
IEEETRANSACTION~ 0~ PARALLEL AND DISTRIBUTED SYSTEMS,VOL.~,NO.~,JULY 1992

Performance Measurement Intrusion
and Perturbation Analysis

Allen D. Malony, Member, IEEE, Daniel A. Reed, Member, IEEE, and Harry A. G. W ijshoff

433

Abstract-Software performance instrumentation perturbs the
state of the measured system. The primary source of this pertur-
bation is the execution of additional instructions. However, ancil-
lary perturbations include disabled compiler optimizations and
memory conflicts. Collectively, these perturbations can increase
the measured system’s execution time, change memory reference
patterns, reorder events, and even cause register interlock stalls.
The perturbation magnitude depends on the intended perfor-
mance measurements and the granularity of the instrumentation.

In this paper, we study the instrumentation perturbations of
software event tracing on the Alliant FX/SO vector multiprocessor
in sequential, vector, concurrent, and vector-concurrent modes.
Based on experimental data, we derive a perturbation model that
can approximate true performance from instrumented execution.
We analyze the effects of instrumentation coverage (i.e., the ratio
of instrumented to executed statements), source level instrumen-
tation, and hardware interactions.

Our results show that perturbations in execution times for
complete trace instrumentation can exceed three orders of mag-
nitude. With appropriate models of performance perturbation,
these perturbations in execution time can be reduced to less than
20% while retaining the additional information from detailed
traces. In general, we conclude that it is possible to characterize
perturbations through simple models. This permits more detailed,
accurate instrumentation than traditionally believed possible.

Index Terms-Instrumentation intrusion, instrumentation un-
certainty principle, performance measurement, perturbation
analysis.

I. INTRODUCTION

S YSIEMATIC application of the scientific method is the
foundat ion of modern science. Central to this Weltun-

schauung is the experimental testing of hypotheses and the
operational paradigm (i.e., if an experiment cannot be con-
structed, even in principle, to measure a phenomenon, it can-
not, operationally, be said to exist). In any field, experimental
progress is inextricably coupled with technological advances;
the latter provide the requisite tools to more accurately mea-
sure known phenomena and to test hypotheses that predict the
existence of heretofore undetected phenomena. The r ichness

Manuscript received October 6, 1990; revised May 21, 1991. This work
was supported in part by the National Science Foundat ion under Grant US
NSF MIP-8410110, the Department of Energy under Grant US DOE-DE-
FG02-85ER25001, the Air Force Office of Scientific Research under Grants
AFOSR-85-0211 and AFOSR-86-0147, and a donat ion from IBM.

A. D. Malony is with the Department of Computer and Information Science,
University of Oregon, Eugene, OR 97403.

D.A. Reed is with the Department of Computer Science, University of
Illinois, Urbana, IL 61801.

H.A.G. Wijshoff is with the Department of Computer Science, Leiden
University, Leiden, The Netherlands.

IEEE Log Number 9107405.

of the computer system design space, with its seemingly
infinite variations, makes the scientific method’s systematic
measurement and hypothesis testing both appropriate and
desirable [4]. However, because computer system design is
an experimental science, its practit ioners are prey to many
of the same instrumentation pitfalls facing any experimental
scientist, notably uncertainty and instrumentation perturbation.

A multiplicity of measurement levels permeate all ex-
perimental sciences, including computer system performance
analysis. For computer systems, the lowest level includes
performance measurements of the hardware design. Determin-
ing this per formance provides both a design validation and
directives for system software design. Only by understanding
the strengths and weaknesses of the hardware can system soft-
ware designers develop an implementation and user interface
that maximizes the fraction of the raw hardware performance
available to the end user. Given some characterization of
the balance between system resources, users can develop
algorithms that best optimize their use. Finally, the best
mix of key algorithms will maximize the performance of
user applications. Together, these measurement levels form a
hierarchy of experimental observat ions and associated theory
that descr ibe the system’s performance behavior.

The detailed measurement obtained at low levels is not
without price. In nineteenth century physics, advances in
instrumentation technology and statistical analysis precipi-
tated a theoretical cr isis-measured data could no longer
be reconci led within the existing theoretical framework. The
resulting theoretical revolution def ined limits on the accuracy
and possible perturbations of experimental measurement. In
physics, the Heisenberg uncertainty principle bounded the
attainable measurement certainty. Moreover, it became clear
that instrumentation and phenomenon must be commensurate
to maintain instrumentation perturbations at acceptable levels
(e.g., imaging very small systems requires electron, rather than
optical, microscopy).

In computer system performance analysis, the problems
of uncertainty and perturbation are no less profound. W ith
the except ion of passive hardware performance monitors,
per formance experiments rely on software instrumentation for
per formance data capture. Such instrumentation mandates a
delicate balance between volume and accuracy.’ Excessive
instrumentation perturbs the measured system; limited instru-

t In contrast to other experimental disciplines, computer systems instrumen-
tation does permit the epistemological trickery of declaring instrumentation
part of the system. The perturbation is then, ipso facto, null. In this paper, we
exclude such possibilities.

1045-9219/92$03.00 0 1992 IEEE

434 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 4, JULY 1992

mentation reduces measurement detail-system behavior must
be inferred from insufficient data. Simply put, performance in-
strumentation manifests an Instrumentation Uncertainty Prin-
ciple:

l Instrumentation perturbs the system state.
l Execution phenomena and instrumentation are coupled

logically.
l Volume and accuracy are antithetical.
The primary source of instrumentation perturbations is

execution of additional instructions. However, ancillary per-
turbations can result from disabled compiler optimizations
and additional operating system overhead. These perturbations
manifest themselves in several ways: execution slowdown,
changes in memory reference patterns, event reordering, and
even register interlock stalls. From a performance evaluation
perspective, instrumentation perturbations must be balanced
against the need for detailed performance data. Regrettably,
there are no formal models of performance perturbation that
would permit quantitative evaluation from instrumentation
costs, measured event frequency, and desired instrumentation
detail.

Given the lack of models and the potential dangers of
excessive instrumentation, detailed software event traces often
are rejected for fear of corrupting the data (i.e., a small
volume of accurate, though incomplete, instrumentation data
is preferred). We hypothesize that this restriction is unduly
pessimistic. To test this hypothesis, we conducted a series
of instrumentation experiments to determine the magnitude
of performance perturbations as a function of instrumentation
frequency and execution mode (i.e., sequential, vector, and
parallel). Based on this experimental data, we derived a
perturbation model that can approximate true performance
from instrumented execution. This permits more detailed,
accurate instrumentation than traditionally believed possible.

We begin in Section II by describing the experimental
environment, the Alliant FX/80, a shared memory, vector
multiprocessor. In Section III, we discuss the instrumentation
perturbations possible on this parallel system. The models of
performance perturbation that permit removal of performance
perturbations from instrumented programs are developed in
Section IV. A description of the instrumentation environment
is given in Section V. In Section VI and Section VII, we
validate the models of Section IV using experimental data
obtained from execution of the Livermore Loops. Finally,
Section VIII summarizes our results and suggests avenues for
further research.

II. EXPERIMENTAL ENVIRONMENT

Our hypothesis implies that the perturbations attributable
to detailed performance instrumentation can be quantified in
sequential, vector, and parallel execution modes. Ideally, each
experiment systematically measures the effects of one, and
only one, variable with respect to a control. Consequently,
we conducted all experiments on a single system, the Alliant
FX/80, and used the system’s nominal behavior as reference.
To understand the results of these experiments, we digress
to review both the architecture and the idiosyncrasies of the

Cache
Module

2

Fig. 1. Alliant FXiSO Architecture

FX/80; see Fig. 1.
The Alliant FX/80 consists of up to eight computational

elements (CE’s), each containing a vector processor [13]. The
CE’s are connected via a concurrency control bus that permits
dispatching of small computation granules to cooperating
CE’s. Using this bus, parallel loop iterations can be directly
allocated to the CE’s through a hardware self-scheduling
mechanism.

The memory system of the Alliant FX/80 combines parallel
data access with a hierarchical memory structure. It is orga-
nized as three levels: a large main memory, a 512K byte cache
shared by all CE’s, and scalar and vector registers private to
each CE. Each vector register contains 32, double precision
(64-bit) words and is accessed by each CE’s vector processing
unit. The 64K word, write-back cache contains four banks
that are connected to the eight CE’s via a crossbar switch.
The cache can service up to eight simultaneous accesses per
cycle. The cache and the four-way interleaved main memory
are connected via a main memory bus with a peak transfer
rate of four words per cycle. Therefore, the peak bandwidth
between main memory and the CE’s is half that between the
cache and the CE’s.

The CE instruction set is a variation of the Motorola
68020 with certain extensions (e.g., vector and concurrency
instructions). The Alliant vector instructions are of two types:

l Internal: all operands are contained in vector and scalar
registers.

l External: one operand involves a memory request.
Within each type, most vector instructions have similar timing
behavior, typically differing only in their startup time. Because
the internal, register-register instructions do not depend on
conditions extrinsic to each CE, their timings are deterministic.
In contrast, the timing behavior of external vector instructions
depends on memory activity. Access contention, either from
the CE’s previous requests or from requests issued by other
CE’s, and data location, either cache or main memory, both
contribute to delays.

MALONY et al.: PERFORMANCE MEASUREMENT INTRUSION AND PERTURBATION ANALYSIS 435

The memory hierarchy, multiple CE’s, vector memory op-
erations, and the concurrent execut ion modes all make the
Alliant FX/80 a complex experimental environment. Success-
ful hypothesis validation in this environment would provide
strong evidence that our per formance perturbation models
are applicable to parallel systems with simpler execut ion
environments (e.g., the multiple processor Cray X-MP [3] or
the distributed memory Intel iPSC/2 [2]).

III. PERFORMANCE PERTURBATION

The number and complexity of the Alliant FX/80’s exe-
cution modes are equaled in both number and complexity
by perturbation mechanisms for per formance instrumentation.
Unfortunately, perturbations are not additive, nor can pertur-
bation magni tudes easily be deduced from measurement data
without knowledge of perturbation mechanisms. Thus, under-
standing these perturbation mechanisms is a prerequisite for
analysis of experimental per formance data and development
of sequential and parallel per formance perturbation models.
Because the possible perturbations during sequential execut ion
are but a subset of those possible during parallel execution, we
begin with an analysis of the former.

A. Sequential Perturbations

Although the range of possible instrumentation perturba-
tions depends on the complexity of the underlying architecture
and system software, the single stream of control flow in
sequential programs localizes most perturbations about the
instrumentation point. The localization of perturbation effects
means that the computat ion’s performance behavior is only
affected within a local region of the instrumentation. Although
the timing error introduced by the perturbation accumulates
during the performance measurement, if the perturbations
are assumed local, we can empirically characterize different
instrumentation perturbations in isolation and apply models
that remove the timing errors at the instrumentation source; see
Section IV. Below, we discuss the possible perturbations in the
context of our experimental environment, the Alliant FX/80.

As discussed in Section II, the pipelined Alliant FX/80
processors are connected to a complex hierarchy of regis-
ters, cache, and primary memory. A sophist icated compiler
generates code to maximize access f requency to the smaller,
faster components of this hierarchy. For instance, at the lowest
level of the memory hierarchy, pipelined register dependenc ies
arise when an instruction accesses a register whose value has
not yet been produced by a previous instruction. Although
these dependenc ies stall the processor or functional unit until
the requisite value is produced, optimizing compilers can
reduce the number of stalls by judicious register allocation
and instruction schedul ing.

At this level, instrumentation perturbations need not increase
execut ion time; instrumentation can both add and remove
register dependencies. The former can occur when the pro-
logue of the instrumentation code uses registers that have
STORES pending. Typically, most instrumentation points first
save the active registers on the local stack, generate the
desired performance data, and then restore the active registers.

Because most registers are addressed during save and restore,
dependenc ies between instructions just before or after the
instrumentation point are highly probable. Conversely, register
dependenc ies can be removed by inserting instrumentation
between two instructions that have an existing register de-
pendency. Execution of the intervening instrumentation code
will decouple the dependent instructions.

Even if instrumentation does not perturb register depen-
dences, it can change both the spatial and temporal patterns of
cache and memory references, with both positive and negat ive
effects. Consider an application code fragment that contains
a loop with a high density of memory references. If the
instrumentation generates large volumes of data, the resulting
cache and memory traffic may flush most application data from
the cache. When application execut ion resumes, the data cache
will be re loaded by a sequence of cache misses. The overhead
for this “cold start” [14] may be comparable to that for a
context switch.

If an application’s memory references generate bank con-
flicts in the interleaved memory [15], instrumenting the code
will distribute the application memory references across a
larger interval of time, decreasing the memory access time
as perceived by the application code. During execut ion of
the instrumentation code, all outstanding memory references,
including those with bank conflict stalls, will compete. Be-
cause time spent in instrumentation code is not charged to
the application, the apparent memory access time decreases.
The converse is also true. If application data access patterns
are structured to minimize bank conflicts, inserted instrumen-
tation code can disrupt the access pattern, perhaps creating
a degraded, steady-state memory access pattern with bank
conflicts.

As the magni tude of direct instrumentation perturbation
grows (e.g., added register dependenc ies or modif ied memory
reference patterns), the probability of indirect perturbation
grows proportionately. For example, the probability of context
switches is higher for instrumented applications because they
execute longer. Although the cost of these context switches
can be measured by instrumenting the operat ing system,
identifying “real” and induced context switches is nontrivial.

Perhaps more subtle than either direct perturbations or
induced context switches are changes in the application pro-
gram’s executed code. Although the object code for a program
with source code instrumentation (i.e., instrumentation inserted
in the application source code) clearly differs from the object
code for the same program without instrumentation, removing
the instrumentation from the object code does not result in
identical codes. For example, source code instrumentation can
prevent certain optimizations and can change register alloca-
tion. For vectorizing and parallelizing compilers, the potential
for code perturbation is greater-inserting instrumentation in
a vectorizable loop can easily prevent vectorization.

B. Parallel Perturbations

As noted earlier, the class of possible perturbations dur-
ing sequential execut ion is but a subset of those possible
for parallel programs. Parallel programs often stress their

436 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 4, JULY 1992

execut ion environment. For example, a single processor of
the Alliant FX/80 cannot generate content ion at the shared
cache, nor can it saturate the memory bus. In concurrent
mode, however, both the cache and memory bus can be
performance bott lenecks [6]. This also is true of other parallel
machines with high-performance memory systems [15]. Instru-
mentat ion that causes only small perturbations in sequential
mode (e.g., memory traffic to save instrumentation data)
can create unacceptable perturbations in concurrent mode,
including perturbations of the task execut ion order.

W ith the except ion of asynchronous input-output, the exe-
cution states of sequential programs form a total order. This
is a principle accepted due to hardware propert ies of the
machine. Sequential trace instrumentation may change event
times, but it rarely changes the event order. In contrast, the
states of parallel programs inherently form a partial order.
Consequent ly, the reordering of instrumented states is not only
possible but likely. The number of reordered events depends
on both the task schedul ing algorithm and the f requency of
parallel task synchronization.

If parallel tasks are assigned to processors statically (i.e.,
the mapping of tasks to processors is known a priori), the
sequence of tasks executed by each processor cannot change
as a consequence of instrumentation. However, the lengths of
the respective tasks can change, and this may reorder events
across tasks. Consider a parallel program with two tasks, where
task A reaches a synchronizat ion point before task B. If the
instrumentation overhead for task A exceeds that for task B,
the order that the tasks reach the synchronizat ion point will
be reversed, and the recorded event order will differ from
nominal.2

In general, some tasks are dynamically ass igned to proces-
sors. Indeed, the Alliant FX/80 permits dynamic assignment
of single loop iterations. If instrumentation changes task
execut ion times by disproportional, data dependent amounts,
the sequence of tasks executed by each processor, and the order
of inter-task events cannot be predicted without knowledge of
the task schedul ing algorithm.

Given the diversity and complexity of possible instru-
mentat ion perturbations, both direct and indirect, software
instrumentation must be des igned to ameliorate or eliminate as
many perturbations as possible. However, timing perturbations
cannot be removed solely by efficient instrumentation, and
perturbation analysis must be appl ied to resolve timing errors.
An instrumentation design for the Alliant FX/80 is the subject
of Section V. The following section develops a theory of time-
based performance perturbation and constructs perturbation
models for removing timing perturbations during sequential
and concurrent execution.

IV. PERFORMANCE PERTURBATION MODELS

Models to capture and remove timing perturbations due to
instrumentation must be based on a particular instrumenta-

2Different parallel execution orders can occur, even without instrumen-
tation, due to asynchronous task operation. The reproducibility of parallel
executions is another aspect of uncertainty separate from instrumentation. For
purposes of our perturbation models in Section IV, we assume the differences
between possible event orders from uninstrumented executions is minimal.

tion approach. Because tracing is the most general form of
instrumentation, allowing both static and dynamic analysis,
we derive t ime-based perturbation models for trace instru-
mentation. Given an understanding of possible per formance
instrumentation perturbations (see Section III), measures of
in vitro trace instrumentation costs (see Section V), and an
instrumentation trace, our goal is to recover the “true” trace
of events as they would have been generated during an
execut ion without instrumentation. There are two phases in
this perturbation analysis:

l Execution TimingAnalysis-Given the measured costs of
instrumentation, adjust the trace event times to remove
these perturbations.

l Event Trace Analysis-Given instrumentation perturba-
tions that can reorder trace events, adjust the event
sequence based on knowledge of event dependencies,
maintaining causality.

In both phases, models are needed that descr ibe observed be-
havior as a perturbation of true behavior. For timing analysis,
one must approximate true times of event occurrence, either
for each trace event or for the total execut ion time. That is,
the timing model must descr ibe how the perturbations affect
measured execut ion times. Event analysis models are more
difficult; program or system semantic information is needed
to determine if the relative event order is incorrect and, if so,
generate a better approximation to the true order. Given the
semantic difficulties of event analysis, we restrict our attention
in this paper to two classes of timing analysis models; see
[8], [ll], and [9] for a discussion of event-based perturbation
models. The first, simpler model predicts total execut ion time
given trace data. The second adjusts the times of individual
trace events. For both models, we discuss, where appropriate,
the perturbations that might be removed by appropriate event
analysis models. W e begin, however, with a formal description
of the instrumentation problem.

A. Definitions
Given a program P composed of a sequence of state-

ments Sr, S.2,. . . , S, and a set of instrumentation points
Il,IZ;... , In, an instrumentation of P is def ined as

Z(P) = Il,SlrI2,S2,‘..,Jn,Sn

where some 13 may be null (i.e., no instrumentation). Thus,
we define instrumentation on a statement basis, where an event
represents the execut ion of a statement.

Ideally, we would like to use a trace of program events
void of instrumentation intrusion for per formance analysis. A
logical event trace, T, is a t ime-ordered sequence of events
el;..,e, represent ing a program’s actual execution. Each
ei is of the form {t(ei), eidi}, where eidi is the event
identifier for the ith event indicating the statement Seid, in
the program, and t(ei) is the time when the event occurred. If
the program is instrumented, we use the notation r, to denote
a measured event trace. Because a program can have both
sequential and concurrent components, we define the logical
sequential event trace, T’ (7; for the measured sequential

MALONY ef al.: PERFORMANCE MEASUREMENT INTRUSION AND PERTURBATION ANALYSIS 437

trace), as the subsequence of events ep, e4, . . ’ , e, generated
in sequential mode. Similarly, the logical concurrent event
trace for processor i, ri (rA for the measured concurrent
trace), is the subsequence of events eg , e6, . . . , ef executed
in concurrent mode on processor i.

Given these definitions and letting T(S,id,) be the true
execut ion time of statement Seid,, the total execut ion time
of a sequential program P is

The direct perturbation, DP,

DP = DP” + DP” (3)

is the increased execut ion time directly caused by instrumen-
tation; its sequential and concurrent components, DP” and
DP”, respectively, are

T”(P) = c T(Seid,).
e,EP and

The measured program execut ion time of a full instrumentation DP” = C T(Ieid,).
of P is e, ET2

where T(Ieeid,) is the true execut ion time overhead of the
instrumentation point Ieid,. The coupl ing of execut ion times
for program statements and instrumentation, represented by
$, denotes perturbations not included in individual instrumen-
tation and statement timings (e.g., the disruption of memory
reference patterns).

Although (1) and (2) estimate the instrumentation perturbation,
they do not estimate actual execut ion time from trace data. The
approximate execut ion time, Ta(P), is the difference between
the measured execut ion time and direct perturbation,

For concurrent execut ion time one must determine the
critical path during concurrent computat ion. Let rs =
ep,eq,“‘, e, represent the logical trace of sequential events
and 9 = e,,et,... , e, the logical trace of concurrent events
a long the critical path, respectively. The total true execut ion
time of a concurrent program P is

T,(P) = T,(Z(P)) - DP. (4)

That is, T,(P) is the approximated execut ion time after
applying a timing analysis model that includes only direct
perturbations.

Finally, the relative approximate error, RAE, estimates the
accuracy of a timing analysis model (i.e., how accurately one
can determine actual execut ion time from an instrumentation
trace):3

T”(P) = c T(Seid,) + c W ’eicil 1.
e,E+ e3 ETCP

Similarly, the measured program execut ion time of a full
instrumentation of P is

RAE = Ta(p) - T(P) _ Tm(z(p)) - Dp - T(P). (5)
T(P) - T(P)

B. Execution Time Analysis

The test of a timing analysis model’s veracity is its ability
to predict a program’s actual execut ion time given an instru-
mentat ion trace. In the remainder of this section, we present
execut ion time models for both sequential and concurrent
execution.

+ C [T(Seid,) @ T(Ir~cf,,)I.
e3 ET2

where rz = e,,e,,...,e, represents the critical path of
concurrent events in the instrumented program. Unfortunately,
the concurrent event sequence, rcP, identified as the critical
path in TC(P) may differ from the measured critical path,
72, for Th(Z(P)).

From these execut ion time definitions one can define a
series of instrumentation perturbation metrics. W e will use
T(P) and T, (Z(P)) to represent true and measured execut ion
times for both sequential and concurrent timing measurements.
The simplest metrics, absolute and relative error for measured
execut ion time, are def ined in the standard way. The absolute
error, AE, is

1) Sequential Execution: During sequential execution, the
principal perturbation is direct-execution of additional in-
strumentation instructions. This does not mean that indirect
sources of perturbations, such as those discussed in Section II,
do not exist. Rather, the execut ion time overhead is known
to occur with every instrumentation execution, where the
indirect perturbations are less likely and less deterministic.
Furthermore, instrumentation does not perturb the total order
of program events. Thus, our sequential perturbation model
assumes that all perturbations are direct (i.e., AE = DP)
and that the cost for instrumentation is decoupled from state-
ment execution. Simply put, the model approximates actual
execut ion time by the difference between measured execut ion
time and all direct instrumentation costs. More formally, the
model’s assumptions imply the following:

AE = T,@(P)) - T(P),

and the relative error, RE, is

(1) 1) The actual cost T(Ieid,) for each instrumentation point
1i is approximated by a constant a.4

“In the remainder of the paper we will use the measure T,(P)/(T(P) =
RAE + 1 to express the accuracy of the model.

4The approximation to T(I, ,d,), ~1, is given by the mean instrumentation
t ime dilation; see Section V and Table II.

RE = Tm(z(p)) - T(P)
T(P) .

(2)

438 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 4, JULY 1992

2) DP = Ce,Ers T(leid,) = aN, where iV is the number
of instrumentation points.

3) T,(P) = T,(Z(P)) - DP = T,@(P)) - aN.
4) RAE = (Ta(pT:-~(p)) w (Tm(T$;;-aN) -
As the approximate equality above suggests, the accuracy

of our assumption depends on the interaction of instrumenta-
tion perturbations and statement execution. W ith source code
instrumentation, compiler register optimizations can invalidate
the assumption of a constant instrumentation perturbation; see
Section V. To remove these indirect perturbations, we first
apply the simple model above to approximate the actual exe-
cution time denoted by T,(P). This prediction reflects direct
perturbations from instrumentation execution. W e then assume
the instrumentation code is removed from the instrumented
program’s assembly code (or object code) and measure the
execut ion time of the resulting program, producing a second
execut ion time estimate T:(P) that measures only the code
perturbations. The final execut ion time approximation in the
case of source code instrumentation is given by

TIYrce T(P) (I-‘) = T,(P) * T,~(P). (6)

The ideal approximation uses a nonuniform perturbation model
(i.e., one that considers the effects of each individual instru-
mentat ion instance). However, the number of different cases
to consider is huge and requires an analysis of the differences
in the code generated with and without instrumentation. In
light of these complications, the linear approximation above
is reasonable when source code instrumentation is necessary.

2) Concurrent Execution: During concurrent execution,
multiple threads of control may simultaneously reach trace
instrumentation points. Intuitively, a critical path analysis
would identify the set of instrumentation points needed to
compute total execut ion time [171. Unfortunately, perturbation
mechanisms such as those descr ibed in Section II-B make
this difficult. Events can be reordered, and the critical path
identified from the instrumentation trace may not be the critical
path in the real code.

. N max = (7-x 1 is the number of instrumentation
events in trace Pax.

3) T,(P) = T,(Z(P)) - DP’ = T,(Z(P)) - DP” -

In simpler terms, the concurrent perturbation model chooses
as the critical path the sequential execut ion path plus the
execut ion path a long the concurrent thread that has the greatest
accumulated execut ion time after the direct perturbation has
been removed; see Fig. 2.
C. Event Trace Timing Analysis

W ithout resorting to event analysis models, we can assume
that events are not reordered and that the concurrent thread
with the longest execut ion time (after direct perturbations have
been removed) is the critical path. If most threads execute simi-
lar instruction streams (i.e., there is little data dependent code),
this assumption is accurate.5 Like the sequential execut ion time
model, our base assumption implies the following:

1) The actual cost T(Ieid,) for each instrumentation point
1i is approximated by a constant a.

2) DP = DP” + DP&,, = DP” + aNmax, where

To recover the true sequence of trace event times, one must
consider not only the total execut ion time but all possible inter-
event dependenc ies and associated perturbations. Even given
careful analysis and a predictive model, one cannot directly
determine the accuracy of the predicted event times. If this
were possible, event tracing would be unnecessary. Instead,
one must infer the stability of the event timing model by
compar ing its trace predictions with varying levels of trace
instrumentation. As with execut ion time models, we begin
with the simpler, sequential case.

CYpl) vi0 < 1, 5 p,

. p is the number of processors,

. T,(Z(P;)) is the measured concurrent execut ion
time on processor i,

1) Sequential Trace Timing Analysis: Each trace event id-
entifies a unique spatial and temporal state (i.e., a code
location at a specif ied time). In a sequential trace, each event
is perturbed by the instrumentation for all previous events.
Thus, we iteratively calculate each event time, given the
perturbations of previous events.

For a trace 7’ of sequential events er, . . . , e,, where each
ei is of the form {&(e;), eid;}, we approximate the actual
time of event ei by t,(ei),

t,(ei) = t,(f?;) - (i - l)cY, (7)
where (Y is the mean time for each trace instrumentation point
and tm(ei) is the measured time of occurrence of ei from a
trace of an instrumented execut ion.6

“If not, an event analysis model is needed; see (81, [I 11, and [Y]. However, ‘For example, if ~11 is (854, 10) in the trace, the approximation of the
in Section VII, we show that t iming analysis a lone can yield significant insight actual t ime of occurrence would be t, (PII) = 8.51 - 10.9 * 10 = 745, if
in many practical cases. 0 = 10.9.

0 sequential execution
cmcurrenf execution, non-idle

I concurrent execution, idle

Fig. 2. Critical concurrent path selection

Sequential
Execution

Concurrent
Execution

Sequential
Execution

MALONY et al.: PERFORMANCE MEASUREMENT INTRUSION AND PERTURBATION ANALYSIS 439

Unfortunately, it is possible that two events e; and ej
occur so close together that t, (ei) 5 t,(ej) but t, (ei) >
t, (ej). Simply put, software instrumentation may be unable
to separate closely spaced events because the hardware timer
lacks the resolution to measure instrumentation overhead and
e lapsed time with sufficient accuracy. For example, on the
Alliant FX/80, the timer resolution is 10 bs, but the machine
cycle time is 170 ns. In a 10 ps window, several events
may occur. Although, for sequential programs, these events
form a total order, their t imes have a 10 ,LLS uncertainty. As
a consequence, we must assume simultaneity for all events
whose estimated times differ by less than 10 ps.

2) Concurrent Trace Timing Analysis: Approximating ev-
ent times for concurrent traces is more difficult than for
sequential traces. The perturbation of each event depends
on the perturbation of all events on the critical path to
the event. In the worst case, a complete characterization
of the execut ion dependenc ies among concurrent threads
of execut ion is required. To simplify analysis, we assume
that events on separate concurrent threads are independent
and that the program contains only a single level of fork-
join concurrency, a l though multiple phases of sequential and
concurrent computat ion are allowed. W ith the requisite event
analysis model, these assumptions can be relaxed.

Given a trace ri of concurrent events ei, . , ei for each
concurrent thread i, and a trace 9 of sequential events

s e;, . . . , e,, we approximate the actual time of a concurrent
event

1)

2)

eh as follows.
If en is the first concurrent event after a sequential event
e; in the time ordered trace, then

t,(et) = t,(ei,) - t,(eI) + t,(eg).

W e use the measured and approximated times of the
last sequential event as the time basis for comput ing
the execut ion time of the first concurrent event of a
concurrent phase of computat ion.
If ei immediately follows a concurrent event in the trace
on thread i, then

t,(e;) = t,(e2,) - tm(ej) + t,(eg) - ffci,

where ci is the number of events in concurrent thread
i after the last sequential event e: in the trace. Along a
sequence of concurrent events, we use the last sequential
event as the time basis for approximating the time of
occurrence of ei, but the direct perturbation along thread
i also is removed.

W e approximate the actual time of a sequential event ei as
follows.

1) If ei is the first sequential event in the trace after
the last concurrent event from a concurrent phase of
computat ion, then

b(4) = tm(ez) - t,(ej) + ta(ei.)

where &(e$) > t,(er) for all n and m such that
ei and e: appear before ei in the trace. It is here
that we determine the critical concurrent path in the

instrumented execution. The concurrent event appear ing
before ei in the trace with the greatest approximated
t imestamp is used as the time basis to approximate the
sequential event occurrence.

2) If et follows a sequential event in the trace, then

t,(e[) = tm(ez) - tm(e4) + ta(e4) - cwi

where ci is the number of events that have occurred in
sequential mode since the last approximated concurrent
event ej in the trace (or the beginning of the trace).
Along a sequence of sequential events, we again use
the last approximated concurrent event as the time basis
for approximating the sequential event occurrence. Ad-
ditionally, we remove the direct sequential perturbation.

V. PERFORMANCE INSTRUMENTATION

To validate our t ime-based perturbation models against
the Alliant FX/80 execut ion environment, we constructed a
performance instrumentation facility for the target machine.
Below, we descr ibe the performance instrumentation imple-
mentat ion for the FX/80 and its instrumentation overhead, both
in execut ion time and memory bandwidth. Measures of in vitro
instrumentation costs are necessary for practical application of
the perturbation models.

For our experiments on the Alliant FX/80, we constructed a
tracing library that includes static trace buffer declarations and
a set of Assembly language tracing routines. The library main-
tains a trace buffer for each of the eight potentially concurrent
threads of execut ion on the FX/80 and one additional buffer for
events that occur during sequential execution. Each invocation
of the tracing routine records a 32-bit t imestamp, a 32-bit event
identifier, the concurrency status, and the processor identifier
in the appropriate trace buffer.

Trace instrumentation can be inserted at either source or
assembly code levels. Although easier to automate, source
instrumentation can create register allocation and access prob-
lems. These register management problems are in addit ion to
those discussed in Section III-A. For example, the procedure
calling convent ion on the Alliant FX/80 has the caller save
registers. As a consequence, the invocation overhead for a
source code trace event depends on the number of registers
whose values must be retained across the instrumentation code
boundaries. Because the caller does not know what registers
are used by the tracing library, it must save all active registers.
The magni tude of this register management overhead depends
on the current register state. The alternative, saving registers in
the callee, fixes the overhead-only the registers used by the
trace library need be saved. The d isadvantage is that registers
may be saved unnecessari ly.

Not only does source code instrumentation require reg-
ister management , it may inhibit or force different code
optimizations. The latter depend on both the language and
the code generator. On the Alliant FX/80, the C compiler
does not restructure the source code prior to code generat ion
and optimization, nor does it generate vector or parallel
code. Inspection of the generated assembly code after source
instrumentation shows only simple optimizations; source state-

440 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 4, JULY 1992

ment boundar ies were clearly delimited. As an artifact of the
C compiler’s limited optimization, the overhead for source
instrumentation was nearly invariant across instrumentation
points.

Unlike source instrumentation in C, the overhead for a
Fortran source instrumentation point is context dependent .
The preprocessor of the Alliant Fortran compiler generates
restructured Fortran source based on detected data dependen-
cies. Although the resulting Fortran is functionally equivalent,
statements can be reordered, loops can be fused or distributed,
and new variables can be created [16]. Inserting trace instru-
mentat ion can inhibit a subset of these transformations.

As an example of the interaction of instrumentation and
source restructuring, Table I shows the generated code for the
following code drawn from the Livermore loops [12], both
with and without source code instrumentation.

DO 10 k=l, n
C instrumentation point

x(k) = Q + Y(k)*(R*ZX(k+lO)
+ T*ZX(k+ll))

C instrumentation point
10 CONTINUE

When no source code instrumentation is included, the
Alliant Fortran compiler generates code to pre- load the scalar
operands (Q, R, and T) in floating point registers (fp7,
fp5, and fp6, respectively) before the beginning of loop
execution; these instructions are not shown in Table I. When
instrumentation is added to the source code, the Fortran
optimizer recognized that loading the registers during each
loop iteration would eliminate the register save and restore
overhead for the instrumentation call. Thus, the instrumented
loop iterations fetch the scalar operands from memory. As
a consequence, the first two floating point multiplications in
the code without instrumentation become a sequence of two
floating point register loads followed by two floating point
multiplications in the instrumented code.

Given the perturbation var iance for Fortran source instru-
mentat ion and the desire to postprocess the trace data using
models of per formance instrumentation with known costs, we
opted to instrument all applications at the assembly code level.
In this mode, the compiler generates code without knowledge
of the instrumentation, the fixed instrumentation is inserted
in the resulting code, and the code perturbation is context
independent. W e avoided the problems of variable costs for
register save and restore by implementing an assembly code
version of our trace library with the callee saves convention.
W ith this instrumentation approach, an a priori measurement
of instrumentation overhead is possible and, by hypothesis, a
posteriori removal of perturbations via per formance perturba-
tion models.

To determine instrumentation overheads, we conducted a
series of preliminary experiments that measured the in vitro
costs of trace instrumentation. These costs provide the basis for
the in vivo tests of our primary hypothesis, that instrumentation
overheads can be removed from detailed performance traces.
Among the possible perturbations discussed in Section III,
the most significant are increased execut ion time (i.e., time
dilation) and increased memory bandwidth. W e began by

TABLE I
FORTRAN PERTURBATIONS WITH SOURCE CODE INSTRUMENTATION

Expression Normal Instrumented

fmuls fmoves
0 = R*ZS(k+lo) zx+lO[d7],fp5,fpO zx+lO[d7],fpl

fmuls r,fpl,fpO

fmuls fmoves
b = T*ZS(k+ll) zx+ll[d7],fp7,fpl zx+ll[d7],fp3

fmuls t,fp3,fp2
c=n+b fadds fpl,fpO,fpO fadds fp2,fpO,fpO
d = c*I-(k) fmuls y[d7],fpO,fp2 fmuls y[d7],fpO,fp4

S(k) = Q + d fadds fp6,fp2,fp2 fadds q,fp4,fp5
fmoves fp2,x[d7] fmoves fp5,x[d7]

TABLE II
INSTRUMENTATION TIME DILATION (MICROSECONDS)

Execution
Mode

Sequential
Sequential
Concurrent

Level Mean Time

C Source 10.26
Assembly 11.01
Assembly 12.25

Standard
Deviation

T1.75
k2.52
22.60

measur ing the cost to record an instrumentation trace event
for both sequential and concurrent execut ion on the Alliant
FX/80; see Table II.

A test program performed one thousand calls to the tracing
routine, and call overhead statistics were calculated from the
trace data.

Table II shows instrumentation statistics for three forms
of instrumentation. The smaller time for sequential source
instrumentation is directly attributable to the C compiler’s
optimizations for register save and restore. Because the as-
sembly code instrumentation always saves all registers, it has
a slightly higher cost. W ith concurrent tracing, all eight CE’s
must write to different trace buffers. In this case, the total cache
and memory traffic is greater and is distributed across a larger
fraction of the address space. Because there are more cache
misses and memory contention, the time dilation is greater.

In our implementation, each trace instrumentation point
generates 48 bytes of memory traffic. In addit ion to the
data p laced in the trace buffer, other memory operat ions are
needed to set up the subrout ine stack, fetch the concurrency
status, and read the trace buffer pointer. Using the execut ion
time measurements above, sequential and concurrent trac-
ing can generate at most 4.36 megabytes/second and 31.35
megabytes/second of memory traffic, respectively. Although
these are well below the peak bandwidth of the Alliant FX/80
memory bus, the additional memory traffic is substantial,
particularly for concurrent tracing. If the application program
is memory intensive, the potential memory perturbations of
Section II-A become real.

VI. EXECUTION TIME EXPERIMENTS

Our instrumentation hypothesis suggests that the perturba-
tions attributable to detailed performance instrumentation can
be minimized in sequential, vector, and parallel execut ion
modes. To test this hypothesis, we conducted a series of
instrumentation experiments to determine the magni tude of
per formance perturbations as a function of instrumentation
f requency and execut ion mode (i.e., sequential, vector, and

MALONY et al.: PERFORMANCE MEASUREMENT INTRUSION AND PERTURBATION ANALYSIS 441

Language
C
C
Fortran
Fortran
Fortran
Fortran
Fortran
Fortran
Fortran
Fortran

Mode
Sequential
Sequential
Sequential
Sequential
Sequential
Sequential
Vector
Vector
Concurrent
Vector Concurrent

TABLE III
EXPERIMENT CATEGORIES FOR THE LAWRENCE LIVERMORE LOOPS

Type
Source
NOP
Source
Null
Assembly
NOP
Assembly
NOP
Assembly
Assembly

Description
sequential C loops, instrumentation at source level
sequential C loops, NOP instrumentation using asm() construct
sequential Fortran loops, instrumentation at source level
sequential Fortran loops, instrumentation at source level but with instrumentation removed
sequential Fortran loops, assembly level instrumentation
sequential Fortran loops, NOP instrumentation of assembly code
vector Fortran loops, assembly level instrumentation
vector Fortran loops, NOP instrumentation of assembly code
concurrent Fortran loops, assembly level instrumentaion
vector-concurrent Fortran loops, assembly level instrumentation

parallel on the Alliant FX/80).
All experiments used C and Fortran versions of the

Lawrence Livermore loops (LLL) [12], a set of 24 loops often
used to benchmark high-performance computer systems. These
loops contain a diversity of language constructs, yet remain
small enough to permit detailed analysis of per formance
perturbations. Table III summarizes the combinat ions of
language and instrumentation used in our experiments.

W e emphasize that the purpose of our analysis was not to
characterize the performance of the Livermore loops. Instead,
the Livermore loops constitute a set of test cases for our
per formance perturbation models. Successful prediction of
loop execut ion times and recreation of event times would
validate our models. Furthermore, it would suggest that we can
confidently apply perturbation analysis to larger applications
where performance characterization is important.7

For each Livermore loop, two experiments were conducted
in each category; see Fig. 3. In the first experiment, trace
instrumentation was placed at the beginning and the end
of the loop to determine total loop execut ion time, the so-
called raw instrumentation. The second experiment produced
traces from a fulZ instrumentation with trace events for each
source statement.8 For a typical loop, this instrumentation
generated over 2000 trace events, with a total instrumented
execut ion time of less than 0.1 s. Despite this density of
trace instrumentation, our perturbation models often recover
actual execut ion time with less than 10% error, confirming
our hypothesis that detailed performance data need not be
incompatible with accurate measurement.

In the remainder of this section, we descr ibe the result of
an execut ion time analysis of the experimental results for
C, Fortran, vector Fortran, concurrent Fortran, and vector-
concurrent Fortran. In each case, we first analyze the the direct
perturbations caused by the performance instrumentation using
the simple models of Section IV.

W e then explain any deviations from the models by inves-
tigating sources of indirect perturbation (e.g., changes in the
generated code).

‘In [lo], we discuss the use of perturbation analysis in the performance
measurement of application codes on the Cray X-MP and Cray 2 systems.

‘A performance analyst would probably not chose to instrument at the level
of every source statement. However, because we are interested in determining
where the perturbation analysis fails with respect to instrumentation frequency,
the full instrumentation experiments are used as a stress test for the models.
In practice, reducing instrumentation detail will decrease the severity of the
perturbations and, hence, will result in more accurate approximations when
the perturbation models are applied.

Fig. 3. Instrumentation alternatives.

A. Sequential C Experiments

The goal of our sequential C experiments was to compare
source level instrumentation across languages. As ment ioned
earlier, the Alliant C compiler’s optimizations are but a subset
of those performed by the Fortran compiler, and we conjec-
tured that source instrumentation in C was less susceptible to
indirect per formance perturbations. Fig. 4 shows the results
of our experiments with complete source instrumentation for
some of the loops. Fig. 4 shows the outlier results from
the set of sequential C experiments. Loop results not shown
fall within this range presented. In the figure, the black bars
represent the ratio of full instrumentation execut ion time
to the raw instrumentation execut ion time. The dotted bars
represent the ratio of the predicted execut ion time, using the
model of Section IV-Bl, to the raw execut ion time for the
same loop. Clearly, the simple perturbation model predicts the
major sources of perturbation and accurately predicts actual
execut ion time. This result is true for all of the loops.

Although the simple perturbation model bounds the pos-
sible indirect perturbations of source code instrumentation,
it cannot quantify these effects. However, replacing the C
instrumentation statements with NOPs, retains the perturbations
of code generat ion but removes all ancillary perturbations of
instrumentation (e.g., memory referencing). The direct effects
of instrumentation, assumed to be constant in our model, are
emulated by the fixed execut ion time of the NOPs. Thus, the
difference between the real source instrumentation approxima-
tion and the approximation from the NOP instrumentation are
largely attributable to the ancillary perturbations. For the loops
in Fig. 4, Fig. 5 shows the result of predicting performance
with NOP instrumentation at every source statement. All pre-
dictions are within 3%. This small error is attributable solely to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 4, JULY 1992

6.43

2 3 4 6 10 12 13 14 16 22

Fig. 4. Source instrumentation of C loops.

6.45

Fig. 5. NOP source instrumentation of C loops.

the indirect perturbations of source code instrumentation. This
supports our claim that the perturbations of code generat ion
are small; a study of the assembly code produced from the
C source instrumentation also shows that the changes are
minimal. As an example, the model’s approximation for loop
10 improves from 1.16 to 1.02. This suggests that there are
perturbations different from instrumentation execut ion time,
which the C-NOP experiments model, account ing for the
s lowdown of the trace-instrumented run. Upon inspection
of the generated assembly code one sees that a register
dependency is introduced by the tracing instrumentation that is
not present in the code without instrumentation and the NOP
instrumented testcases. This dependency stalls the instruction
following the instrumentation by three cycles on the Alliant
FXl8 or 510 ns. If we modify the simple sequential model
to include this stalling, the approximation of the instrumented
execut ion improves to 1.09 (within 9% of actual execut ion
time).

B. Sequential Fortran Experiments
Unlike source level instrumentation in C, the breadth of

the Alliant Fortran compiler’s optimizations creates large
perturbations with source instrumentation. To quantify these
perturbations and to determine an acceptable instrumentation
methodology, we conducted experiments using four combi-
nat ions of source and assembly code instrumentation; see
Table III.

Fig. 6 shows the simplest test, complete instrumentation at
the source code level. Unlike the comparable C experiment in

Fig. 4, the Fortran perturbations cannot be explained by our
simple perturbation model, The model’s approximations differ
as much as 80% from the actual execut ion times. Clearly,
some perturbations are indirect.

To determine the indirect perturbations, including changes
to the generated code, we compiled each loop with source
instrumentation inserted. W e then removed the generated in-
strumentation from the assembly code. This instrumentation
retains all perturbations of code generat ion without the direct
perturbations that accrue from execut ion of instrumentation.
As Fig. 7 shows, these indirect perturbations are substantial;
inserting source instrumentation inhibits many code optimiza-
tions. Do the perturbations of code generat ion account for a
significant fraction of all perturbat ions? The white bars in Fig.
7 show the approximations of the model of Section IV-B1
when (6) is applied; that is, the code generat ion perturbations
have been removed from the original approximations. As can
be seen, the model predicts well for some loops. However, sig-
nificant perturbations remain, and one must consider additional
perturbations to fully explain the instrumentation’s effect on
loop performance in all cases.

The complex interactions of source instrumentation and the
Fortran compiler make isolation of instrumentation pertur-
bat ions difficult, if not impossible. Because our goal is the
systematic application of a standard perturbation model, the
remainder of our experiments were conducted by instrument-
ing the generated assembly code of each loop. W ith suitable
modifications, a compiler could generate this instrumentation
after all optimization, eliminating indirect perturbations during
code generat ion.

MALONY et al.: PERFORMANCE MEASUREMENT INTRUSION AND PERTURBATION ANALYSIS 443

12.34

Fig. 6. Source instrumentation of Fortran loops.

1.85 1.85 1.84

1 4 8 13 14 15 20 21
Loop

Model
Raw

d”

Fig. 7. Source instrumentation of Fortran loops with instrumentation removed.

Fig. 8 shows the merit of Fortran assembly instrumentation,
and, indirectly, the need for compiler supported performance
instrumentation. If code generat ion is not perturbed, mechan-
ical application of our simple perturbation model permits
recovery of total execut ion time with small error, typically
less than 5%. For those Livermore loops where this approach
fails, the error never exceeds forty percent. For example, for
loop 4 (not shown) Full/Raw = 14.22 and Model /Raw =
0.73, and for loop 15 (not shown) Full/Raw = 13.36 and
Model /Raw = 1.35. In each case, there is an extraordinary ra-
tio of instrumentation to application code (e.g., instrumentation
of a single machine instruction). Often, account ing for a single,
170 ns cycle register stall in the instrumented code reduces the
error to less than 5%. It is also possible that the instrumentation
causes a register dependency, present in the code without
instrumentation, to be eliminated. Single cycle instrumentation
typically requires hardware support; even in these stress tests,
the accuracy of the software model is surprising.

C. Vectorized Fortran Experiments

Instrumenting the iterations of a sequential loop produces a
sequence of trace events for each loop iteration. If the same
loop is vectorized and the loop bound is less than the vector
register length, a single machine instruction may represent the
entire computat ion. Thus, a vectorized loop contains fewer
potential instrumentation points. For example, if the vector
loop bound exceeds the vector register length, the loop can be
instrumented only at those points where register reloads occur.

TABLE IV
FORTRAN TRACE EVENT COUNTS

Livermore I Scalar I Vector I Livermore I Scalar I Vector
Loop 1 Events Events 1 Loop I Events 1 Events

1 I2006 1 68 1 12 120041 68
70
68

381
68
75
12

13
14
15
18
21

1092 43
17024 3424
10648 1040

4498 203
32554 2554

Table IV shows those Livermore loops that the Alliant
Fortran compiler vectorized and the number of associated
instrumentation trace events. The number of vector events
depends on the vector length and loop complexity.

Because a vector instruction performs many identical opera-
tions, it represents a larger computat ional granule than a simple
scalar instruction. Consequent ly, the relative perturbation for
instrumented vector instructions is less than that for scalar
instructions, and perturbation models should more accurately
predict execut ion time. Fig. 9 shows precisely this result.
Due to space restrictions, loop 8 (Ful1/ActuaZ = 1.62 and
Model/Actual = 1.00) is not shown.

D. Concurrent Fortran Experiments

Unlike vectorization, compil ing for concurrency does not
condense multiple statements; all observable events in a se-
quential trace remain present, but a subset of the events execute
concurrently. Moreover, tracing instrumentation may dominate

444 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 4, JULY 1992

16.89

1 2 6 7 8 13 16 19 20 22

Fig. 8. Assembly code instrumentation of Fortran loops.

3.25

Fig. 9. Assembly code instrumentation of vectorized Fortran loops.

concurrent execut ion of some loops (i.e., a significant fraction
of concurrent time may be spent in instrumentation code). In
these cases, critical paths must be identified with care. Recall
that the concurrent model of Section IV-B2 makes restrictive
assumptions about execut ion behavior.

Fig. 10 shows the result of our concurrent perturbation
model for those loops concurrent ized by the Alliant Fortran
compiler. Loop 8 (Full/Actual = 3.67 and Model/Actual =
1.32) is not shown.

Clearly, the concurrent perturbation model yields approxi-
mations that are both high and low. For most loops, the errors
can be explained via a combinat ion of register dependenc ies
and increased memory traffic. For instance, by applying con-
current trace instrumentation overheads in the timing analysis
for those loops where tracing dominates execut ion (8, 12, 13,
14, and 18) we were able to reduce errors to within 10%. For
other codes, in particular loops 3, 4, and 17, the concurrent
execut ion model assumed by the timing model is violated due
to data dependent behavior. Because the timing model does
not include critical path analysis, substantial approximation
errors occur in these codes. W e consider loops 3 and 17 in
more detail to explain why these errors occur.

For Livermore loop 3 (Inner Product), our execut ion time
model overest imates the instrumentation perturbation (i.e., the
model’s estimate of total execut ion time is too low). Because
the perturbation model charges only for direct perturbations,
one infers that the instrumentation reduces the execut ion
time of the application code. For loop 3, the Alliant Fortran
compiler creates a critical section around the update of the
inner product sum. W ithout instrumentation, most processors

are blocked on entry to the loop’s critical section. Adding
instrumentation increases the total computat ion in each con-
current iteration and reduces the probability of blocking at
the critical section. In consequence, the processors spend
less time waiting when the code is instrumented; subtracting
a fixed overhead underest imates the total execut ion time.
Interestingly, this analysis also applies in the case of loop
4 (Banded Linear Equations).

For loop 17 (Implicit, Condit ional Computation), our model
underest imates the instrumentation perturbation. Surprisingly,
the reason is the same as that for loop 3-the loop contains a
critical section. Unlike loop 3, however, the trace instrumen-
tation lies mostly inside the critical section. This increases the
probability of contention, and the critical section becomes a
larger fraction of the total execut ion time in the instrumented
code. Subtracting a fixed overhead overest imates the total
execut ion time.

The concurrency experiments reveal both the importance of
instrumentation placement and the need for accurate critical
path analysis. The latter permits identification and removal
of indirect perturbations (e.g., synchronizat ion stalls). This is
considered in detail in [8], [ll], and [9].

E. Vector Concurrent Fortran Experiments
Vector concurrent execut ion mode combines the perturba-

tions of both vectorization and concurrentization. Fortuitously,
the respective perturbations are not additive. Vectorization
damps perturbation by increasing computat ion granules while
reducing the number of instrumentation events. Concurrency,

MALONY et al.: PERFORMANCE MEASUREMENT INTRUSION AND PERTURBATION ANALYSIS 445

1 3 4 7 9
Lo::

13 14 17 18 21

Fig. 10. Assembly code instrumentation of concurrent Fortran loops.

3.38

1 3 i~~tt 7 9 Lo:; 12 13 21 22

*
n $&?&;

Fig. 11. Assembly code instrumentation of vector concurrent Fortran loops.

however, reduces the execut ion time and increases the stress
on the memory hierarchy.

Fig. 11 shows the result of our experiments for those loops
that executed in vector concurrent mode on the Alliant FX/80.
Loop 8 (Full/Actual = 1.92 and Model/Actual = 1.04) is
not shown.

In contrast to Fig. 8 or even Figs. 9 or 10, the ratio of
instrumented to actual execut ion time is small; each processor
records a smaller number of events. W ith one exception, our
perturbation model consistently underest imates total execut ion
time. As discussed below, we conjecture that the underlying
reason is the same for each loop.

Most loops contain sequences of vector memory operations,
separated by instrumentation. Moreover, earlier studies have
shown that the Alliant FX/80 is susceptible to cache bank
content ion in vector concurrent mode [l], [5]. Although the
trace instrumentation also references the cache, the request rate
is modest compared to that for vector instruction sequences.
W e conjecture that tracing changes the temporal distribution of
memory references, reducing the number of cache and memory
bank conflicts. This, in turn, reduces the total execut ion time.

W ith rare exception, our per formance instrumentation
models accurately approximate total execut ion time for
the Lawrence Livermore loops when run in sequential,
vector, concurrent, and vector-concurrent modes with full
instrumentation on the Alliant FX/80. In those instances where
the models are inaccurate, most inaccuracies can be explained
by simple analysis of the instrumented code. This suggests
that simple perturbation timing models, coupled with event
trace models, would permit detailed, but accurate, per formance
tracing.

VII. EVENT TRACE ANALYSIS

The experiments descr ibed in Section VI evaluated the
feasibility of predicting total execut ion time in the presence of
massive instrumentation. The results show that global perfor-
mance measures, such as total execut ion time, are computable
to a acceptable accuracy via application of per formance pertur-
bation models. Clearly, one need not instrument every source
language statement to determine total execut ion time; simpler,
less intrusive methods exist. The obvious motivation of this
approach is to obtain additional per formance data for more
detailed performance analysis. However, the benefit of this
trace data depends on its accuracy (i.e., how well it reflects
actual event times and orders). More detailed measurement
will introduce more perturbations that the models must resolve
to maintain an acceptable level of accuracy in per formance
approximations.

To determine the accuracy of trace data, one needs a
standard of reference. W ithout a passive hardware monitor to
capture and record events, no such standard exists. Instead, one
must compare a sequence of event traces, each produced with
successively smaller subsets of the complete trace instrumen-
tation. As the number of trace events decreases, the presumed
accuracy of the event times and orders increases.

From the 24 Livermore loops, we selected two loops for
detailed study. The first, loop two, executes in sequential
mode; the second, loop eight, executes in sequential, vector,
concurrent, and vector-concurrent modes. For each loop, we
created a trace by instrumenting each source language state-
ment, the fill trace. In addition, we generated traces using two
partial instrumentations, each a successively smaller subset

446 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 3, NO. 4, JULY 1992

TABLE V
EVENT TIME DIFFERENCES FOR LOOP Two

Trace

Full
Full

Partial-l

Reference

Events

333
333
236

Time
D

38l.4
383.4
378.7

Trace

Partial-l
Partial-2
Partial-2

Analyzed

Events

236
139
139

Time
P

378”.7
380.6
380.6

Total Mean
Delta Delta

PS 11s

933.4 3.96
402.8 2.90
429.3 3.09

Percent
Delta

1.04
0.76
0.81

call trace-event(O)
II = 101

call trace-event (1)
IPNTP = 0

call trace-event(2)
222 CONTINUE

call trace-event(3)
IPNT = IPNTP

call trace-event(4)
IPNTP = IPNTP + II

call trace-event (5)
II = II/2

call trace-event(6)
I = IPNTP

call trace-event(7)
DO 2 K = IPNT+2, IPNTP .2

call trace-event(8)
I = 1+1

call trace-event(g)
X(I) = X(K) - V(K)*X(K-1) - V(K+i)*X(K+l)

call trace-event (10)
2 CONTINUK

call trace-event(l1)
IF(II.GT.l) GO TO 222

call trace-eventfll)

Fig. 12. Instrumented Livermore loop two

of the complete instrumentation, traces partial-l and partial-
2, respectively. After applying the trace perturbation model
to each trace, we used Gantt charts [7] to verify qualitative
agreement; comparison of the mean percent difference between
event times confirmed quantitative agreement.

A. Loop Two-Incomplete Cholesky Conjugate Gradient

Livermore loop two, shown in Fig. 12, is an excerpt from
an incomplete Cholesky conjugate gradient code that executes
in sequential mode. Fig. 13 shows the Gantt charts of traces
from three levels of instrumentation.’

Events 3 and 11 mark the beginning and end, respectively
of each outer loop iteration. Traces full and partial-l also
show the inner loop iterations, marked by events 8 and 10,
respectively.

Although the three traces agree qualitatively, there are
small quantitative differences. The total execution times, as
predicted by the trace perturbation models, do differ by a
small amount, but not greater than 1.25%. To verify event
times, we correlated trace events and compared their times
for three combinations of a reference trace, which contains

91n Figs. 13 and 15, individual events are marked by the symbol +; the dis-
play scale for other Gantt charts does not permit display of individual events.
In the figures, event simultaneity is a consequence of limited instrumentation
clock resolution; see Section V.

T
1
m
e

I I 1
0 2 4 6 8 10

statteynt

Fig. 3.

Partial-2

Sequential execution of loop two.

the larger number of events, and an analyzed trace, which
contains a subset of the events in the reference trace. The
sum of the absolute differences between matched event times
is the total event delta. Dividing this number by the number
of events in the analyzed trace yields the mean event delta.
Finally, dividing the mean event delta by the number of events
yields the percent event delta. Table V shows the result of this
analysis for loop two.

The mean difference between corresponding event times is
less than 2% of the total execution time, or 8 ps. This is an
excellent match, given the Alliant FX/80 timer resolution of
10 ps.

B. Loop Eight-ADZ Integration
Loop eight, an AD1 integration, can be both vectorized and

parallelized. This permits evaluation of trace perturbation for
all the Alliant’s execution modes. Figs. 14 and 15 show the
Gantt charts for sequential and vector mode, respectively.

Although the number of sequential events makes visual
comparison difficult, the temporal event correlation for vector

MALONY et al.: PERFORMANCE MEASUREMENT INTRUSION AND PERTURBATION ANALYSIS 447

TABLE VI
EVENT TIME DIFFERENCES FOR LOOP EIGHT, SEQUENTIAL EXECUTION

Trace

Full
Full

Partial-l

Reference
Events

1395
1395

801

Time
P

410;.0
4100.0
4051.8

Trace

Partial-l
Partial-2
Partial-2

Analyzed
Events

801
402
402

Time
ClS

4051.8
3990.0
3990.0

Total Mean
Delta Delta

/
224T5.1

P
27.;8

24038.8 59.80
12992.1 32.32

Percent
Delta

0.69
1.50
0.81

TABLE VII
EVENT TIME DIFFERENCES FOR Loop EIGHT, VECTOR EXECUTION

Trace

Full
Full

Partial-l

Reference
Events

75
75
59

Time
P

128t.2
1285.2
1280.5

Trace

Partial-l
Partial-2
Partial-2

Analyzed
Events

59
38
38

Time
ps

1280.5
1278.5
1278.5

Total
Delta

I-1
I74s.9
238.3
226.9

Mean
Delta

b
2.;6
6.27
5.97

Percent
Delta

0.23
0.49
0.47

0 7. 4 6 8 10

syemLlt

Fig. 14.

Partial-2

Sequential execution of loop eight

mode is striking. This is a direct consequent of the high
accuracy of the total execut ion time approximations.

The accuracy of the event times, as predicted by the trace
perturbation model for sequential and vector execution, is
confirmed by Tables VI and VII. In sequential execut ion
mode, event timing differences, a l though as much as 60 ps on
average, are less than 1.5% of the total execut ion time. The
discrepancies for vector mode are even smaller-the mean
difference is less than the timing resolution, and the percent
difference is less than 0.5%.

Fig. 16 shows the Gantt charts for the sequential thread
and all concurrent threads from the concurrent execut ion of

T
i

In
e

Statement
Event

Fig. 15.

Partial-l

Vector execution of Loop eight.

Livermore loop eight on six processors.10
In this code, there are two concurrent loops of equal com-

plexity, separated by a sequential operation. During concurrent
computat ion, each thread receives roughly the same amount of
work. These execut ion behavior characteristics are similar for
each set of traces.

Although there are qualitative similarities between the traces
of Fig. 16, the differences in predicted total execut ion time
suggest substantial error in individual event times. Indeed, the
execut ion time difference between the full and partial-2 trace

“W e used only six Alliant CE’s in these experiments to reduce the visual
complexity of the figures.

448 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 4, JULY 1992

TABLE VIII
EVENT TIME DIFFERENCES FOR LOOP EIGHT, CONCURRENT EXECUTION

Thread

Seq
0
1
2
3
4
5

Seq
0
1
2
3
4
5

Seq
0
1
2
3
4
5

Reference Trace
Events

Full
9

238
231
238
224
231
224
Full

9
238
231
238
224
231
224

Partial-l
9

136
132
136
128
132
128

Time
pS

1126.6
1020.3
1030.3
1030.3
1046.6
1046.6
1077.5

1126.6
1020.3
1030.3
1030.3
1046.6
1046.6
1077.5

1052.1
989.4
989.4
989.4
963.0
963.0

1013.0

Thread

Seq
0
1
2
3
4
5

Seq
0
1
2
3
4
5

Seq
0
1
2
3
4
5

Analyzed Trace
Events

Partial-l
9

136
132
136
128
132
128

Partial-2
6

68
66
68
64
66
64

Partial-l
6

68
66
68
64
66
64

Time
fl.7

1052.1
989.4
989.4
989.4
963.0
963.0

1013.0

952.4
910.6
910.6
910.6
892.4
892.4
922.4

952.4
910.6
910.6
910.6
892.4
892.4
922.4

Total
Delta

PS

355.3
2926.1
4930.2
3272.4
6294.3
4890.5
5631.7

444.6
4045.4
5304.8
4240.9
4453.3
4937.9
5590.1

267.9
2664.8
2859.6
2710.3
3400.2
2535.4
2762.1

Sequential

Full

T

f!

m e

0

:

1

i

2
-

I

3
-

~

4

~
“389 0369 0369 0369 0369 0369 0369

Sequential 0

~
0369

0

~
369

1

5
1369

1

~
)369

2

~
3369

2

4
1369

3

~
3369 I 0369

5
-

E

‘rm’
1369 0369 0369

5

~
0369

Fig. 16. Concurrent execution of Loop eight.

is 18%; see Table VIII. Surprisingly, however, the percent
event delta between the full and partial-l traces is less than
6%; the same is true for the compar ison of traces partial-l

Mean
Delta

11s

Percent
Delta

39.48 3.15
21.51 2.17
37.35 3.78
24.06 2.43
49.17 5.11
37.05 3.85
44.00 4.34

74.10 7.78
59.49 6.53
80.38 8.8
62.37 6.85
69.58 7.80
74.82 8.38
87.35 9.47

44.65 4.69
39.19 4.30
43.33 4.76
39.86 4.38
53.13 5.95
38.42 4.30
43.16 4.68

and partial-2. As the difference between the number of events
in the reference trace and those in the analyzed trace increases
(e.g., in the compar ison of full and partial-2), the percent
event delta rises. However, even in the worst case it does
not exceed 10% of the total execut ion time. Stated another
way, the average uncertainty between two matched events in
the fill and partial-2 traces is less than 10%.

Finally, Fig. 17 shows the Gantt charts for vector-concurrent
execut ion mode. Vectorization reduces the number of possible
instrumentation points and the total number of trace events,
and the predicted execut ion times differ by less than 3%.
Because the two loops in the code are statically scheduled
in vector-concurrent mode, unlike the dynamic schedule in
concurrent mode, the execut ion behavior across processors
should not differ. In Fig. 17, the execut ion signatures are
indistinguishable. Moreover, Table IX shows that the percent
delta in event times is less that 5%. More importantly, the
mean differences are at the limits of the timer resolution.

VIII. CONCLUSIONS

The foundat ion of computer system performance analysis
is measurement and experimentation. W ith the except ion of
passive hardware performance monitors, per formance experi-
ments rely on software instrumentation for per formance data
capture. Such instrumentation mandates a delicate balance
between volume and accuracy. Excessive instrumentation per-
turbs the measured system; limited instrumentation reduces
measurement detail-system behavior must be inferred from
insufficient data. Regrettably, there are no formal models of
per formance perturbation that would permit quantitative eval-
uation from instrumentation costs, measured event frequency,
and desired instrumentation detail. Given the lack of models
and the potential dangers of excessive instrumentation, detailed
software event traces often are rejected for fear of corrupting

MALONY ef al.: PERFORMANCE MEASUREMENT INTRUSION AND PERTURBATION ANALYSIS 449

TABLE IX
EVEN? TIME DIFFERENCES FOR LOOP EIGHT, VECTOR-CONCURRENT EXECUTION

Thread

Seq
0
1
2
3
4
5

Seq
0

Reference Trace
Events

Full
10
22
22
22
22
22
22
Full
10
22

Time
ps

465.4
446.4
446.4
446.4
446.4
446.4
446.4

465.5
446.4

Thread

S-4
0
1
2
3
4
5

W
0

Analyzed Trace Total
Events T ime Delta

ps ps
Partial-l

10 470.2 79.0
18 452.0 170.3
18 451.1 198.3
18 452.0 170.3
18 451.1 308.2
18 451.1 198.2
18 452.0 189.5

Partial-2
6 1 460.2 23.4

12 429.7 101.0
12 440.2 84.1
12 429.7 105.1
12 440.2 80.1
12 429.7 101.0

5

Seq
0
1
2
3
4
5

I 22 1 446.4 5 12 1 439.2 96.8
Partial-l Partial-2

10 470.2 W 6 460.2 63.5
18 452.0 0 68 429.7 195.7
18 451.1 1 66 440.2 182.4
18 452.0 2 68 429.7 184.3
18 451.1 3 64 440.2 253.8
18 451.1 4 66 429.7 204.8
18 452.0 5 64 439.2 204.2

P&id-l
Sequential 0

Partial-2
Sequential 0

1

i
5 1015

1

1 2

4

1
5 1015

4

i
5 1015

4

1
5 1015

5

1
5 1015

5

1
5 1015

5

:
5 1015

Fig. 17. Vector-concurrent execution of loop eight.

the data (i.e., a small volume of accurate, though incomplete,
instrumentation data is preferred).

W e hypothesized that current restrictions on the volume

Mean
Delta

ps

Percent
Delta

7.90 1.68
9.46 2.09

11.01 2.44
9.46 2.01

17.12 3.80
11.01 2.44
10.53 2.33

3.91 0.85
8.42 8.42
7.01 1.59
8.76 2.04
6.67 1.52
8.42 1.96
8.07 1.84

10.58 2.30
16.31 3.79
15.20 3.45
15.35 3.57
21.15 4.81
17.06 3.97
17.02 3.87

of per formance data were unduly pessimistic. To test this
hypothesis, we developed a series of simple perturbation
models that approximate trace event times from instrumented
execution. Using these models, we conducted a series of
instrumentation experiments to determine the magni tude of
per formance perturbations as a function of instrumentation
f requency and execut ion mode, and the accuracy of the per-
formance approximations.

The experiments discussed in Section VI and Section VII
are stress tests for the t ime-based performance perturbation
models. The ability to approximate actual code execut ion times
to within 15% from full trace instrumentations, with execut ion
time perturbations exceeding four orders of magnitude, is
remarkable, especially for such relatively simple models. Even
for those Livermore Loops that are not well approximated,
often minor adjustments in the models to account for register
interlock stalls or increased memory reference density due
to tracing operat ions can account for the error. Not only do
the models perform well when approximating global perfor-
mance measures, but individual event times are computable
to acceptable accuracy, even in the presence of massive trace
instrumentation.

The t ime-based perturbation models accurately capture the
effects of instrumentation perturbation when the time and
order events occur is execut ion independent. This is true for
sequential (scalar and vector) execut ion because the execut ion
states of sequential programs form a total order, and event
times are affected only by instrumentation overhead. Even for
some concurrent execut ion scenarios, typically those with fork-
join behavior and no inter-thread dependencies, the t ime-based
perturbation models are good.

However, in general, concurrent execut ion involves data
dependent behavior. The states of parallel programs inherently
form a partial order that must be followed during execution.

450 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 4, JULY 1992

If dependency control is spread across threads of execution,
instrumentation can perturb the timing relationships of events.
Direct applications of t ime-based perturbation models will
fail because they do not capture these inter-thread event
dependencies. Under the timing model assumptions of event
independence, approximated event timings for concurrent exe-
cution can also violate the required partial order. Furthermore,
critical per formance phenomena such as synchronizat ion be-
havior cannot be accurately modeled using timing information
alone. Clearly, concurrent perturbation analysis necessitates
a model of event dependenc ies and instrumentation. In [8],
[111, and [9], we descr ibe models for event-based perturbation
analysis that use the measurement and subsequent analysis of
synchronizat ion operat ions to resolve perturbation effects in
cases where there are execut ion event dependencies.

Although there remain fundamental limits on the attainable
volume of accurate per formance data, we believe further de-
velopment of trace perturbation models will permit acquisit ion
of more data than traditionally bel ieved possible.

PI

PI

[31

141

[51

PI

[71

PI

[91

1101

illI

[121

REFERENCES

W. Abu-Sufah and A. Malony, “Vector processing on the Alliant FX/8
multiprocessor,” in Proc. 2986 Int. Conf Parallel Processing, Aug.
1986, pp. 559-566.
R. Arlauskas, “iPSC/2 system: A second generat ion hypercube,” in Proc.
Third Conf Hypercube Concurrent Comput. Appl., Pbl. I, Pasadena, CA,
ACM, Jan. 1988, pp. 38-42.
S. Chen, “Large-scale and high-speed multiprocessor system for scien-
tific applications: Cray X-MP-2 series,” in Proc. NATO Workshop High
Speed Computat. J. Kowalik, Ed., Springer-Verlag, 1984, pp. 59-67.
D. Ferrari, “Considerations on the insularity of performance evaluation,”
IEEE Trans. Software Eng., June 1986, pp. 678-683.
K. Gallivan, D. Gannon, W. Jalby, A. Malony, and H. Wijshoff,
“Behavioral characterization of multiprocessor memory systems: A case
studv,” in Proc. 1989 ACM SIGMETRICS Co& Measurement Model inn
Cornput. Syst., Berkeley, CA, May 1989, pp. -79-88.
D. Gannon, W. Jalbv, and K. Gallivan. “Strategies for cache and local
memory management by global program transformation,” in Proc. 1987
Int. Conj Supercomput., Athens, Greece, ACM, 1987.
H. Gantt, “Organizing for work,” Indust. Management 58, pp. 89-93,
Aug. 1919.
A. Malony, “Performance observability,” Ph.D. dissertation, Dep. Com-
put. Sci., Univ. of Illinois at Urbana-Champaign, Sept. 1990.
-> “Event based performance perturbation: A case study,” in Proc.
Third ACM SIGPLAN Symp. Principles Practice Parallel Programming,
Apr. 1991.
A: Malony, J. Larson, and D. Reed, “Tracing application program
execution on the Crav X-MP and Crav 2,” in Proc. 1990 SuDercomput.
Conj, Nov. 1990, pp. 60-73. .

- _

A. Malony and D. Reed, “Models for performance perturbation anal-
ysis,” in Proc. Workshop Parallel Distributed Debugging, ACM Sig-
planfigops and Office of Naval Research, May 1991.
F. McMahon, “The Livermore Fortran kernels: A computer test of
the numerical performance range,” Tech. Rep. UCRL-53745, Lawrence
Livermore National Laboratory, Dec. 1986.

[l31

[141

[151

I1’4

[171

R. Perron and C. Mundie, “The architecture of the Alliant FX/8
computer,” in Proc. Spring COMPCON ‘86, Mar. 1986, pp. 390-393.
A. Smith, “Cache memories,” ACM Comput. Surveys 14, vol. 3,
473-530, Sept. 1982.
J. Smith, “A simulation study of the Cray X-MP memory system,” IEEE
Trans. Comput., vol. C-35, pp. 613-622, July 1986.
M. Wolfe, “Optimizing supercompilers for supercomputers,” Ph.D.
dissertation, Dep. Comput. Sci., Univ. of Illinois at Urbana-Champaign,
1982.
C. Yang and B. Miller, “Critical path analysis for the execution of
parallel and distributed programs, ” in Proc. 8th Int. Conj Distributed
Comput. Syst., June 1988, pp. 366-375.

Allen D. Malony (M’88) received the B.S. and
M.S. degrees in computer science from the Uni-
versity of California, Los Angeles, in 1980 and
1982, respectively, and the Ph.D. degree in com-
puter science from the University of Illinois at
Urbana-Champaign in 1990.

He was a Fulbright Scholar to the Netherlands
in 1991 and is currently an Assistant Professor
in the Department of Computer and Information
Science at the University of Oregon. His current
research interests include performance evaluation,

:tures, and parallel programming environments.

Daniel A. Reed (S’80-M’82) received the B.S.
(summa cum laude) in computer science from the
University of Missouri, Rolla, in 1978, and the M.S.
and Ph.D. degrees, also in computer science, from
Purdue University, West Lafayette, IN, in 1983.

He is currently a Professor in the Department
of Computer Science, University of Illinois, Ur-
bana-champaign. He holds joint appointments in
the Center for Supercomput ing Research and De-
velopment and the Beckman Institute.

Harry A. G. Wijshoff was born in 19L” :- c-^~.-- “” 111 “IG”G;II-

bicht, The Netherlands. He received the M.Sc. de-

-I Department of Computer Science, University of
Utrecht. until Julv 1992. Currentlv. he is a Professor

, ,I

in the Department of Computer Science at Leiden University, Leiden, The
Netherlands. His current research interests include performance evaluation,
sparse matrix algorithms, programming environments for parallel computers,
and parallel numerical algorithm development.

gree (cum laude) in mathematics and computer
science in 1983, and the Ph.D. degree in 1987, from
the University of Utrecht, The Netherlands.

From 1987 until 1990 he was a visiting senior
computer scientist at the Center for Supercomput-
ing Research and Development at the University
of Illinois. He was an Associate Professor at the

