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Abstract-Software performance instrumentation perturbs the 
state of the measured system. The primary source of this pertur- 
bation is the execution of additional instructions. However, ancil- 
lary perturbations include disabled compiler optimizations and 
memory conflicts. Collectively, these perturbations can increase 
the measured system’s execution time, change memory reference 
patterns, reorder events, and even cause register interlock stalls. 
The perturbation magnitude depends on the intended perfor- 
mance measurements and the granularity of the instrumentation. 

In this paper, we study the instrumentation perturbations of 
software event tracing on the Alliant FX/SO vector multiprocessor 
in sequential, vector, concurrent, and vector-concurrent modes. 
Based on experimental data, we derive a perturbation model that 
can approximate true performance from instrumented execution. 
We  analyze the effects of instrumentation coverage (i.e., the ratio 
of instrumented to executed statements), source level instrumen- 
tation, and hardware interactions. 

Our results show that perturbations in execution times for 
complete trace instrumentation can exceed three orders of mag- 
nitude. With appropriate models of performance perturbation, 
these perturbations in execution time can be reduced to less than 
20% while retaining the additional information from detailed 
traces. In general, we conclude that it is possible to characterize 
perturbations through simple models. This permits more detailed, 
accurate instrumentation than traditionally believed possible. 

Index Terms-Instrumentation intrusion, instrumentation un- 
certainty principle, performance measurement, perturbation 
analysis. 

I. INTRODUCTION 

S YSIEMATIC application of the scientific method is the 
foundat ion of modern  science. Central to this Weltun- 

schauung is the experimental testing of hypotheses and  the 
operational paradigm (i.e., if an  experiment cannot  be  con- 
structed, even  in principle, to measure a  phenomenon,  it can- 
not, operationally, be  said to exist). In any  field, experimental 
progress is inextricably coupled with technological advances;  
the latter provide the requisite tools to more accurately mea-  
sure known phenomena  and  to test hypotheses that predict the 
existence of heretofore undetected phenomena.  The  r ichness 
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of the computer  system design space,  with its seemingly 
infinite variations, makes the scientific method’s systematic 
measurement  and  hypothesis testing both appropriate and  
desirable [4]. However,  because computer  system design is 
an  experimental science, its practit ioners are prey to many  
of the same instrumentation pitfalls facing any  experimental 
scientist, notably uncertainty and  instrumentation perturbation. 

A multiplicity of measurement  levels permeate all ex- 
perimental sciences, including computer  system performance 
analysis. For computer  systems, the lowest level includes 
performance measurements of the hardware design. Determin- 
ing this per formance provides both a  design validation and  
directives for system software design. Only by  understanding 
the strengths and  weaknesses of the hardware can system soft- 
ware designers develop an  implementation and  user interface 
that maximizes the fraction of the raw hardware performance 
available to the end  user. Given some characterization of 
the balance between system resources, users can develop 
algorithms that best optimize their use. Finally, the best 
mix of key algorithms will maximize the performance of 
user applications. Together,  these measurement  levels form a  
hierarchy of experimental observat ions and  associated theory 
that descr ibe the system’s performance behavior.  

The  detailed measurement  obtained at low levels is not 
without price. In nineteenth century physics, advances in 
instrumentation technology and  statistical analysis precipi- 
tated a  theoretical cr isis-measured data could no  longer 
be  reconci led within the existing theoretical framework. The  
resulting theoretical revolution def ined limits on  the accuracy 
and  possible perturbations of experimental measurement.  In 
physics, the Heisenberg uncertainty principle bounded  the 
attainable measurement  certainty. Moreover,  it became clear 
that instrumentation and  phenomenon  must be  commensurate 
to maintain instrumentation perturbations at acceptable levels 
(e.g., imaging very small systems requires electron, rather than 
optical, microscopy). 

In computer  system performance analysis, the problems 
of uncertainty and  perturbation are no  less profound. W ith 
the except ion of passive hardware performance monitors, 
per formance experiments rely on  software instrumentation for 
per formance data capture. Such instrumentation mandates a  
delicate balance between volume and  accuracy.’ Excessive 
instrumentation perturbs the measured system; limited instru- 

t In contrast to other experimental disciplines, computer systems instrumen- 
tation does permit the epistemological trickery of declaring instrumentation 
part of the system. The perturbation is then, ipso facto, null. In this paper, we 
exclude such possibilities. 
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mentation reduces measurement detail-system behavior must 
be inferred from insufficient data. Simply put, performance in- 
strumentation manifests an Instrumentation Uncertainty Prin- 
ciple: 

l Instrumentation perturbs the system state. 
l Execution phenomena and instrumentation are coupled 

logically. 
l Volume and accuracy are antithetical. 
The primary source of instrumentation perturbations is 

execution of additional instructions. However, ancillary per- 
turbations can result from disabled compiler optimizations 
and additional operating system overhead. These perturbations 
manifest themselves in several ways: execution slowdown, 
changes in memory reference patterns, event reordering, and 
even register interlock stalls. From a performance evaluation 
perspective, instrumentation perturbations must be balanced 
against the need for detailed performance data. Regrettably, 
there are no formal models of performance perturbation that 
would permit quantitative evaluation from instrumentation 
costs, measured event frequency, and desired instrumentation 
detail. 

Given the lack of models and the potential dangers of 
excessive instrumentation, detailed software event traces often 
are rejected for fear of corrupting the data (i.e., a small 
volume of accurate, though incomplete, instrumentation data 
is preferred). We hypothesize that this restriction is unduly 
pessimistic. To test this hypothesis, we conducted a series 
of instrumentation experiments to determine the magnitude 
of performance perturbations as a function of instrumentation 
frequency and execution mode (i.e., sequential, vector, and 
parallel). Based on this experimental data, we derived a 
perturbation model that can approximate true performance 
from instrumented execution. This permits more detailed, 
accurate instrumentation than traditionally believed possible. 

We begin in Section II by describing the experimental 
environment, the Alliant FX/80, a shared memory, vector 
multiprocessor. In Section III, we discuss the instrumentation 
perturbations possible on this parallel system. The models of 
performance perturbation that permit removal of performance 
perturbations from instrumented programs are developed in 
Section IV. A description of the instrumentation environment 
is given in Section V. In Section VI and Section VII, we 
validate the models of Section IV using experimental data 
obtained from execution of the Livermore Loops. Finally, 
Section VIII summarizes our results and suggests avenues for 
further research. 

II. EXPERIMENTAL ENVIRONMENT 

Our hypothesis implies that the perturbations attributable 
to detailed performance instrumentation can be quantified in 
sequential, vector, and parallel execution modes. Ideally, each 
experiment systematically measures the effects of one, and 
only one, variable with respect to a control. Consequently, 
we conducted all experiments on a single system, the Alliant 
FX/80, and used the system’s nominal behavior as reference. 
To understand the results of these experiments, we digress 
to review both the architecture and the idiosyncrasies of the 
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Fig. 1. Alliant FXiSO Architecture 

FX/80; see Fig. 1. 
The Alliant FX/80 consists of up to eight computational 

elements (CE’s), each containing a vector processor [13]. The 
CE’s are connected via a concurrency control bus that permits 
dispatching of small computation granules to cooperating 
CE’s. Using this bus, parallel loop iterations can be directly 
allocated to the CE’s through a hardware self-scheduling 
mechanism. 

The memory system of the Alliant FX/80 combines parallel 
data access with a hierarchical memory structure. It is orga- 
nized as three levels: a large main memory, a 512K byte cache 
shared by all CE’s, and scalar and vector registers private to 
each CE. Each vector register contains 32, double precision 
(64-bit) words and is accessed by each CE’s vector processing 
unit. The 64K word, write-back cache contains four banks 
that are connected to the eight CE’s via a crossbar switch. 
The cache can service up to eight simultaneous accesses per 
cycle. The cache and the four-way interleaved main memory 
are connected via a main memory bus with a peak transfer 
rate of four words per cycle. Therefore, the peak bandwidth 
between main memory and the CE’s is half that between the 
cache and the CE’s. 

The CE instruction set is a variation of the Motorola 
68020 with certain extensions (e.g., vector and concurrency 
instructions). The Alliant vector instructions are of two types: 

l Internal: all operands are contained in vector and scalar 
registers. 

l External: one operand involves a memory request. 
Within each type, most vector instructions have similar timing 
behavior, typically differing only in their startup time. Because 
the internal, register-register instructions do not depend on 
conditions extrinsic to each CE, their timings are deterministic. 
In contrast, the timing behavior of external vector instructions 
depends on memory activity. Access contention, either from 
the CE’s previous requests or from requests issued by other 
CE’s, and data location, either cache or main memory, both 
contribute to delays. 
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The memory hierarchy, multiple CE’s, vector memory op-  
erations, and  the concurrent execut ion modes  all make the 
Alliant FX/80 a  complex experimental environment. Success- 
ful hypothesis validation in this environment would provide 
strong evidence that our  per formance perturbation models 
are applicable to parallel systems with simpler execut ion 
environments (e.g., the multiple processor Cray X-MP [3] or 
the distributed memory Intel iPSC/2 [2]). 

III. PERFORMANCE PERTURBATION 

The number  and  complexity of the Alliant FX/80’s exe- 
cution modes  are equaled in both number  and  complexity 
by  perturbation mechanisms for per formance instrumentation. 
Unfortunately, perturbations are not additive, nor  can  pertur- 
bation magni tudes easily be  deduced  from measurement  data 
without knowledge of perturbation mechanisms. Thus, under-  
standing these perturbation mechanisms is a  prerequisite for 
analysis of experimental per formance data and  development 
of sequential and  parallel per formance perturbation models. 
Because the possible perturbations during sequential execut ion 
are but a  subset  of those possible during parallel execution, we 
begin with an  analysis of the former. 

A. Sequential Perturbations 

Although the range of possible instrumentation perturba- 
tions depends  on  the complexity of the underlying architecture 
and  system software, the single stream of control flow in 
sequential programs localizes most perturbations about  the 
instrumentation point. The  localization of perturbation effects 
means  that the computat ion’s performance behavior is only 
affected within a  local region of the instrumentation. Although 
the timing error introduced by the perturbation accumulates 
during the performance measurement,  if the perturbations 
are assumed local, we can empirically characterize different 
instrumentation perturbations in isolation and  apply models 
that remove the timing errors at the instrumentation source; see  
Section IV. Below, we discuss the possible perturbations in the 
context of our  experimental environment, the Alliant FX/80. 

As discussed in Section II, the pipelined Alliant FX/80 
processors are connected to a  complex hierarchy of regis- 
ters, cache,  and  primary memory.  A sophist icated compiler 
generates code to maximize access f requency to the smaller, 
faster components  of this hierarchy. For instance, at the lowest 
level of the memory hierarchy, pipelined register dependenc ies 
arise when  an  instruction accesses a  register whose value has  
not yet been  produced by a  previous instruction. Although 
these dependenc ies stall the processor or functional unit until 
the requisite value is produced,  optimizing compilers can 
reduce the number  of stalls by  judicious register allocation 
and  instruction schedul ing. 

At this level, instrumentation perturbations need  not increase 
execut ion time; instrumentation can both add  and  remove 
register dependencies.  The  former can occur when  the pro- 
logue of the instrumentation code uses registers that have  
STORES pending. Typically, most instrumentation points first 
save the active registers on  the local stack, generate the 
desired performance data, and  then restore the active registers. 

Because most registers are addressed during save and  restore, 
dependenc ies between instructions just before or after the 
instrumentation point are highly probable. Conversely, register 
dependenc ies can be  removed by inserting instrumentation 
between two instructions that have  an  existing register de-  
pendency.  Execution of the intervening instrumentation code 
will decouple the dependent  instructions. 

Even if instrumentation does  not perturb register depen-  
dences,  it can  change  both the spatial and  temporal patterns of 
cache and  memory references, with both positive and  negat ive 
effects. Consider an  application code fragment that contains 
a  loop with a  high density of memory references. If the 
instrumentation generates large volumes of data, the resulting 
cache and  memory traffic may flush most application data from 
the cache.  When  application execut ion resumes, the data cache 
will be  re loaded by a  sequence of cache misses. The  overhead 
for this “cold start” [14] may be  comparable to that for a  
context switch. 

If an  application’s memory references generate bank  con- 
flicts in the interleaved memory [15], instrumenting the code 
will distribute the application memory references across a  
larger interval of time, decreasing the memory access time 
as perceived by  the application code.  During execut ion of 
the instrumentation code,  all outstanding memory references, 
including those with bank  conflict stalls, will compete.  Be- 
cause time spent  in instrumentation code is not charged to 
the application, the apparent  memory access time decreases.  
The  converse is also true. If application data access patterns 
are structured to minimize bank  conflicts, inserted instrumen- 
tation code can disrupt the access pattern, perhaps creating 
a  degraded,  steady-state memory access pattern with bank  
conflicts. 

As the magni tude of direct instrumentation perturbation 
grows (e.g., added  register dependenc ies or modif ied memory 
reference patterns), the probability of indirect perturbation 
grows proportionately. For example, the probability of context 
switches is higher for instrumented applications because they 
execute longer. Although the cost of these context switches 
can be  measured by  instrumenting the operat ing system, 
identifying “real” and  induced context switches is nontrivial. 

Perhaps more subtle than either direct perturbations or 
induced context switches are changes  in the application pro- 
gram’s executed code.  Although the object code  for a  program 
with source code instrumentation (i.e., instrumentation inserted 
in the application source code)  clearly differs from the object 
code  for the same program without instrumentation, removing 
the instrumentation from the object code  does  not result in 
identical codes.  For example, source code instrumentation can 
prevent certain optimizations and  can change  register alloca- 
tion. For vectorizing and  parallelizing compilers, the potential 
for code  perturbation is greater-inserting instrumentation in 
a  vectorizable loop can easily prevent vectorization. 

B. Parallel Perturbations 

As noted earlier, the class of possible perturbations dur- 
ing sequential execut ion is but a  subset  of those possible 
for parallel programs. Parallel programs often stress their 
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execut ion environment. For example, a  single processor of 
the Alliant FX/80 cannot  generate content ion at the shared 
cache,  nor  can  it saturate the memory bus. In concurrent 
mode,  however,  both the cache and  memory bus  can be  
performance bott lenecks [6]. This also is true of other parallel 
machines with high-performance memory systems [15]. Instru- 
mentat ion that causes only small perturbations in sequential 
mode  (e.g., memory traffic to save instrumentation data) 
can  create unacceptable perturbations in concurrent mode,  
including perturbations of the task execut ion order. 

W ith the except ion of asynchronous input-output, the exe- 
cution states of sequential programs form a  total order. This 
is a  principle accepted due  to hardware propert ies of the 
machine. Sequential trace instrumentation may change  event  
times, but it rarely changes  the event  order. In contrast, the 
states of parallel programs inherently form a  partial order. 
Consequent ly,  the reordering of instrumented states is not only 
possible but likely. The  number  of reordered events depends  
on  both the task schedul ing algorithm and  the f requency of 
parallel task synchronization. 

If parallel tasks are assigned to processors statically (i.e., 
the mapping of tasks to processors is known a  priori), the 
sequence of tasks executed by  each  processor cannot  change  
as a  consequence of instrumentation. However,  the lengths of 
the respective tasks can change,  and  this may reorder events 
across tasks. Consider a  parallel program with two tasks, where 
task A reaches a  synchronizat ion point before task B. If the 
instrumentation overhead for task A exceeds that for task B, 
the order that the tasks reach the synchronizat ion point will 
be  reversed, and  the recorded event  order will differ from 
nominal.2 

In general,  some tasks are dynamically ass igned to proces- 
sors. Indeed, the Alliant FX/80 permits dynamic assignment 
of single loop iterations. If instrumentation changes  task 
execut ion times by  disproportional, data dependent  amounts,  
the sequence of tasks executed by  each  processor,  and  the order 
of inter-task events cannot  be  predicted without knowledge of 
the task schedul ing algorithm. 

Given the diversity and  complexity of possible instru- 
mentat ion perturbations, both direct and  indirect, software 
instrumentation must be  des igned to ameliorate or eliminate as  
many  perturbations as  possible. However,  timing perturbations 
cannot  be  removed solely by  efficient instrumentation, and  
perturbation analysis must be  appl ied to resolve timing errors. 
An instrumentation design for the Alliant FX/80 is the subject 
of Section V. The  following section develops a  theory of time- 
based  performance perturbation and  constructs perturbation 
models for removing timing perturbations during sequential 
and  concurrent execution. 

IV. PERFORMANCE PERTURBATION MODELS 

Models to capture and  remove timing perturbations due  to 
instrumentation must be  based  on  a  particular instrumenta- 

2Different parallel execution orders can occur, even without instrumen- 
tation, due  to asynchronous task operation. The reproducibility of parallel 
executions is another aspect of uncertainty separate from instrumentation. For 
purposes of our perturbation models in Section IV, we assume the differences 
between possible event orders from uninstrumented executions is minimal. 

tion approach.  Because tracing is the most general  form of 
instrumentation, allowing both static and  dynamic analysis, 
we derive t ime-based perturbation models for trace instru- 
mentation. Given an  understanding of possible per formance 
instrumentation perturbations (see Section III), measures of 
in vitro trace instrumentation costs (see Section V), and  an  
instrumentation trace, our  goal is to recover the “true” trace 
of events as  they would have  been  generated during an  
execut ion without instrumentation. There are two phases  in 
this perturbation analysis: 

l Execution TimingAnalysis-Given the measured costs of 
instrumentation, adjust the trace event  times to remove 
these perturbations. 

l Event Trace Analysis-Given instrumentation perturba- 
tions that can  reorder trace events, adjust the event  
sequence based  on  knowledge of event  dependencies,  
maintaining causality. 

In both phases,  models are needed  that descr ibe observed be-  
havior as  a  perturbation of true behavior.  For timing analysis, 
one  must approximate true times of event  occurrence, either 
for each  trace event  or for the total execut ion time. That is, 
the timing model  must descr ibe how the perturbations affect 
measured execut ion times. Event analysis models are more 
difficult; program or system semantic information is needed  
to determine if the relative event  order is incorrect and,  if so, 
generate a  better approximation to the true order. Given the 
semantic difficulties of event  analysis, we restrict our  attention 
in this paper  to two classes of timing analysis models; see  
[8], [ll], and  [9] for a  discussion of event-based perturbation 
models. The  first, simpler model  predicts total execut ion time 
given trace data. The  second adjusts the times of individual 
trace events. For both models, we discuss, where appropriate, 
the perturbations that might be  removed by appropriate event  
analysis models. W e  begin, however,  with a  formal description 
of the instrumentation problem. 

A. Definitions 
Given a  program P composed of a  sequence of state- 

ments Sr, S.2,. . . , S, and  a  set of instrumentation points 
Il,IZ;... , In, an  instrumentation of P is def ined as  

Z(P) = Il,SlrI2,S2,‘..,Jn,Sn 

where some 13  may be  null (i.e., no  instrumentation). Thus, 
we define instrumentation on  a  statement basis, where an  event  
represents the execut ion of a  statement. 

Ideally, we would like to use  a  trace of program events 
void of instrumentation intrusion for per formance analysis. A 
logical event  trace, T, is a  t ime-ordered sequence of events 
el;..,e, represent ing a  program’s actual execution. Each 
ei is of the form {t(ei), eidi}, where eidi is the event  
identifier for the ith event  indicating the statement Seid, in 
the program, and  t(ei) is the time when  the event  occurred. If 
the program is instrumented, we use the notation r, to denote 
a  measured event  trace. Because a  program can have  both 
sequential and  concurrent components,  we define the logical 
sequential event  trace, T’ (7; for the measured sequential 
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trace), as  the subsequence of events ep, e4, . . ’ , e, generated 
in sequential mode.  Similarly, the logical concurrent event  
trace for processor i, ri (rA for the measured concurrent 
trace), is the subsequence of events eg  , e6, . . . , ef executed 
in concurrent mode  on  processor i. 

Given these definitions and  letting T(S,id,) be  the true 
execut ion time of statement Seid,, the total execut ion time 
of a  sequential program P is 

The  direct perturbation, DP, 

DP = DP” + DP” (3) 

is the increased execut ion time directly caused by  instrumen- 
tation; its sequential and  concurrent components,  DP” and  
DP”, respectively, are 

T”(P) =  c T(Seid,). 
e,EP and  

The  measured program execut ion time of a  full instrumentation DP” = C T(Ieid,). 
of P is e, ET2 

where T(Ieeid,) is the true execut ion time overhead of the 
instrumentation point Ieid,. The  coupl ing of execut ion times 
for program statements and  instrumentation, represented by  
$, denotes perturbations not included in individual instrumen- 
tation and  statement timings (e.g., the disruption of memory 
reference patterns). 

Although (1) and  (2) estimate the instrumentation perturbation, 
they do  not estimate actual execut ion time from trace data. The  
approximate execut ion time, Ta(P), is the difference between 
the measured execut ion time and  direct perturbation, 

For concurrent execut ion time one  must determine the 
critical path during concurrent computat ion. Let rs =  
ep,eq,“‘, e, represent the logical trace of sequential events 
and  9  = e,,et,... , e, the logical trace of concurrent events 
a long the critical path, respectively. The  total true execut ion 
time of a  concurrent program P is 

T,(P) =  T,(Z(P)) - DP. (4) 

That is, T,(P) is the approximated execut ion time after 
applying a  timing analysis model  that includes only direct 
perturbations. 

Finally, the relative approximate error, RAE, estimates the 
accuracy of a  timing analysis model  (i.e., how accurately one  
can determine actual execut ion time from an  instrumentation 
trace):3 

T”(P) =  c T(Seid,) +  c W ’eicil 1. 
e,E+ e3  ETCP 

Similarly, the measured program execut ion time of a  full 
instrumentation of P is 

RAE = Ta(p) - T(P) _  Tm(z(p)) - Dp - T(P). (5) 
T(P) - T(P) 

B. Execution Time Analysis 

The  test of a  timing analysis model’s veracity is its ability 
to predict a  program’s actual execut ion time given an  instru- 
mentat ion trace. In the remainder of this section, we present 
execut ion time models for both sequential and  concurrent 
execution. 

+  C [T(Seid,) @  T(Ir~cf,, )I. 
e3  ET2 

where rz =  e,,e,,...,e, represents the critical path of 
concurrent events in the instrumented program. Unfortunately, 
the concurrent event  sequence,  rcP, identified as  the critical 
path in TC(P) may differ from the measured critical path, 
72, for Th(Z(P)). 

From these execut ion time definitions one  can define a  
series of instrumentation perturbation metrics. W e  will use  
T(P) and  T, (Z( P)) to represent true and  measured execut ion 
times for both sequential and  concurrent timing measurements.  
The  simplest metrics, absolute and  relative error for measured 
execut ion time, are def ined in the standard way. The  absolute 
error, AE, is 

1) Sequential Execution: During sequential execution, the 
principal perturbation is direct-execution of additional in- 
strumentation instructions. This does  not mean  that indirect 
sources of perturbations, such as  those discussed in Section II, 
do  not exist. Rather, the execut ion time overhead is known 
to occur with every instrumentation execution, where the 
indirect perturbations are less likely and  less deterministic. 
Furthermore, instrumentation does  not perturb the total order 
of program events. Thus, our  sequential perturbation model  
assumes that all perturbations are direct (i.e., AE = DP) 
and  that the cost for instrumentation is decoupled from state- 
ment execution. Simply put, the model  approximates actual 
execut ion time by the difference between measured execut ion 
time and  all direct instrumentation costs. More formally, the 
model’s assumptions imply the following: 

AE = T,@(P)) - T(P), 

and  the relative error, RE, is 

(1) 1) The  actual cost T(Ieid,) for each  instrumentation point 
1i is approximated by  a  constant a.4 

“In the remainder of the paper we will use the measure T,(P)/(T(P) =  
RAE + 1  to express the accuracy of the model.  

4The approximation to T(I, ,d, ), ~1, is given by the mean  instrumentation 
t ime dilation; see Section V and Table II. 

RE = Tm(z(p)) - T(P) 
T(P) . 

(2) 
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2) DP = Ce,Ers T(leid,) =  aN, where iV is the number  
of instrumentation points. 

3) T,(P) =  T,(Z(P)) - DP = T,@(P)) - aN. 
4) RAE = (Ta(pT:-~(p)) w (Tm(T$;;-aN) - 
As the approximate equality above  suggests,  the accuracy 

of our  assumption depends  on  the interaction of instrumenta- 
tion perturbations and  statement execution. W ith source code 
instrumentation, compiler register optimizations can invalidate 
the assumption of a  constant instrumentation perturbation; see  
Section V. To  remove these indirect perturbations, we first 
apply the simple model  above  to approximate the actual exe- 
cution time denoted by  T,(P). This prediction reflects direct 
perturbations from instrumentation execution. W e  then assume 
the instrumentation code is removed from the instrumented 
program’s assembly code (or object code)  and  measure the 
execut ion time of the resulting program, producing a  second 
execut ion time estimate T:(P) that measures only the code 
perturbations. The  final execut ion time approximation in the 
case of source code instrumentation is given by  

TIYrce T(P) (I-‘) = T,(P) * T,~(P). (6) 

The ideal approximation uses a  nonuniform perturbation model  
(i.e., one  that considers the effects of each  individual instru- 
mentat ion instance). However,  the number  of different cases 
to consider is huge  and  requires an  analysis of the differences 
in the code generated with and  without instrumentation. In 
light of these complications, the linear approximation above  
is reasonable when  source code instrumentation is necessary.  

2) Concurrent Execution: During concurrent execution, 
multiple threads of control may simultaneously reach trace 
instrumentation points. Intuitively, a  critical path analysis 
would identify the set of instrumentation points needed  to 
compute total execut ion time [ 171.  Unfortunately, perturbation 
mechanisms such as  those descr ibed in Section II-B make 
this difficult. Events can be  reordered, and  the critical path 
identified from the instrumentation trace may not be  the critical 
path in the real code.  

. N max = (7-x 1  is the number  of instrumentation 
events in trace Pax. 

3) T,(P) =  T,(Z(P)) - DP’ = T,(Z(P)) - DP” - 

In simpler terms, the concurrent perturbation model  chooses 
as  the critical path the sequential execut ion path plus the 
execut ion path a long the concurrent thread that has  the greatest 
accumulated execut ion time after the direct perturbation has  
been  removed;  see  Fig. 2. 
C. Event Trace Timing Analysis 

W ithout resorting to event  analysis models, we can assume 
that events are not reordered and  that the concurrent thread 
with the longest execut ion time (after direct perturbations have  
been  removed)  is the critical path. If most threads execute simi- 
lar instruction streams (i.e., there is little data dependent  code),  
this assumption is accurate.5 Like the sequential execut ion time 
model, our  base  assumption implies the following: 

1) The  actual cost T(Ieid,) for each  instrumentation point 
1i is approximated by  a  constant a. 

2) DP = DP” + DP&,, =  DP” + aNmax,  where 

To  recover the true sequence of trace event  times, one  must 
consider not only the total execut ion time but all possible inter- 
event  dependenc ies and  associated perturbations. Even given 
careful analysis and  a  predictive model, one  cannot  directly 
determine the accuracy of the predicted event  times. If this 
were possible, event  tracing would be  unnecessary.  Instead, 
one  must infer the stability of the event  timing model  by  
compar ing its trace predictions with varying levels of trace 
instrumentation. As with execut ion time models, we begin 
with the simpler, sequential case. 

CYpl) vi0 < 1,  5  p,  

.  p  is the number  of processors, 

. T,(Z(P;)) is the measured concurrent execut ion 
time on  processor i, 

1) Sequential Trace Timing Analysis: Each trace event  id- 
entifies a  unique spatial and  temporal state (i.e., a  code 
location at a  specif ied time). In a  sequential trace, each  event  
is perturbed by  the instrumentation for all previous events. 
Thus, we iteratively calculate each  event  time, given the 
perturbations of previous events. 

For a  trace 7’ of sequential events er, . . . , e,, where each  
ei is of the form {&(e;), eid;}, we approximate the actual 
time of event  ei by  t,(ei), 

t,(ei) =  t,(f?;) - (i - l)cY, (7) 
where (Y is the mean  time for each  trace instrumentation point 
and  tm(ei) is the measured time of occurrence of ei from a  
trace of an  instrumented execut ion.6 

“If not, an  event analysis model  is needed;  see (81, [I 11, and  [Y]. However, ‘For example, if ~11  is (854, 10) in the trace, the approximation of the 
in Section VII, we show that t iming analysis a lone can yield significant insight actual t ime of occurrence would be  t, (PII ) =  8.51 - 10.9 * 10  =  745, if 
in many practical cases. 0  =  10.9. 

0  sequential execution 
cmcurrenf execution, non-idle 

I concurrent execution, idle 

Fig. 2. Critical concurrent path selection 

Sequential  
Execution 

Concurrent 
Execution 

Sequential  
Execution 
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Unfortunately, it is possible that two events e; and  ej 
occur so  close together that t, (ei) 5  t,(ej) but t, (ei) >  
t, (ej). Simply put, software instrumentation may be  unable 
to separate closely spaced events because the hardware timer 
lacks the resolution to measure instrumentation overhead and  
e lapsed time with sufficient accuracy. For example, on  the 
Alliant FX/80, the timer resolution is 10  bs, but the machine 
cycle time is 170  ns. In a  10  ps  window, several events 
may occur. Although, for sequential programs, these events 
form a  total order, their t imes have  a  10  ,LLS uncertainty. As 
a  consequence,  we must assume simultaneity for all events 
whose estimated times differ by  less than 10  ps. 

2) Concurrent Trace Timing Analysis: Approximating ev- 
ent times for concurrent traces is more difficult than for 
sequential traces. The  perturbation of each  event  depends  
on  the perturbation of all events on  the critical path to 
the event. In the worst case, a  complete characterization 
of the execut ion dependenc ies among  concurrent threads 
of execut ion is required. To  simplify analysis, we assume 
that events on  separate concurrent threads are independent  
and  that the program contains only a  single level of fork- 
join concurrency, a l though multiple phases  of sequential and  
concurrent computat ion are allowed. W ith the requisite event  
analysis model, these assumptions can be  relaxed. 

Given a  trace ri of concurrent events ei, . , ei for each  
concurrent thread i, and  a  trace 9  of sequential events 

s e;, . . . , e,, we approximate the actual time of a  concurrent 
event  

1) 

2) 

eh  as follows. 
If en  is the first concurrent event  after a  sequential event  
e; in the time ordered trace, then 

t,(et) =  t,(ei,) - t,(eI) +  t,(eg). 

W e  use the measured and  approximated times of the 
last sequential event  as  the time basis for comput ing 
the execut ion time of the first concurrent event  of a  
concurrent phase  of computat ion. 
If ei immediately follows a  concurrent event  in the trace 
on  thread i, then 

t,(e;) =  t,(e2,) - tm(ej) +  t,(eg) - ffci, 

where ci is the number  of events in concurrent thread 
i after the last sequential event  e: in the trace. Along a  
sequence of concurrent events, we use the last sequential 
event  as  the time basis for approximating the time of 
occurrence of ei, but the direct perturbation along thread 
i also is removed.  

W e  approximate the actual time of a  sequential event  ei as  
follows. 

1) If ei is the first sequential event  in the trace after 
the last concurrent event  from a  concurrent phase  of 
computat ion, then 

b(4) = tm(ez) - t,(ej) + ta(ei.) 

where &(e$) >  t,(er) for all n  and  m such that 
ei and  e: appear  before ei in the trace. It is here 
that we determine the critical concurrent path in the 

instrumented execution. The  concurrent event  appear ing 
before ei in the trace with the greatest approximated 
t imestamp is used  as  the time basis to approximate the 
sequential event  occurrence. 

2) If et follows a  sequential event  in the trace, then 

t,(e[) =  tm(ez) - tm(e4) +  ta(e4) - cwi 

where ci is the number  of events that have  occurred in 
sequential mode  since the last approximated concurrent 
event  ej in the trace (or the beginning of the trace). 
Along a  sequence of sequential events, we again use  
the last approximated concurrent event  as  the time basis 
for approximating the sequential event  occurrence. Ad- 
ditionally, we remove the direct sequential perturbation. 

V. PERFORMANCE INSTRUMENTATION 

To validate our  t ime-based perturbation models against 
the Alliant FX/80 execut ion environment, we constructed a  
performance instrumentation facility for the target machine. 
Below, we descr ibe the performance instrumentation imple- 
mentat ion for the FX/80 and  its instrumentation overhead,  both 
in execut ion time and  memory bandwidth. Measures of in vitro 
instrumentation costs are necessary for practical application of 
the perturbation models. 

For our  experiments on  the Alliant FX/80, we constructed a  
tracing library that includes static trace buffer declarations and  
a  set of Assembly language tracing routines. The  library main- 
tains a  trace buffer for each  of the eight potentially concurrent 
threads of execut ion on  the FX/80 and  one  additional buffer for 
events that occur during sequential execution. Each invocation 
of the tracing routine records a  32-bit t imestamp, a  32-bit event  
identifier, the concurrency status, and  the processor identifier 
in the appropriate trace buffer. 

Trace instrumentation can be  inserted at either source or 
assembly code levels. Although easier to automate, source 
instrumentation can create register allocation and  access prob- 
lems. These register management  problems are in addit ion to 
those discussed in Section III-A. For example, the procedure 
calling convent ion on  the Alliant FX/80 has  the caller save 
registers. As a  consequence,  the invocation overhead for a  
source code trace event  depends  on  the number  of registers 
whose values must be  retained across the instrumentation code 
boundaries.  Because the caller does  not know what registers 
are used  by  the tracing library, it must save all active registers. 
The  magni tude of this register management  overhead depends  
on  the current register state. The  alternative, saving registers in 
the callee, fixes the overhead-only the registers used  by  the 
trace library need  be  saved.  The  d isadvantage is that registers 
may be  saved unnecessari ly. 

Not only does  source code instrumentation require reg- 
ister management ,  it may inhibit or force different code 
optimizations. The  latter depend  on  both the language and  
the code generator.  On  the Alliant FX/80, the C compiler 
does  not restructure the source code prior to code generat ion 
and  optimization, nor  does  it generate vector or parallel 
code.  Inspection of the generated assembly code after source 
instrumentation shows only simple optimizations; source state- 
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ment boundar ies were clearly delimited. As an  artifact of the 
C compiler’s limited optimization, the overhead for source 
instrumentation was nearly invariant across instrumentation 
points. 

Unlike source instrumentation in C, the overhead for a  
Fortran source instrumentation point is context dependent .  
The  preprocessor of the Alliant Fortran compiler generates 
restructured Fortran source based  on  detected data dependen-  
cies. Although the resulting Fortran is functionally equivalent, 
statements can be  reordered, loops can be  fused or distributed, 
and  new variables can be  created [16]. Inserting trace instru- 
mentat ion can inhibit a  subset  of these transformations. 

As an  example of the interaction of instrumentation and  
source restructuring, Table I shows the generated code for the 
following code drawn from the Livermore loops [12], both 
with and  without source code instrumentation. 

DO 10  k=l, n  
C instrumentation point 

x(k) =  Q  + Y(k)*(R*ZX(k+lO) 
+ T*ZX(k+ll)) 

C instrumentation point 
10  CONTINUE 

When  no  source code instrumentation is included, the 
Alliant Fortran compiler generates code to pre- load the scalar 
operands (Q, R, and  T) in floating point registers (fp7, 
fp5, and  fp6, respectively) before the beginning of loop 
execution; these instructions are not shown in Table I. When  
instrumentation is added  to the source code,  the Fortran 
optimizer recognized that loading the registers during each  
loop iteration would eliminate the register save and  restore 
overhead for the instrumentation call. Thus, the instrumented 
loop iterations fetch the scalar operands from memory.  As 
a  consequence,  the first two floating point multiplications in 
the code without instrumentation become a  sequence of two 
floating point register loads followed by two floating point 
multiplications in the instrumented code.  

Given the perturbation var iance for Fortran source instru- 
mentat ion and  the desire to postprocess the trace data using 
models of per formance instrumentation with known costs, we 
opted to instrument all applications at the assembly code level. 
In this mode,  the compiler generates code without knowledge 
of the instrumentation, the fixed instrumentation is inserted 
in the resulting code,  and  the code perturbation is context 
independent.  W e  avoided the problems of variable costs for 
register save and  restore by  implementing an  assembly code 
version of our  trace library with the callee saves convention. 
W ith this instrumentation approach,  an  a  priori measurement  
of instrumentation overhead is possible and,  by  hypothesis, a  
posteriori removal of perturbations via per formance perturba- 
tion models. 

To  determine instrumentation overheads,  we conducted a  
series of preliminary experiments that measured the in vitro 
costs of trace instrumentation. These costs provide the basis for 
the in vivo tests of our  primary hypothesis, that instrumentation 
overheads can be  removed from detailed performance traces. 
Among the possible perturbations discussed in Section III, 
the most significant are increased execut ion time (i.e., time 
dilation) and  increased memory bandwidth. W e  began  by 

TABLE I 
FORTRAN PERTURBATIONS WITH SOURCE CODE INSTRUMENTATION 

Expression Normal Instrumented 

fmuls fmoves 
0  =  R*ZS(k+lo) zx+lO[d7],fp5,fpO zx+lO[d7],fpl 

fmuls r,fpl,fpO 

fmuls fmoves 
b  =  T*ZS(k+ll) zx+ll[d7],fp7,fpl zx+ll[d7],fp3 

fmuls t,fp3,fp2 
c=n+b fadds fpl,fpO,fpO fadds fp2,fpO,fpO 
d  =  c*I-(k) fmuls y[d7],fpO,fp2 fmuls y[d7],fpO,fp4 

S(k) =  Q + d  fadds fp6,fp2,fp2 fadds q,fp4,fp5 
fmoves fp2,x[d7] fmoves fp5,x[d7] 

TABLE II 
INSTRUMENTATION TIME DILATION (MICROSECONDS) 

Execution 
Mode  

Sequential  
Sequential  
Concurrent 

Level Mean  Time 

C Source 10.26 
Assembly 11.01 
Assembly 12.25 

Standard 
Deviation 

T1.75 
k2.52 
22.60 

measur ing the cost to record an  instrumentation trace event  
for both sequential and  concurrent execut ion on  the Alliant 
FX/80; see  Table II. 

A test program performed one  thousand calls to the tracing 
routine, and  call overhead statistics were calculated from the 
trace data. 

Table II shows instrumentation statistics for three forms 
of instrumentation. The  smaller time for sequential source 
instrumentation is directly attributable to the C compiler’s 
optimizations for register save and  restore. Because the as- 
sembly code instrumentation always saves all registers, it has  
a  slightly higher cost. W ith concurrent tracing, all eight CE’s 
must write to different trace buffers. In this case, the total cache 
and  memory traffic is greater and  is distributed across a  larger 
fraction of the address space.  Because there are more cache 
misses and  memory contention, the time dilation is greater. 

In our  implementation, each  trace instrumentation point 
generates 48  bytes of memory traffic. In addit ion to the 
data p laced in the trace buffer, other memory operat ions are 
needed  to set up  the subrout ine stack, fetch the concurrency 
status, and  read the trace buffer pointer. Using the execut ion 
time measurements above,  sequential and  concurrent trac- 
ing can generate at most 4.36 megabytes/second and  31.35 
megabytes/second of memory traffic, respectively. Although 
these are well below the peak  bandwidth of the Alliant FX/80 
memory bus, the additional memory traffic is substantial, 
particularly for concurrent tracing. If the application program 
is memory intensive, the potential memory perturbations of 
Section II-A become real. 

VI. EXECUTION TIME EXPERIMENTS 

Our instrumentation hypothesis suggests that the perturba- 
tions attributable to detailed performance instrumentation can 
be  minimized in sequential, vector, and  parallel execut ion 
modes.  To  test this hypothesis, we conducted a  series of 
instrumentation experiments to determine the magni tude of 
per formance perturbations as  a  function of instrumentation 
f requency and  execut ion mode  (i.e., sequential, vector, and  
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Language 
C 
C 
Fortran 
Fortran 
Fortran 
Fortran 
Fortran 
Fortran 
Fortran 
Fortran 

Mode  
Sequential  
Sequential  
Sequential  
Sequential  
Sequential  
Sequential  
Vector 
Vector 
Concurrent 
Vector Concurrent 

TABLE III 
EXPERIMENT CATEGORIES FOR THE LAWRENCE LIVERMORE LOOPS 

Type 
Source 
NOP 
Source 
Null 
Assembly 
NOP 
Assembly 
NOP 
Assembly 
Assembly 

Description 
sequential C loops, instrumentation at source level 
sequential C loops, NOP instrumentation using asm() construct 
sequential Fortran loops, instrumentation at source level 
sequential Fortran loops, instrumentation at source level but with instrumentation removed 
sequential Fortran loops, assembly level instrumentation 
sequential Fortran loops, NOP instrumentation of assembly code 
vector Fortran loops, assembly level instrumentation 
vector Fortran loops, NOP instrumentation of assembly code 
concurrent Fortran loops, assembly level instrumentaion 
vector-concurrent Fortran loops, assembly level instrumentation 

parallel on  the Alliant FX/80). 
All experiments used  C and  Fortran versions of the 

Lawrence Livermore loops (LLL) [12], a  set of 24  loops often 
used  to benchmark  high-performance computer  systems. These 
loops contain a  diversity of language constructs, yet remain 
small enough  to permit detailed analysis of per formance 
perturbations. Table III summarizes the combinat ions of 
language and  instrumentation used  in our  experiments. 

W e  emphasize that the purpose of our  analysis was not to 
characterize the performance of the Livermore loops. Instead, 
the Livermore loops constitute a  set of test cases for our  
per formance perturbation models. Successful prediction of 
loop execut ion times and  recreation of event  times would 
validate our  models. Furthermore, it would suggest  that we can 
confidently apply perturbation analysis to larger applications 
where performance characterization is important.7 

For each  Livermore loop, two experiments were conducted 
in each  category; see  Fig. 3. In the first experiment, trace 
instrumentation was placed at the beginning and  the end  
of the loop to determine total loop execut ion time, the so- 
called raw instrumentation. The  second experiment produced 
traces from a  fulZ instrumentation with trace events for each  
source statement.8 For a  typical loop, this instrumentation 
generated over 2000  trace events, with a  total instrumented 
execut ion time of less than 0.1 s. Despite this density of 
trace instrumentation, our  perturbation models often recover 
actual execut ion time with less than 10% error, confirming 
our  hypothesis that detailed performance data need  not be  
incompatible with accurate measurement.  

In the remainder of this section, we descr ibe the result of 
an  execut ion time analysis of the experimental results for 
C, Fortran, vector Fortran, concurrent Fortran, and  vector- 
concurrent Fortran. In each  case, we first analyze the the direct 
perturbations caused by the performance instrumentation using 
the simple models of Section IV. 

W e  then explain any  deviations from the models by  inves- 
tigating sources of indirect perturbation (e.g., changes  in the 
generated code).  

‘In [lo], we discuss the use of perturbation analysis in the performance 
measurement  of application codes on  the Cray X-MP and Cray 2  systems. 

‘A performance analyst would probably not chose to instrument at the level 
of every source statement. However, because we are interested in determining 
where the perturbation analysis fails with respect to instrumentation frequency, 
the full instrumentation experiments are used as a  stress test for the models. 
In practice, reducing instrumentation detail will decrease the severity of the 
perturbations and, hence, will result in more accurate approximations when 
the perturbation models are applied. 

Fig. 3. Instrumentation alternatives. 

A. Sequential C Experiments 

The  goal of our  sequential C experiments was to compare 
source level instrumentation across languages.  As ment ioned 
earlier, the Alliant C compiler’s optimizations are but a  subset  
of those performed by the Fortran compiler, and  we conjec- 
tured that source instrumentation in C was less susceptible to 
indirect per formance perturbations. Fig. 4  shows the results 
of our  experiments with complete source instrumentation for 
some of the loops. Fig. 4  shows the outlier results from 
the set of sequential C experiments. Loop  results not shown 
fall within this range presented. In the figure, the black bars 
represent the ratio of full instrumentation execut ion time 
to the raw instrumentation execut ion time. The  dotted bars 
represent the ratio of the predicted execut ion time, using the 
model  of Section IV-Bl, to the raw execut ion time for the 
same loop. Clearly, the simple perturbation model  predicts the 
major sources of perturbation and  accurately predicts actual 
execut ion time. This result is true for all of the loops. 

Although the simple perturbation model  bounds  the pos- 
sible indirect perturbations of source code instrumentation, 
it cannot  quantify these effects. However,  replacing the C 
instrumentation statements with NOPs, retains the perturbations 
of code  generat ion but removes all ancillary perturbations of 
instrumentation (e.g., memory referencing). The  direct effects 
of instrumentation, assumed to be  constant in our  model, are 
emulated by  the fixed execut ion time of the NOPs. Thus, the 
difference between the real source instrumentation approxima- 
tion and  the approximation from the NOP instrumentation are 
largely attributable to the ancillary perturbations. For the loops 
in Fig. 4, Fig. 5  shows the result of predicting performance 
with NOP instrumentation at every source statement. All pre- 
dictions are within 3%. This small error is attributable solely to 
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Fig. 4. Source instrumentation of C loops. 

6.45 

Fig. 5. NOP source instrumentation of C loops. 

the indirect perturbations of source code instrumentation. This 
supports our  claim that the perturbations of code  generat ion 
are small; a  study of the assembly code produced from the 
C source instrumentation also shows that the changes  are 
minimal. As an  example, the model’s approximation for loop 
10  improves from 1.16 to 1.02. This suggests that there are 
perturbations different from instrumentation execut ion time, 
which the C-NOP experiments model, account ing for the 
s lowdown of the trace-instrumented run. Upon  inspection 
of the generated assembly code one  sees that a  register 
dependency  is introduced by the tracing instrumentation that is 
not present in the code without instrumentation and  the NOP 
instrumented testcases. This dependency  stalls the instruction 
following the instrumentation by  three cycles on  the Alliant 
FXl8 or 510  ns. If we modify the simple sequential model  
to include this stalling, the approximation of the instrumented 
execut ion improves to 1.09 (within 9% of actual execut ion 
time). 

B. Sequential Fortran Experiments 
Unlike source level instrumentation in C, the breadth of 

the Alliant Fortran compiler’s optimizations creates large 
perturbations with source instrumentation. To  quantify these 
perturbations and  to determine an  acceptable instrumentation 
methodology, we conducted experiments using four combi- 
nat ions of source and  assembly code instrumentation; see  
Table III. 

Fig. 6  shows the simplest test, complete instrumentation at 
the source code level. Unlike the comparable C experiment in 

Fig. 4, the Fortran perturbations cannot  be  explained by  our  
simple perturbation model, The  model’s approximations differ 
as  much as 80% from the actual execut ion times. Clearly, 
some perturbations are indirect. 

To  determine the indirect perturbations, including changes  
to the generated code,  we compiled each  loop with source 
instrumentation inserted. W e  then removed the generated in- 
strumentation from the assembly code.  This instrumentation 
retains all perturbations of code  generat ion without the direct 
perturbations that accrue from execut ion of instrumentation. 
As Fig. 7  shows, these indirect perturbations are substantial; 
inserting source instrumentation inhibits many  code optimiza- 
tions. Do the perturbations of code  generat ion account  for a  
significant fraction of all perturbat ions? The  white bars in Fig. 
7  show the approximations of the model  of Section IV-B1 
when  (6) is applied; that is, the code generat ion perturbations 
have  been  removed from the original approximations. As can 
be  seen,  the model  predicts well for some loops. However,  sig- 
nificant perturbations remain, and  one  must consider additional 
perturbations to fully explain the instrumentation’s effect on  
loop performance in all cases. 

The  complex interactions of source instrumentation and  the 
Fortran compiler make isolation of instrumentation pertur- 
bat ions difficult, if not impossible. Because our  goal is the 
systematic application of a  standard perturbation model, the 
remainder of our  experiments were conducted by  instrument- 
ing the generated assembly code of each  loop. W ith suitable 
modifications, a  compiler could generate this instrumentation 
after all optimization, eliminating indirect perturbations during 
code generat ion. 
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Fig. 6. Source instrumentation of Fortran loops. 
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Fig. 7. Source instrumentation of Fortran loops with instrumentation removed. 

Fig. 8  shows the merit of Fortran assembly instrumentation, 
and,  indirectly, the need  for compiler supported performance 
instrumentation. If code  generat ion is not perturbed, mechan-  
ical application of our  simple perturbation model  permits 
recovery of total execut ion time with small error, typically 
less than 5%. For those Livermore loops where this approach 
fails, the error never  exceeds forty percent. For example, for 
loop 4  (not shown) Full/Raw = 14.22 and  Model /Raw = 
0.73, and  for loop 15  (not shown) Full/Raw = 13.36 and  
Model /Raw = 1.35. In each  case, there is an  extraordinary ra- 
tio of instrumentation to application code (e.g., instrumentation 
of a  single machine instruction). Often, account ing for a  single, 
170  ns  cycle register stall in the instrumented code reduces the 
error to less than 5%. It is also possible that the instrumentation 
causes a  register dependency,  present in the code without 
instrumentation, to be  eliminated. Single cycle instrumentation 
typically requires hardware support;  even  in these stress tests, 
the accuracy of the software model  is surprising. 

C. Vectorized Fortran Experiments 

Instrumenting the iterations of a  sequential loop produces a  
sequence of trace events for each  loop iteration. If the same 
loop is vectorized and  the loop bound  is less than the vector 
register length, a  single machine instruction may represent the 
entire computat ion. Thus, a  vectorized loop contains fewer 
potential instrumentation points. For example, if the vector 
loop bound  exceeds the vector register length, the loop can be  
instrumented only at those points where register reloads occur. 

TABLE IV 
FORTRAN TRACE EVENT COUNTS 

Livermore I Scalar I Vector I Livermore I Scalar I Vector 
Loop 1  Events Events 1  Loop I Events 1  Events 

1  I2006 1  68  1  12  120041 68  
70  
68  

381 
68  
75  
12  

13  
14  
15  
18  
21  

1092 43  
17024 3424 
10648 1040 

4498 203 
32554 2554 

Table IV shows those Livermore loops that the Alliant 
Fortran compiler vectorized and  the number  of associated 
instrumentation trace events. The  number  of vector events 
depends  on  the vector length and  loop complexity. 

Because a  vector instruction performs many  identical opera-  
tions, it represents a  larger computat ional granule than a  simple 
scalar instruction. Consequent ly,  the relative perturbation for 
instrumented vector instructions is less than that for scalar 
instructions, and  perturbation models should more accurately 
predict execut ion time. Fig. 9  shows precisely this result. 
Due  to space restrictions, loop 8  (Ful1/ActuaZ = 1.62 and  
Model/Actual =  1.00) is not shown. 

D. Concurrent Fortran Experiments 

Unlike vectorization, compil ing for concurrency does  not 
condense multiple statements; all observable events in a  se- 
quential trace remain present, but a  subset  of the events execute 
concurrently. Moreover,  tracing instrumentation may dominate 
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Fig. 8. Assembly code instrumentation of Fortran loops. 
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Fig. 9. Assembly code instrumentation of vectorized Fortran loops. 

concurrent execut ion of some loops (i.e., a  significant fraction 
of concurrent time may be  spent  in instrumentation code).  In 
these cases, critical paths must be  identified with care. Recall 
that the concurrent model  of Section IV-B2 makes restrictive 
assumptions about  execut ion behavior.  

Fig. 10  shows the result of our  concurrent perturbation 
model  for those loops concurrent ized by  the Alliant Fortran 
compiler. Loop  8  (Full/Actual =  3.67 and  Model/Actual =  
1.32) is not shown. 

Clearly, the concurrent perturbation model  yields approxi- 
mations that are both high and  low. For most loops, the errors 
can be  explained via a  combinat ion of register dependenc ies 
and  increased memory traffic. For instance, by  applying con- 
current trace instrumentation overheads in the timing analysis 
for those loops where tracing dominates execut ion (8, 12, 13, 
14, and  18)  we were able to reduce errors to within 10%. For 
other codes,  in particular loops 3, 4, and  17, the concurrent 
execut ion model  assumed by the timing model  is violated due  
to data dependent  behavior.  Because the timing model  does  
not include critical path analysis, substantial approximation 
errors occur in these codes.  W e  consider loops 3  and  17  in 
more detail to explain why these errors occur. 

For Livermore loop 3  (Inner Product), our  execut ion time 
model  overest imates the instrumentation perturbation (i.e., the 
model’s estimate of total execut ion time is too low). Because 
the perturbation model  charges only for direct perturbations, 
one  infers that the instrumentation reduces the execut ion 
time of the application code.  For loop 3, the Alliant Fortran 
compiler creates a  critical section around the update of the 
inner product sum. W ithout instrumentation, most processors 

are blocked on  entry to the loop’s critical section. Adding 
instrumentation increases the total computat ion in each  con- 
current iteration and  reduces the probability of blocking at 
the critical section. In consequence,  the processors spend 
less time waiting when  the code is instrumented; subtracting 
a  fixed overhead underest imates the total execut ion time. 
Interestingly, this analysis also applies in the case of loop 
4  (Banded Linear Equations). 

For loop 17  (Implicit, Condit ional Computation), our  model  
underest imates the instrumentation perturbation. Surprisingly, 
the reason is the same as that for loop 3-the loop contains a  
critical section. Unlike loop 3, however,  the trace instrumen- 
tation lies mostly inside the critical section. This increases the 
probability of contention, and  the critical section becomes a  
larger fraction of the total execut ion time in the instrumented 
code.  Subtracting a  fixed overhead overest imates the total 
execut ion time. 

The  concurrency experiments reveal both the importance of 
instrumentation placement and  the need  for accurate critical 
path analysis. The  latter permits identification and  removal 
of indirect perturbations (e.g., synchronizat ion stalls). This is 
considered in detail in [8], [ll], and  [9]. 

E. Vector Concurrent Fortran Experiments 
Vector concurrent execut ion mode  combines the perturba- 

tions of both vectorization and  concurrentization. Fortuitously, 
the respective perturbations are not additive. Vectorization 
damps perturbation by  increasing computat ion granules while 
reducing the number  of instrumentation events. Concurrency,  
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Fig. 10. Assembly code instrumentation of concurrent Fortran loops. 
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Fig. 11. Assembly code instrumentation of vector concurrent Fortran loops. 

however,  reduces the execut ion time and  increases the stress 
on  the memory hierarchy. 

Fig. 11  shows the result of our  experiments for those loops 
that executed in vector concurrent mode  on  the Alliant FX/80. 
Loop  8  (Full/Actual =  1.92 and  Model/Actual =  1.04) is 
not shown. 

In contrast to Fig. 8  or even  Figs. 9  or 10, the ratio of 
instrumented to actual execut ion time is small; each  processor 
records a  smaller number  of events. W ith one  exception, our  
perturbation model  consistently underest imates total execut ion 
time. As discussed below, we conjecture that the underlying 
reason is the same for each  loop. 

Most loops contain sequences  of vector memory operations, 
separated by  instrumentation. Moreover,  earlier studies have  
shown that the Alliant FX/80 is susceptible to cache bank  
content ion in vector concurrent mode  [l], [5]. Although the 
trace instrumentation also references the cache,  the request rate 
is modest  compared to that for vector instruction sequences.  
W e  conjecture that tracing changes  the temporal distribution of 
memory references, reducing the number  of cache and  memory 
bank  conflicts. This, in turn, reduces the total execut ion time. 

W ith rare exception, our  per formance instrumentation 
models accurately approximate total execut ion time for 
the Lawrence Livermore loops when  run in sequential, 
vector, concurrent,  and  vector-concurrent modes  with full 
instrumentation on  the Alliant FX/80. In those instances where 
the models are inaccurate, most inaccuracies can be  explained 
by  simple analysis of the instrumented code.  This suggests 
that simple perturbation timing models, coupled with event  
trace models, would permit detailed, but accurate, per formance 
tracing. 

VII. EVENT TRACE ANALYSIS 

The experiments descr ibed in Section VI evaluated the 
feasibility of predicting total execut ion time in the presence of 
massive instrumentation. The  results show that global perfor- 
mance  measures,  such as  total execut ion time, are computable 
to a  acceptable accuracy via application of per formance pertur- 
bation models. Clearly, one  need  not instrument every source 
language statement to determine total execut ion time; simpler, 
less intrusive methods exist. The  obvious motivation of this 
approach is to obtain additional per formance data for more 
detailed performance analysis. However,  the benefit of this 
trace data depends  on  its accuracy (i.e., how well it reflects 
actual event  times and  orders). More detailed measurement  
will introduce more perturbations that the models must resolve 
to maintain an  acceptable level of accuracy in per formance 
approximations. 

To  determine the accuracy of trace data, one  needs  a  
standard of reference. W ithout a  passive hardware monitor to 
capture and  record events, no  such standard exists. Instead, one  
must compare a  sequence of event  traces, each  produced with 
successively smaller subsets of the complete trace instrumen- 
tation. As the number  of trace events decreases,  the presumed 
accuracy of the event  times and  orders increases. 

From the 24  Livermore loops, we selected two loops for 
detailed study. The  first, loop two, executes in sequential 
mode;  the second,  loop eight, executes in sequential, vector, 
concurrent,  and  vector-concurrent modes.  For each  loop, we 
created a  trace by  instrumenting each  source language state- 
ment, the fill trace. In addition, we generated traces using two 
partial instrumentations, each  a  successively smaller subset  
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TABLE V 
EVENT TIME DIFFERENCES FOR LOOP Two 

Trace 

Full 
Full 

Partial-l 

Reference 

Events 

333 
333 
236 

Time 
D 

38l.4 
383.4 
378.7 

Trace 

Partial-l 
Partial-2 
Partial-2 

Analyzed 

Events 

236 
139 
139 

Time 
P 

378”.7 
380.6 
380.6 

Total Mean 
Delta Delta 

PS 11s 

933.4 3.96 
402.8 2.90 
429.3 3.09 

Percent 
Delta 

1.04 
0.76 
0.81 

call trace-event(O) 
II = 101 

call trace-event (1) 
IPNTP = 0 

call trace-event(2) 
222 CONTINUE 

call trace-event(3) 
IPNT = IPNTP 

call trace-event(4) 
IPNTP = IPNTP + II 

call trace-event (5) 
II = II/2 

call trace-event(6) 
I = IPNTP 

call trace-event(7) 
DO 2 K = IPNT+2, IPNTP .2 

call trace-event(8) 
I = 1+1 

call trace-event(g) 
X(I) = X(K) - V(K)*X(K-1) - V(K+i)*X(K+l) 

call trace-event (10) 
2 CONTINUK 

call trace-event(l1) 
IF(II.GT.l) GO TO 222 

call trace-eventfll) 

Fig. 12. Instrumented Livermore loop two 

of the complete instrumentation, traces partial-l and partial- 
2, respectively. After applying the trace perturbation model 
to each trace, we used Gantt charts [7] to verify qualitative 
agreement; comparison of the mean percent difference between 
event times confirmed quantitative agreement. 

A. Loop Two-Incomplete Cholesky Conjugate Gradient 

Livermore loop two, shown in Fig. 12, is an excerpt from 
an incomplete Cholesky conjugate gradient code that executes 
in sequential mode. Fig. 13 shows the Gantt charts of traces 
from three levels of instrumentation.’ 

Events 3 and 11 mark the beginning and end, respectively 
of each outer loop iteration. Traces full and partial-l also 
show the inner loop iterations, marked by events 8 and 10, 
respectively. 

Although the three traces agree qualitatively, there are 
small quantitative differences. The total execution times, as 
predicted by the trace perturbation models, do differ by a 
small amount, but not greater than 1.25%. To verify event 
times, we correlated trace events and compared their times 
for three combinations of a reference trace, which contains 

91n Figs. 13 and 15, individual events are marked by the symbol +; the dis- 
play scale for other Gantt charts does not permit display of individual events. 
In the figures, event simultaneity is a consequence of limited instrumentation 
clock resolution; see Section V. 

T 
1 
m 
e 

I I 1 
0 2 4 6 8 10 

statteynt 

Fig. 3. 

Partial-2 

Sequential execution of loop two. 

the larger number of events, and an analyzed trace, which 
contains a subset of the events in the reference trace. The 
sum of the absolute differences between matched event times 
is the total event delta. Dividing this number by the number 
of events in the analyzed trace yields the mean event delta. 
Finally, dividing the mean event delta by the number of events 
yields the percent event delta. Table V shows the result of this 
analysis for loop two. 

The mean difference between corresponding event times is 
less than 2% of the total execution time, or 8 ps. This is an 
excellent match, given the Alliant FX/80 timer resolution of 
10 ps. 

B. Loop Eight-ADZ Integration 
Loop eight, an AD1 integration, can be both vectorized and 

parallelized. This permits evaluation of trace perturbation for 
all the Alliant’s execution modes. Figs. 14 and 15 show the 
Gantt charts for sequential and vector mode, respectively. 

Although the number of sequential events makes visual 
comparison difficult, the temporal event correlation for vector 
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TABLE VI 
EVENT TIME DIFFERENCES FOR LOOP EIGHT, SEQUENTIAL EXECUTION 

Trace 

Full 
Full 

Partial-l 

Reference 
Events 

1395 
1395 

801 

Time 
P 

410;.0 
4100.0 
4051.8 

Trace 

Partial-l 
Partial-2 
Partial-2 

Analyzed 
Events 

801  
402 
402 

Time 
ClS 

4051.8 
3990.0 
3990.0 

Total Mean  
Delta Delta 

/ 
224T5.1 

P 
27.;8 

24038.8 59.80 
12992.1 32.32 

Percent 
Delta 

0.69 
1.50 
0.81 

TABLE VII 
EVENT TIME DIFFERENCES FOR Loop EIGHT, VECTOR EXECUTION 

Trace 

Full 
Full 

Partial-l 

Reference 
Events 

75  
75  
59  

Time 
P 

128t.2 
1285.2 
1280.5 

Trace 

Partial-l 
Partial-2 
Partial-2 

Analyzed 
Events 

59  
38  
38  

Time 
ps 

1280.5 
1278.5 
1278.5 

Total 
Delta 

I-1 
I74s.9 
238.3 
226.9 

Mean  
Delta 

b 
2.;6 
6.27 
5.97 

Percent 
Delta 

0.23 
0.49 
0.47 

0 7. 4 6 8 10 

syemLlt 

Fig. 14. 

Partial-2 

Sequential  execution of loop eight 

mode is striking. This is a  direct consequent  of the high 
accuracy of the total execut ion time approximations. 

The  accuracy of the event  times, as  predicted by  the trace 
perturbation model  for sequential and  vector execution, is 
confirmed by Tables VI and  VII. In sequential execut ion 
mode,  event  timing differences, a l though as much as 60  ps  on  
average,  are less than 1.5% of the total execut ion time. The  
discrepancies for vector mode  are even  smaller-the mean  
difference is less than the timing resolution, and  the percent 
difference is less than 0.5%. 

Fig. 16  shows the Gantt charts for the sequential thread 
and  all concurrent threads from the concurrent execut ion of 

T 
i 

In 
e 

Statement 
Event 

Fig. 15. 

Partial-l 

Vector execution of Loop eight. 

Livermore loop eight on  six processors.10 
In this code,  there are two concurrent loops of equal  com- 

plexity, separated by  a  sequential operation. During concurrent 
computat ion, each  thread receives roughly the same amount  of 
work. These execut ion behavior characteristics are similar for 
each  set of traces. 

Although there are qualitative similarities between the traces 
of Fig. 16, the differences in predicted total execut ion time 
suggest  substantial error in individual event  times. Indeed, the 
execut ion time difference between the full and  partial-2 trace 

“W e  used only six Alliant CE’s in these experiments to reduce the visual 
complexity of the figures. 
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TABLE VIII 
EVENT TIME DIFFERENCES FOR LOOP EIGHT, CONCURRENT EXECUTION 

Thread 

Seq 
0  
1  
2  
3  
4  
5  

Seq 
0  
1  
2  
3  
4  
5  

Seq 
0  
1  
2  
3  
4  
5  

Reference Trace 
Events 

Full 
9  

238  
231 
238 
224 
231 
224 
Full 

9  
238  
231 
238 
224 
231 
224 

Partial-l 
9  

136  
132 
136 
128 
132 
128 

Time 
pS 

1126.6 
1020.3 
1030.3 
1030.3 
1046.6 
1046.6 
1077.5 

1126.6 
1020.3 
1030.3 
1030.3 
1046.6 
1046.6 
1077.5 

1052.1 
989.4 
989.4 
989.4 
963.0 
963.0 

1013.0 

Thread 

Seq 
0  
1  
2  
3  
4  
5  

Seq 
0  
1  
2  
3  
4  
5  

Seq 
0  
1  
2  
3  
4  
5  

Analyzed Trace 
Events 

Partial-l 
9  

136  
132 
136 
128 
132 
128 

Partial-2 
6  

68  
66  
68  
64  
66  
64  

Partial-l 
6  

68  
66  
68  
64  
66  
64  

Time 
fl.7 

1052.1 
989.4 
989.4 
989.4 
963.0 
963.0 

1013.0 

952.4 
910.6 
910.6 
910.6 
892.4 
892.4 
922.4 

952.4 
910.6 
910.6 
910.6 
892.4 
892.4 
922.4 

Total 
Delta 

PS 

355.3 
2926.1 
4930.2 
3272.4 
6294.3 
4890.5 
5631.7 

444.6 
4045.4 
5304.8 
4240.9 
4453.3 
4937.9 
5590.1 

267.9 
2664.8 
2859.6 
2710.3 
3400.2 
2535.4 
2762.1 

Sequential 

Full 

T  

f! 

m  e  

0 

: 

1 

i 

2 
- 

I 

3 
- 

~ 

4 

~ 
“389 0369 0369 0369 0369 0369 0369 

Sequential 0 

~ 
0369 

0 

~ 
369 

1 

5 
1369 

1 

~ 
)369 
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~ 
3369 

2 

4 
1369 

3 

~ 
3369 I 0369 

5 
- 

E  

‘rm’ 
1369 0369 0369 

5 

~ 
0369 

Fig. 16. Concurrent execution of Loop eight. 

is 18%; see Table VIII. Surprisingly, however,  the percent 
event  delta between the full and  partial-l traces is less than 
6%; the same is true for the compar ison of traces partial-l 

Mean  
Delta 

11s 

Percent 
Delta 

39.48 3.15 
21.51 2.17 
37.35 3.78 
24.06 2.43 
49.17 5.11 
37.05 3.85 
44.00 4.34 

74.10 7.78 
59.49 6.53 
80.38 8.8 
62.37 6.85 
69.58 7.80 
74.82 8.38 
87.35 9.47 

44.65 4.69 
39.19 4.30 
43.33 4.76 
39.86 4.38 
53.13 5.95 
38.42 4.30 
43.16 4.68 

and  partial-2. As the difference between the number  of events 
in the reference trace and  those in the analyzed trace increases 
(e.g., in the compar ison of full and  partial-2), the percent 
event  delta rises. However,  even  in the worst case it does  
not exceed 10% of the total execut ion time. Stated another 
way, the average uncertainty between two matched events in 
the fill and  partial-2 traces is less than 10%. 

Finally, Fig. 17  shows the Gantt charts for vector-concurrent 
execut ion mode.  Vectorization reduces the number  of possible 
instrumentation points and  the total number  of trace events, 
and  the predicted execut ion times differ by  less than 3%. 
Because the two loops in the code are statically scheduled 
in vector-concurrent mode,  unlike the dynamic schedule in 
concurrent mode,  the execut ion behavior across processors 
should not differ. In Fig. 17, the execut ion signatures are 
indistinguishable. Moreover,  Table IX shows that the percent 
delta in event  times is less that 5%. More importantly, the 
mean  differences are at the limits of the timer resolution. 

VIII. CONCLUSIONS 

The foundat ion of computer  system performance analysis 
is measurement  and  experimentation. W ith the except ion of 
passive hardware performance monitors, per formance experi- 
ments rely on  software instrumentation for per formance data 
capture. Such instrumentation mandates a  delicate balance 
between volume and  accuracy. Excessive instrumentation per- 
turbs the measured system; limited instrumentation reduces 
measurement  detail-system behavior must be  inferred from 
insufficient data. Regrettably, there are no  formal models of 
per formance perturbation that would permit quantitative eval- 
uation from instrumentation costs, measured event  frequency, 
and  desired instrumentation detail. Given the lack of models 
and  the potential dangers  of excessive instrumentation, detailed 
software event  traces often are rejected for fear of corrupting 



MALONY ef al.: PERFORMANCE MEASUREMENT INTRUSION AND PERTURBATION ANALYSIS 449 

TABLE IX 
EVEN? TIME DIFFERENCES FOR LOOP EIGHT, VECTOR-CONCURRENT EXECUTION 

Thread 

Seq 
0  
1  
2  
3  
4  
5  

Seq 
0  

Reference Trace 
Events 

Full 
10  
22  
22  
22  
22  
22  
22  
Full 
10  
22  

Time 
ps 

465.4 
446.4 
446.4 
446.4 
446.4 
446.4 
446.4 

465.5 
446.4 

Thread 

S-4 
0  
1  
2  
3  
4  
5  

W  
0  

Analyzed Trace Total 
Events T ime Delta 

ps ps 
Partial-l 

10  470.2 79.0 
18  452.0 170.3 
18  451.1 198.3 
18  452.0 170.3 
18  451.1 308.2 
18  451.1 198.2 
18  452.0 189.5 

Partial-2 
6  1  460.2 23.4 

12  429.7 101.0 
12  440.2 84.1 
12  429.7 105.1 
12  440.2 80.1 
12  429.7 101.0 

5  

Seq 
0  
1  
2  
3  
4  
5  

I 22  1  446.4 5  12  1  439.2 96.8 
Partial-l Partial-2 

10  470.2 W  6  460.2 63.5 
18  452.0 0  68  429.7 195.7 
18  451.1 1  66  440.2 182.4 
18  452.0 2  68  429.7 184.3 
18  451.1 3  64  440.2 253.8 
18  451.1 4  66  429.7 204.8 
18  452.0 5  64  439.2 204.2 

P&id-l 
Sequential 0 

Partial-2 
Sequential 0 

1 

i 
5 1015 

1 

1 2 

4 

1 
5 1015 

4 

i 
5 1015 

4 

1 
5 1015 

5 

1 
5 1015 

5 

1 
5 1015 

5 

: 
5 1015 

Fig. 17. Vector-concurrent execution of loop eight. 

the data (i.e., a  small volume of accurate, though incomplete, 
instrumentation data is preferred). 

W e  hypothesized that current restrictions on  the volume 

Mean  
Delta 

ps 

Percent 
Delta 

7.90 1.68 
9.46 2.09 

11.01 2.44 
9.46 2.01 

17.12 3.80 
11.01 2.44 
10.53 2.33 

3.91 0.85 
8.42 8.42 
7.01 1.59 
8.76 2.04 
6.67 1.52 
8.42 1.96 
8.07 1.84 

10.58 2.30 
16.31 3.79 
15.20 3.45 
15.35 3.57 
21.15 4.81 
17.06 3.97 
17.02 3.87 

of per formance data were unduly pessimistic. To  test this 
hypothesis, we developed a  series of simple perturbation 
models that approximate trace event  times from instrumented 
execution. Using these models, we conducted a  series of 
instrumentation experiments to determine the magni tude of 
per formance perturbations as  a  function of instrumentation 
f requency and  execut ion mode,  and  the accuracy of the per- 
formance approximations. 

The  experiments discussed in Section VI and  Section VII 
are stress tests for the t ime-based performance perturbation 
models. The  ability to approximate actual code  execut ion times 
to within 15% from full trace instrumentations, with execut ion 
time perturbations exceeding four orders of magnitude, is 
remarkable, especially for such relatively simple models. Even 
for those Livermore Loops  that are not well approximated, 
often minor adjustments in the models to account  for register 
interlock stalls or increased memory reference density due  
to tracing operat ions can account  for the error. Not only do  
the models perform well when  approximating global perfor- 
mance  measures,  but individual event  times are computable 
to acceptable accuracy, even  in the presence of massive trace 
instrumentation. 

The  t ime-based perturbation models accurately capture the 
effects of instrumentation perturbation when  the time and  
order events occur is execut ion independent.  This is true for 
sequential (scalar and  vector) execut ion because the execut ion 
states of sequential programs form a  total order, and  event  
times are affected only by  instrumentation overhead.  Even for 
some concurrent execut ion scenarios, typically those with fork- 
join behavior and  no  inter-thread dependencies,  the t ime-based 
perturbation models are good.  

However,  in general,  concurrent execut ion involves data 
dependent  behavior.  The  states of parallel programs inherently 
form a  partial order that must be  followed during execution. 



450 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 4, JULY 1992 

If dependency  control is spread across threads of execution, 
instrumentation can perturb the timing relationships of events. 
Direct applications of t ime-based perturbation models will 
fail because they do  not capture these inter-thread event  
dependencies.  Under  the timing model  assumptions of event  
independence,  approximated event  timings for concurrent exe- 
cution can also violate the required partial order. Furthermore, 
critical per formance phenomena  such as  synchronizat ion be-  
havior cannot  be  accurately modeled using timing information 
alone. Clearly, concurrent perturbation analysis necessitates 
a  model  of event  dependenc ies and  instrumentation. In [8], 
[ 111,  and  [9], we descr ibe models for event-based perturbation 
analysis that use  the measurement  and  subsequent  analysis of 
synchronizat ion operat ions to resolve perturbation effects in 
cases where there are execut ion event  dependencies.  

Although there remain fundamental  limits on  the attainable 
volume of accurate per formance data, we believe further de-  
velopment of trace perturbation models will permit acquisit ion 
of more data than traditionally bel ieved possible. 
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