
Overview

TAU (Tuning and Analysis Utilities) is a program and
performance analysis tool framework for high-performance
parallel and distributed computing. TAU provides a suite of
tools for static and dynamic analysis of programs written in
C, C++, FORTRAN 77/90, High Performance FORTRAN,
and Java. In particular, TAU offers a state-of-the-art
performance profiling and tracing facility that supports a
general scalable parallel execution model based on nodes,
contexts, and threads. 

The TAU performance instrumentation and measurement
package has been ported to all Accelerated Strategic
Computing Initiative (ASCI) platforms and has been used
extensively in the Advanced Computational Testing and
Simulation (ACTS) toolkit. TAU works with a powerful code
analysis system, Program Database Toolkit (PDT), to
implement automatic source instrumentation and static
program browsers linked to dynamic performance information.

TAU Design

The goal of the TAU project is to develop program and
performance analysis technology that meets both the
challenges of evolving scalable parallel computing systems
and the needs of programming methodologies used for next-
generation scientific applications. TAU should be able to
target the diversity of computing paradigms and machines
while offering a framework of portable and reconfigurable
measurement and analysis components that can be
optimized and extended. While the tools and techniques
implemented may address specific needs of a language or
execution environment, they should be coherent, based on
a unified analysis model and able to interoperate with other
framework components.

The TAU environment achieves these aims. TAU targets a
computing model for programming scalable, parallel, multi-
threaded programs based on abstractions of nodes, contexts,
and threads. (This computing model was defined by the
High Performance C++ consortium.) A node is a shared-
memory multiprocessor (SMP), having a coherent shared-
address space that can be read and modified by any of its
processors. Nodes can range from laptop computers to
large-scale cache-coherent nonuniform memory architectureFigure 1. Architecture of TAU profiling and tracing toolkit.



(NUMA) systems. Nodes can be connected locally or
distributively by a network. A context refers to a virtual
address space on a node that may be accessible to several
threads of control. Multiple contexts can exist on a node.

The benefit of targeting this model is that it covers all
common modes of execution, including “multithreaded,
shared memory” and “single program, multiple data”
(SPMD). Because TAU identifies the three abstractions in the
model, it can perform analyses particular to each, using
knowledge of the mapping of the model to the specific
execution context.

Requirements for program and performance analysis arise
from differences not only in computing systems but also in
how the systems are programmed. TAU applies the concept
of mapping at different levels within a programming
hierarchy to build analysis abstractions that capture the
important behavioral and semantic characteristics of the
software. The mapping concept extends to languages where
compile-time code manipulation can take place. TAU’s
support for analysis mapping is found in careful
implementation of techniques consistent with the software
level where they are applied.

TAU supports an integrated, extensible analysis framework
through modular component design, published data
formats, and programs to interface to third-party tools. This
has made it possible for TAU to be retargeted to new
language, run-time, and system contexts and extended with
new analysis functionality.

TAU Implementation

There are five different parts to TAU’s
implementation: program code
analysis, performance
instrumentation, performance
measurement, performance analysis
and visualization, and online
monitoring. 

The program code analysis part is
being built on PDT and will offer a
rich set of tools to view program
information, including
class/function/template browsers and
graphical displays of calling and
class hierarchies. Performance
instrumentation, performance
measurement, and performance
analysis and visualization constitute
TAU’s portable profiling and tracing
package which is being released as
part of Los Alamos National
Laboratory’s 1999 Advanced
Computing Laboratory CD. This

package is discussed in detail below.
Online monitoring is an extension of the
TAU measurement system which

supports run-time access to application and system
performance information.

The TAU implementation has been primarily targeted to
requirements of the DOE ACTS toolkit and ASCI computing
platforms. This has forced TAU to deal with the difficult
challenges of working with evolving language standards,
large software frameworks, and multiple machine platforms,
operating systems, run-time libraries, and language
compilers. As a result, TAU provides one of the most
portable and robust analysis systems for parallel scientific
applications that exist today.

TAU Profiling and Tracing 

The heart of TAU is its profiling and tracing environment, an
integrated toolkit for performance instrumentation,
measurement, and analysis of parallel, multithreaded
programs. The architecture of the TAU profiling and tracing
environment is shown in Figure 1. The environment
supports the High Performance C++ model of computation
(threads, contexts, and nodes), capturing performance data
for these levels of execution and applying analysis tools for
different performance views. TAU’s implementation targeted
C++ since the advanced object-oriented features of this
language, such as templates and namespaces, presented
difficult challenges in instrumentation and measurement,
beyond those present in other language targets. All C++
language features are supported in the TAU instrumentation.

Figure 2.TAU generates profiling data for each user- and system-level thread in Java.



Figure 3.POOMA 2 application.

Figure 4.TAU profiles asynchronous execution of array expressions in POOMA 2.

The instrumentation captures data for functions, methods,
basic blocks, and statement execution at all execution
levels. An instrumentation library and application
programming interface (API) are provided that allow the
user to select between profiling and tracing, measurement
alternatives (e.g., timers, counters, hardware monitors), and
application level. The API also provides selection of
measurement groups for organizing and controlling
instrumentation. The instrumentation supports the mapping
of low-level execution measurements to high-level
execution entities, such as data parallel statements or
expression templates, so that performance data can be
properly assigned.

Performance measurements have very low overhead and
utilize high-resolution timers for accuracy.

From the data collected (profiles or traces), TAU’s analysis
procedures can generate a wealth of performance
information for the user. Profile analysis can show the
exclusive and inclusive time spent in each function with
nanosecond resolution. For templated entities, it shows the
breakdown of time spent for each instantiation. Other data
includes how many times each function was called, how
many profiled functions each function invoked, and what
the mean inclusive time per call was. Time information can
also be displayed relative to nodes, contexts, and threads.
Instead of time, hardware performance data can be shown.
TAU’s profile visualization tool, “Racy,” provides graphical
displays of all the performance analysis results, in aggregate
and per node/context/thread form as shown in Figure 2. The
user can quickly identify sources of performance
bottlenecks in the application using the graphical interface.

Trace analysis utilizes the Vampir trace visualization tool.
(Please see http://www.pallas.de for more information on
Vampir.) Vampir can be used to show detailed event history
on a timeline display and execution statistics computed
across time intervals. Users can view the trace data at
different levels of detail, helping them to identify
performance bottlenecks in local regions and globally.

The TAU profiling and tracing environment is highly robust
and works in the following cases:

•Platforms: SGI Power Challenge and Origin 2K, IBM
SP2, Intel Teraflop, Cray T3E, HP 9000, Sun, Windows
95/98/NT, Compaq Alpha Linux cluster, Intel Linux cluster

•Languages: C, C++, FORTRAN 77/90, HPF, HPC++, Java
•Thread packages: pthreads, Tulip threads, SMARTS

threads, Java threads, Windows threads
•Communications libraries: MPI, Nexus, Tulip, ACLMPL 
•Application libraries: Blitz++, ACLVIS
•Application frameworks and codes: POOMA, 

POOMA 2, MC++, Conejo, PARP
•Compilers: KAI, PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray 

TAU has been applied extensively in the ACTS toolkit. 

TAU Applications

The TAU framework has been applied in several contexts, in
different languages, across application libraries and
frameworks, and on multiple platforms. Below, we highlight
applications that demonstrate TAU’s versatility.

Shown in Figure 3 is a sample program using the POOMA
(Parallel Object-Oriented Methods and Applications)
framework. POOMA is a C++ library that includes data-
parallel array and particle classes. The original POOMA
implemented parallelism in a lock-step fashion using



An important feature of the TAU
system is its ability to interface
with software at compile time
and at run time. In particular,
TAU supports different modes of
instrumentation: source code,
library, statically and
dynamically linked, and run
time. This has proven valuable
in TAU’s recent support for Java
performance measurement. Java
visualization application SciVis
was developed at the Northeast
Parallel Architectures Center at
Syracuse University. Using the
TAU mapping API, we were able
to observe entry and exit events
of dynamically loaded Java
modules and measure the
performance of SciVis execution
in detail. In Figure 2,
performance data from the
SciVis application is displayed
with Racy, Tau’s profile
visualization tool.

A final example illustrates TAU’s
ability to work with multiple
languages, run-time systems,
and threads. Figure 5 shows a
Vampir display of an application

written using High Performance FORTRAN (HPF) for data
parallelism and Opus for task parallelism. The HPF compiler
produces FORTRAN 90 data parallel modules which
execute on multiple processors. The processors interoperate
using the Opus run-time system which is built on MPI
(message passing interface) and pthreads. In systems of this
type, it is important to be able to see the influence of
different software levels. TAU is able to capture performance
data at different parts of the Opus/HPF system, exposing the
bottlenecks within and between levels.

Acknowledgments

TAU is being developed jointly by the University of Oregon,
Los Alamos National Laboratory, and Research Centre
Juelich in Germany.

message passing. POOMA 2 includes thread-based
evaluation and the ability to use SMARTS (Scalable
Multithreaded Asynchronous Run-Time System).

POOMA 2 and SMARTS present several problems to a
performance analysis system. First, being a class library with
data-parallel semantics, POOMA-level expressions will be
mapped to parallel computations, either an SPMD code
with message passing or a multithreaded asynchronous
code. The performance system has to be able to track this
mapping and associated performance data with the
framework-level abstraction. TAU does this through its
mapping API and its support for tracking asynchronous
execution. As shown in Figure 4, TAU is able to produce
performance profiles of applications objects, such as
expressions, instead of only routine profiles of object
methods. Notice, too, that TAU can report performance data
at different software levels, showing the overhead of
asynchronous iterate scheduling.

More information about TAU…
contact: Allen D. Malony

e-mail: malony@cs.uoregon.edu
web: www.acl.lanl.gov/tau/

Get TAU and other 
Advanced Computing Laboratory Software…

web: www.acl.lanl.gov/software/ 
cd: 1999 Advanced Computing Laboratory Software

This work supported by the US Department of Energy.

Figure 5.Vampir displays TAU traces for an Opus/HPF application.

More information about TAU…
contact: Allen D. Malony

e-mail: malony@cs.uoregon.edu
web: www.acl.lanl.gov/tau/

Get TAU and other 
Advanced Computing Laboratory Software…

web: www.acl.lanl.gov/software/ 
cd: 1999 Advanced Computing Laboratory Software

This work supported by the US Department of Energy.

LALP-99-205 November 1999
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by
the University of California for the United States Department of Energy under contract W-7405-ENG-
36. All company names, logos, and products mentioned herein are trademarks of their respective
companies. Reference to any specific company or product is not to be construed as an endorsement
of said company or product by The Regents of the University of California, the United States
Government, the U.S. Department of Energy, nor any of their employees.

Los
N A T I O N A L L A B O R A T O R Y

Alamos


