.init:
rm -rf opari.rc

opari.tab.o:
opari -table opari.tab.c
$(CC) -c opari.tab.c

myprog: opari.init myfile*.o ... opari.tab.o
$(OMPCC) -o myprog myfile*.o opari.tab.o -lpomp

myfile1.o: myfile1.c myheader.h
myfile2.o: ...



Nov. 7, 2001 SC’01 Tutorial

OPARI: Makefile Template (Fortran)

OMPF77 = ... # insert f77 OpenMP compiler here
OMPF90 = ... # insert f90 OpenMP compiler here

.f.o:
opari $<
$(OMPF77) $(CFLAGS) -c $*.mod.F

.f90.o:
opari $<
$(OMPF90) $(CXXFLAGS) -c $*.mod.F90

opari.init:
rm -rf opari.rc

opari.tab.o:
opari -table opari.tab.c
$(CC) -c opari.tab.c

myprog: opari.init myfile*.o ... opari.tab.o
$(OMPF90) -o myprog myfile*.o opari.tab.o -lpomp

myfile1.o: myfile1.f90
myfile2.o: ...



Nov. 7, 2001 SC’01 Tutorial

Automatic Analysis

rr EXEXtensible  PERPERformance  TTool (EXPERT)

r Programmable, extensible, flexible performance
property specification

r Based on event patterns

r Analyzes along three hierarchical dimensions
¦ Performance properties (general →→ specific)

¦ Dynamic call tree position

¦ Location (machine →→ node →→ process →→ thread)

r Done:  fully functional demonstration prototype



Nov. 7, 2001 SC’01 Tutorial

Example: Late Sender (blocked receiver)

Location

Time

MPI_SEND      

MPI_RECV

Enter
Send
Receive

Message
enterptr
sendptr

Waiting

B

A

callback



Nov. 7, 2001 SC’01 Tutorial

Example: Late Sender (2)

class LateSender(Pattern):  # derived from class Pattern

def parent(self):           # "logical" parent at property
level
return "P2P"

def recv(self, recv):       # callback for recv events

   recv_start = self._trace.event(recv['enterptr'])

      if (self._trace.region(recv_start['regid'])['name']

          == "MPI_Recv"):

        send       = self._trace.event(recv['sendptr'])

        send_start = self._trace.event(send['enterptr'])

        if (self._trace.region(send_start['regid'])['name']

            == "MPI_Send"):

          idle_time =  send_start['time'] - recv_start['time']

          if idle_time > 0 :

            locid  = recv_start['locid']

            cnode  = recv_start['cnodeptr']

            self._severity.add(cnode, locid, idle_time)



Nov. 7, 2001 SC’01 Tutorial

Performance Properties (1)

[100% = (timelast event - time1st event) * number of locations]

r Total # Execution + Idle Threads time
¦ Execution # Sum of exclusive time spent

      in each region

¦ Idle Threads # Time wasted in idle threads while
    executing “sequential” code

r Execution
¦ MPI # Time spent in MPI functions

¦ OpenMP # Time spent in OpenMP regions
    and API functions

¦ I/O # Time spent in (sequential) I/O



Nov. 7, 2001 SC’01 Tutorial

Performance Properties (2)

r MPI
¦ Communication # Sum of Collective, P2P, 1-sided
ØCollective # Time spent in MPI collective

    communication operations

ØP2P # Time spent in MPI point-to-point
    communication operations

Ø 1-sided # Time spent in MPI one-sided
    communication operations

¦ I/O # Time spent in MPI parallel
    I/O functions (MPI_File*)

¦ Synchronization # Time spent in MPI_Barrier



Nov. 7, 2001 SC’01 Tutorial

Performance Properties (3)

r Collective
¦ Early Reduce    # Time wasted in root of N-to-1 

                 operation by waiting for 1st sender
      (MPI_Gather, MPI_Gatherv,
       MPI_Reduce)

¦ Late Broadcast  # Time wasted by waiting for root
       sender in 1-to-N operation
       (MPI_Scatter, MPI_Scatterv,
        MPI_Bcast)

¦ Wait at N x N   # Time spent waiting for last
      participant at NxN operation
      (MPI_All*, MPI_Scan,
       MPI_Reduce_scatter)



Nov. 7, 2001 SC’01 Tutorial

Performance Properties (4)

r P2P
¦ Late Receiver             # Blocked sender

ØMessages in Wrong Order        # Receiver too late because
         waiting for another
         message from same sender

¦ Late Sender                 # Blocked receiver
ØMessages in Wrong Order        # Receiver blocked because

         waiting for another
         message from same sender

¦ Patterns related to non-blocking communication

¦ Too many small messages



Nov. 7, 2001 SC’01 Tutorial

Performance Properties (5)

r OpenMP
¦ Synchronization  # Time spent in OpenMP barrier

     and lock operations
ØBarrier  # Time spent in OpenMP

     barrier operations

l Implicit

» Load Imbalance at Parallel Do, Single, Workshare

» Not Enough Sections

l Explicit
ØLock Competition  # Time wasted in omp_set_lock

     by waiting for lock release

¦ Flush



Nov. 7, 2001 SC’01 Tutorial

Expert Result Presentation

r Interconnected weighted tree browser

r Scalable still accurate

r Each node has weight
¦ Percentage of CPU allocation time

¦ I.e. time spent in subtree of call tree

r Displayed weight depends on state of node
¦ Collapsed (including weight of descendants)

¦ Expanded (without weight of descendants)

r Displayed using
¦ Color:  allows to easily identify hot spots (bottlenecks)

¦ Numerical value:  Detailed comparison

  10 main

 60 bar

 30 foo

100 main



Nov. 7, 2001 SC’01 Tutorial

  Location
How is the problem
distributed across
the machine?

Class of Behavior
Which kind of
behavior caused
the problem?

 Call Graph
Where in the source
code is the problem?
In which context?

Color Coding
Shows the severity
of the problem



Nov. 7, 2001 SC’01 Tutorial

Performance Properties View

Main Problem:
Idle Threads

Fine:
User code

Fine:
OpenMP +MPI

Fine:
OpenMP +MPI



Nov. 7, 2001 SC’01 Tutorial

Dynamic Call Tree View

1st Optimization Opportunity

2nd Optimization Opportunity

3rd Optimization Opportunity

r Property “Idle Threads”
¦  Mapped to call graph location

 of master thread

⇒  highlights phases of
   “sequential” execution



Nov. 7, 2001 SC’01 Tutorial

r Supports locations
up to Grid scale

r Easily allows exploration
of load balance problems
on different levels

r [ Of course,
  Idle Thread Problem
  only applies to slave
  threads ]

Locations View



Nov. 7, 2001 SC’01 Tutorial

Performance Properties View (2)

r Interconnected
weighted trees:

⇒ Selecting
another node in one
tree effects tree
display right of it

EE



Nov. 7, 2001 SC’01 Tutorial

Dynamic Call Tree View

EE



Nov. 7, 2001 SC’01 Tutorial

Locations View (2):  Relative View



Nov. 7, 2001 SC’01 Tutorial

Automatic Performance Analysis

AAutomatic Performance AAnalysis: RResources and TTools
http://www.fz-juelich.de/apart/

r ESPRIT Working Group 1999 - 2000

r IST Working Group 2001 - 2004

r 16 members worldwide

r Prototype Tools (Paradyn, Kappa-PI, Aurora, Peridot,
KOJAK/EXPERT, TAU)



Nov. 7, 2001 SC’01 Tutorial

Performance Analysis Tool Integration

r Complex systems pose challenging performance analysis
problems that require robust methodologies and tools

r New performance problems will arise
¦ Instrumentation and measurement

¦ Data analysis and presentation

¦ Diagnosis and tuning

r No one performance tool can address all concerns

r Look towards an integration of performance technologies
¦ Evolution of technology frameworks to address problems

¦ Integration support to link technologies to create
performance problem solving environments



Performance Technology for
Complex Parallel Systems

REFERENCES



Nov. 7, 2001 SC’01 Tutorial

Papers and Reports

r B. Mohr, A. Malony, S. Shende, and F. Wolf, “Towards a Performance
Tool Interface for OpenMP: An Approach Based on Directive
Rewriting,” European Workshop on OpenMP (EWOMP 2001),
Barcelona, September 2001.

r F. Wolf and B. Mohr, “Automatic Performance Analysis of SMP Cluster
Applications,” Technical Report IB-2001-05, John von Neumann -
Institut für Computing,  Forschungszentrum Jülich, ZAM, 2001.

r S. Shende and A. Malony, “Integration and Application of the TAU
Performance System in Parallel Java Environments,” Proceedings of the
Joint ACM Java Grande - ISCOPE 2001 Conference, June 2001.

r S. Shende, A. D. Malony, and R. Ansell-Bell, “Instrumentation and
Measurement Strategies for Flexible and Portable Empirical
Performance Evaluation,” Proceedings Tools and Techniques for
Performance Evaluation Workshop, PDPTA'01, C.S.R.E.A., June 2001.



Nov. 7, 2001 SC’01 Tutorial

Papers and Reports

r S. Shende, “The Role of Instrumentation and Mapping in Performance
Measurement,” Ph.D. Dissertation, University of Oregon, August 2001.

r T. Fahringer, M. Gerndt, B. Mohr, F. Wolf, G. Riley, and J. Träff,
“Knowledge Specification for Automatic Performance Analysis –
APART Technical Report, Revised Version,” Technical Report IB-
2001-08, John von Neumann - Institut für Computing,
Forschungszentrum Jülich, ZAM, 2001.

r B. Mohr, A. Malony, S. Shende, and F. Wolf, “Design and Prototype of
a Performance Tool Interface for OpenMP,”  2nd Annual Los Alamos
Computer Science Institute Symposium (LACSI 2001), October 2000.

r F. Wolf  and B. Mohr, “Automatic Performance Analysis of MPI
Applications Based on Event Traces,” European Conference on Parallel
Computing (Euro-Par 2000), München, August 2000.

r S. Shende and A. Malony, “Performance Tools for Parallel Java
Environments,” Proc. Second Workshop on Java for High Performance
Computing, ICS 2000, May 2000.



Nov. 7, 2001 SC’01 Tutorial

Papers and Reports
r A. Malony and S. Shende, “Performance Technology for Complex

Parallel and Distributed Systems,” Proc. Third Austrian-Hungarian
Workshop on Distributed and Parallel Systems, DAPSYS 2000,
"Distributed and Parallel Systems: From Concepts to Applications,"
(Eds. G. Kotsis and P. Kacsuk)Kluwer, Norwell, MA, August 2000, pp.
37-46.

r K. Lindlan, J. Cuny, A. Malony, S. Shende, B. Mohr, R. Rivenburgh,
and C. Rasmussen. “A Tool Framework for Static and Dynamic
Analysis of Object-Oriented Software with Templates,” Proceedings of
SC2000: High Performance Networking and Computing Conference,
Dallas, November 2000.

r A. Malony, “Tools for Parallel Computing: A Performance Evaluation
Perspective,” in J. Blazewicz et. al. (Editors), Handbook on Parallel and
Distributed Processing, Springer Verlag, pp. 342-363, 2000.

r F. Wolf and B. Mohr, “EARL – Language Reference,” Technical Report
IB-2000-01, John von Neumann - Institut für Computing,
Forschungszentrum Jülich, ZAM, 2000.



Nov. 7, 2001 SC’01 Tutorial

Papers and Reports

r F. Wolf and B. Mohr, “Specifying Performance Properties Using
Compound Runtime Events – APART Technical Report,” Technical
Report IB-2000-10, John von Neumann - Institut für Computing,
Forschungszentrum Jülich, ZAM, 2000.

r S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger, A. Malony, S.
Shende, R. Oldehoeft, and S. Smith, “SMARTS: Exploiting Temporal
Locality and Parallelism through Vertical Execution,” Proceedings of
ACM International Conference on Supercomputing (ICS '99), June
1999.

r S. Shende, “Profiling and Tracing in Linux,” Proceedings of the
Extreme Linux Workshop #2, USENIX, Monterey CA, June 1999.

r S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman, and S.
Karmesin, “Portable Profiling and Tracing for Parallel Scientific
Applications using C++,” Proceedings of ACM SIGMETRICS
Symposium on Parallel and Distributed Tools (SPDT '98), August 1998,
pp. 134-145.



Nov. 7, 2001 SC’01 Tutorial

Papers and Reports

r B. Mohr, A. Malony, and J. Cuny, “TAU,” in G. Wilson (Ed.), Parallel
Programming Using C++, MIT Press, 1996, p. 507-545.

r K. Shanmugam, A. Malony, and B. Mohr, “Speedy: An Integrated
Performance Extrapolation Tool for pC++ Programs,” Proceedings of
the Joint Conference PERFORMANCE TOOLS '95 and MMB '95,
Heidelberg, September 1995.

r A. Malony, B. Mohr, P. Beckman, and D. Gannon, “Program Analysis
and Tuning Tools for a Parallel Object Oriented Language: An
Experiment with the TAU System,” Proceedings of the Workshop on
Parallel Scientific Computing, Cape Cod, MA, October 1994.

r A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, and F. Bodin,
“Performance Analysis of pC++: A Portable Data-Parallel Programming
System for Scalable Parallel Computers,” Proceedings of the 8th
International Parallel Processing Symbosium (IPPS), Cancún, Mexico,
April 1994, pp. 75-85.



Nov. 7, 2001 SC’01 Tutorial

Web References

r TAU:
www.cs.uoregon.edu/research/paracomp/tau

r PDT:
www.cs.uoregon.edu/research/paracomp/pdtoolkit

r KOJAK (EXPERT, EARL, OPARI):
http://www.fz-juelich.de/zam/kojak/

r APART:
 http://www.fz-juelich.de/apart/



Nov. 7, 2001 SC’01 Tutorial

Support Acknowledgement

r TAU and PDT support
¦ Department of Engergy (DOE)

ØDOE 2000 ACTS contract

ØDOE MICS contract

ØDOE ASCI Level 3 (LANL, LLNL)

¦ DARPA

¦ NSF National Young Investigator (NYI) award


