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Absrract-With traditional  event list techniques,  evaluating  a de-
tailed discrete  event simulation  model can often require hours or even
days of computation  time. By eliminating  the event list and maintain-
ing only sufficient synchronization  to ensure causality,  parallel  simu-
lation can potentially  provide speedups  that are linear  in the number
of processors.  We present a set of shared memory experiments  using
the Chandy-Misra  distributed  simulation  algorithm  to simulate  net-
works of queues.  Parameters  of the study include queueing  network
topology and routing probabilities.  number of processors,  and assign-
ment of network  nodes to processors.
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I N T R O D U C T I O N

H ISTORICALLY, two of the major techniques for
modeling systems have been queueing theory and

&screte event simulation. When effective, queueing the-
oretic techniques can quickly provide mathematical in-
sight into the behavior of systems over a broad range of
parameter values. Their major limitation is the number of
restrictive assumptions that must be satisfied to ensure ac-
curacy. Conversely, simulation models can mimic a real-
world system as closely as understanding permits and
needs require. However, highly detailed simulation
models can be computationally taxing. Computer systems
simulations are particularly vexing because simulated
events occur on a millisecond or microsecond time scale,
often for many simulated minutes.

For example. simulating the behavior of a processor ex-
ecuting a user or system program may involve millions or
even tens of millions of events. In one architecture per-
formance study, we recently examined the performance
of allocation strategies for register windows in reduced
instruction set computers (RISC’s) [17], [18] as a func-
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tion of multiprogramming level [16].  This analysis re-
quired instruction-level simulation for many different pro-
gray mixes and consumed many hours of processor time.

Simulation of complex (VLSI) digital circuits for logic
verification and fault analysis is another example of the
computational constraints imposed on simulation of com-
puting components. Although such simulations can con-
sume monrhs of machine time [20],  [ 111,  designers have
little choice; an untested design is unacceptable. More-
over, simulation complexity continues to increase dra-
matically; technology advances are doubling the number
of circuits per chip every l-2 years.

At a much higher level than logic design, we recently
encountered difficulties while studying multicomputer
networks [21], [23],  designed, ironically, to solve com-
putationally intensive problems. Briefly, a multicomputer
network is a large number of interconnected computing
nodes that asynchronously cooperate via message passing
to execute the tasks of parallel programs. ’ Many design
issues must be resolved before constructing a multicom-
puter network (e.g., the relative speeds of computation
processors and internode communication links, topology
of connecting communication links, buffer requirements
for messages, and memory sizes). Although some of these
issues can be attacked analytically, most are analytically
intractable and can only be resolved via simulation. A
parametric simulation study, whose individual simulation
runs cover several minutes of simulated time, typically
requires several hundred hours of processor time.

Although each of the three preceding examples, pro-
cessor simulation, logic simulation, and network simula-
tion, is very different, they share a common need for faster
simulation techniques. Processor simulation reflects the
fetch/decode/execute cycle of instruction execution and
is, by its nature, sequential; parallelizing this application
is the subject of architectural research. Circuit simulation,
although clearly amenable to parallel processing [20],
typically involves sychronous  activation of many entities.
In contrast, network simulation is typically asynchronous.

PRIOR  WORK

It might initially appear that evaluating models of many
complex systems is both analytically and computationally

‘Hypercubes 1251 are a special case of multicomputer networks.
e
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intractable. However, recent developments have sug-
gested that the computation time for some simulations can
be reduced via either vector processing [6] or distributed
simulation [20],  [4], [ 151.

Vector Simulation
Chandak and Browne [6] recently proved an item of

computing folklore-discrete event simulation models
cannot always be vectorized. Specifically, they showed
that any network of queues model containing feedback is
not vectorized. This result is quite negative: most inter-
esting simulation models contain some type of feedback.

Given this result, we recently investigated the level of
vectorization practically achievable [22] by instrument-
ing a discrete event simulation of queueing network
models on a Cray X-MP. Although we simulated a variety
of workloads and queueing network models, the observed
vectorization ‘level never exceeded 5 percent. Even this
fraction was primarily attributable to initialization code.
Thus, the efficacy of vector simulation is in doubt.

Distributed Simulation
The inherently sequential nature of event list manipu-

lation limits the potential parallelism of standard simula-
tion models. The head of the event list must be removed,
the simulation clock advanced, and the event performed
(possibly causing new events to be added to the event list).
Although techniques for performing event list manipula-
tion and event simulation in parallel have been suggested
[8], [9],  large scale performance increases seem unlikely.
Only by eliminating the event list, in its traditional form,
can additional parallelism be obtained; this is the goal of
distributed simulation.

If one views a simulation model as a network of inter-
acting servers and queues, distributed simulation maps
each server/queue pair onto a processor of a multicom-
puter network. Each processor operates with its own sim-
ulation clock, and there is no global event list. Event oc-
currence times are transmitted across communication links
to appropriate recipients (e.g., a message departing one
server for another would carry with it its time of depar-
ture) .

Several distributed simulation techniques have been
proposed, notably the Chandy-Misra algorithm [2]-[4]
and the Time Warp algorithm [15]. The Chandy-Misra
algorithm and Time Warp differ in their approach to time
management. The former is pessimistic, advancing the
processor simulation clocks only when conditions permit.
In contrast, Time Warp assumes the simulation clocks can
be advanced until conflicting information appears; the
clocks are then rolled back to a consistent state, a so-
called “time warp.”

Both the Chandy-Misra algorithm and Time Warp have
been simulated [25], [15], but few experimental results
have yet been reported. In the remainder of this paper, we
present the Chandy-Misra algorithm [4] and the results of
an extensive study of its performance on a shared memory
parallel processor when simulating queueing network

models. Parameters of the study include queueing net-
work topology and routing probabilities. number of pro-
cessors, and assignment of queueing network servers to
processors. We conclude with a summary of lessons
learned and directions for future research.

THE  CHANDY-MISRA  DISTRIBUTED  SIMULATION

ALGORITHM

Consider some physical system composed of indepen-
dent, interacting entities. A natural, distributed simula-
tion of the physical system creates a topologically equiv-
alent system of logical nodes. Interactions between two
physical nodes are modeled by exchange of timestamped
messages. The timestamp is the simulated message arrival
time at the receiving node.

Each logical node is subject to some constraints. First,
node interaction is only via message exchange; there are
no shared variables. Second, each node must maintain a
clock, representing the local simulated time. Finally, the
timestamps of the messages generated by each node must
be nondecreasing.

Intuitively, the distributed simulation has no single
“correct” simulation time; each node operates indepen-
dently subject only to those restrictions necessary to en-
sure that events happen in the correct simulated order (i.e.,
causality is maintained). Independent events can be sim-
ulated in parallel even if they occur at different simulated
times.

Message timestamps and node clocks are a manifesta-
tion of the need for causality: the behavior of a node P at
its simulated time T cannot be influenced by any infor-
mation transmitted to it after time T. This constraint has
rather dramatic ramifications. Consider a node P that re-
ceives messages from two other nodes A and B. When a
message arrives from node A, one would expect node P
to interpret the message, perhaps producing a message as
a consequence. However, if the arrival time of the mes-
sage from A is greater than the arrival time of the last
message from B, the message from A cannot be pro-
cessed. Why? A message might later arrive from B with
a smaller timestamp. Thus, a node with multiple inputs
must wait until it receives messages from all inputs before
selecting a message to interpret.

Although appealing, distributed simulation poses sev-
eral pragmatic problems:

. Optimal assignment of nodes to processors is expen-
sive.

l Only a subset of all discrete event simulation models
are amenable to distributed simulation. As noted above,
shared variables are not permitted. Hence, no events de-
pending on the global system state are possible.

l Deadlocks can occur in most simulation models. Re-
call that a node must insure that no information received
later can affect its output; this may require waiting for
additional inputs. A cycle of waiting nodes results in
deadlock.

The assignment problem deserves additional comment.
The natural hardware realization of the network of nodes
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is a multicomputer network. Pragmatics dictate. however,
that the multicomputer network have a fixed interconnec-
tion topology. Thus. a node network must be mapped onto
the multicomputer network. Unfortunately, finding an op-
timal mapping is known to be NP-complete [7]. In prac-
tice, scheduling heuristics must be used;.suboptimal  map-
pings are produced at considerably less computational
expense. Even if an optimal mapping were found, the re-
spective topologies of the multicomputer and node net-
works may be ill-suited, resulting in either large com-
munication delays or processor load imbalances.2

Like node scheduling, deadlock resolution, although
difficult, is solvable. Chandy and Misra have described
two distributed deadlock resolution techniques, avoidance
and recovery 141. For specificity’s sake, we describe these
techniques in the context of our RESQ implementation
[24]  for simulating queueing networks, based on the dis-
tributed simulation implementation described in [25].  This
implementation uses minimal knowledge of the structure
of the simulated systems, including minimal lookahead
[131.

In the RESQ scheme, there are five node types: service,
fork, merge, source, and sink. Service nodes correspond
to the interacting entities of a physical system (e.g., serv-
ers in a queueing network). In contrast, fork and merge
nodes exist only to provide routing. Finally, source and
s&k nodes respectively create and destroy network mes-
sages. Thus, the central server model [l] of Fig. l(a)
would be represented, using the RESQ scheme, as shown
in Fig. l(b).

The RESQ notation for describing network models has
been widely used as an input language for sequential sim-
ulations. Using RESQ for parallel simulation entails mod-
ifying the semantics of some node types. Specifically, dis-
tributed simulation with deadlock avoidance [3] requires
fork, merge, and server nodes3 to send null messages un-
der certain conditions. These null messages are time
stamped and tell the receiving node that no real message
will be forthcoming before the specific time. This enables
the receiver to process outstanding messages with the as-
surance that its actions will not be revoked at a later time.

A fork node accepts a single stream of message inputs
and distributes this stream across N outputs. Upon receiv-
ing a real or null input message, a fork node routes the
message to the selected output and creates N - 1 null
messages, each with the same timestamp as the message
received. One null message is routed to each destination
not selected.

A merge node accepts N streams of message inputs and
routes them in timestamp order to a single output. As
noted earlier, the time stamp ordering forces the node to
wait for messages, perhaps null, on all inputs before pro-
ducing an output.

Finally, a server node accepts a single input stream and

‘Scheduling difficulties can be ameliorated by a shared memory imple-
mentation of message passing. This approach is discussed later.

‘By definition, source and sink nodes can never be members of a dead-
lock set.
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Fig. 1. (a) Central server queueing model. (b) RESQ representation of

central server model.

produces a single output stream. When the time of last
message arrival is greater than the time of last message
departure, and the server has no real messages to process,
it produces a null message with a timestamp equal to the
minimum time of next real message departure.

Although the null message technique provably avoids
deadlocks, it does so at the price of potentially high over-
head. In networks containing many fork/merge cycles,
simulations have shown that the ratio of null to real mes-
sages can be very high [25], [2 11. The alternative to dead-
lock avoidance is deadlock detection and recovery. In this
approach, the distributed simulation alternates between
computation and recovery phases. As proposed by Chandy
and Misra [4],  the simulation runs until a distributed
deadlock detection algorithm verifies deadlock. The sim-
ulation then enters a deadlock recovery phase and finally
returns to active computation.

Although deadlock detection and recovery avoids null
messages, it does so by diverting computation resources
to detection and recovery. The performance advantage of
this approach versus deadlock avoidance depending on the
relative costs of synchronization and message passing.

In. light of the many potentially performance-limiting
problems with distributed simulation, it seems important
to analyze the performance of distributed simulation in a
realistic environment. Many such performance studies of
traditional simulation algorithms have been conducted,
and, based on these studies, new event list algorithms have
been proposed [ 121,  [27].  Until recently, only limited
simulation studies of distributed simulation were reported
[25], [15], [22];  little were empirical data is available. In
the remaining sections we discuss our experimental en-
vironment, implementation, and experimental results.

E X P E R I M E N T A L  E N V I R O N M E N T

All simulation experiments were conducted on a Se-
quent Balance 2 1000 containing 20 processors and 16
Mbytes of memory. Each Balance 21000 processor is a
National Semiconductor NS32032 microprocessor, and all
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TABLE 1
TYPICAL OPERATION TIMES FOR THE SEWENT  BALANCE 21000

Operation Time psec

processors are connected to shared memory by a shared
bus with an 80 Mbyte/s (maximum) transfer rate. Each
processor has an 8K byte, write-through cache and an 8K
byte local memory; the latter contains a copy of selected
real-only operating system data structures and code.

The Dynix’” operating system for the Balance 21000 is
a variant of UC Berkeley’s 4.2BSD UNIX@ with exten-
sions for processor scheduling. Because Dynix schedules
all processes from a common pool, a process may execute
on different processors during successive time slices.
However, as long as the number of active processes is less
than the number of processors, each process will execute
on a separate processor. In this case, process and proces-
sor are equivalent notions. To the time-sharing user, the
Balance 2 1000 appears as a standard UNIX system, albeit
with better interactive response time.

Parallel programs consist of a group of UNIX processes
that interact using a library of primitives for shared mem-
ory allocation and process synchronization. Shared mem-
ory is implemented by mapping a region of physical mem-
ory into the virtual address space of each process. Once
mapped, shared memory can be allocated to specific vari-
ables as desired.

Access to the shared memory region is controlled by
software spin locks and barriers. These locks, semanti-
cally equivalent to binary semaphores, provide mutual ex-
clusion. Barriers are used to synchronize a group of pro-
cesses; a process reaching a barrier is forced to wait until
all processes in the specified group have reached the bar-
rier.

In summary, the Balance 21000 is a “standard” UNIX
system with minimal extensions for parallel program-
ming. Consequently, many parallel operations are domi-
nated by operating system overhead. For comparison with
later discussion, Table I shows the elapsed times for typ-
ical operations.

SHARED  MEMORY  IMPLEMENTATION  OF  DISTRIBUTED

S I M U L A T I O N

A shared memory multiprocessor, such as the Balance
21000, provides a flexible testbed for studying the per-
formance of distributed simulation. The problems asso-
ciated with mapping a node network onto a multicomputer
network are removed; the shared memory processors are,
effectively, completely connected. By implementing mes-

“Dynix is a trademark of Sequent Computer Systems.
“UNIX is a registered trademark of AT&T Bell Laboratories.

sage passing using shared memory, communications costs
are the same for all processors. However, a shared mem-
ory implementation of distributed simulation requires spe-
cial consideration for synchronization of shared message
queues, processor allocation, and deadlock management.

In a shared memory implementation of distributed sim-
ulation, all node state information, including input mes-
sage queues, resides in shared memory. Message-based
communication between nodes is implemented via shared
access to the message queues of each node. Each message
queue is protected by a synchronization lock to guarantee
mutual exclusion. Synchronization is only necessary,
however, if the communicating nodes execute on separate
processors.

Before a node can send a timestamped message to an-
other node, it must first acquire a free message from a
shared free message list. A lock is necessary to prevent
simultaneous access to the free message list. After retriev-
ing a free message, the node timestamps it and writes it
to the destination node’s message queue, using synchro-
nization primitives to lock and unlock the queue, if nec-
essary. A message is returned to the free message list once
it has been processed by the destination node. Because
only messages are used for internode communication, the
requirement that no simulated events depend on the global
system state is still satisfied.

Processor Allocation
There are two basic approaches to processor allocation

in a shared memory implementation of distributed simu-
lation. The first approach, static node assignment, fixes
the assignment of nodes to processors for the duration of
the simulation. When the number of network nodes equals
the number of allocated processors, each node is assigned
to a separate processor. Otherwise, nodes must be clus-
tered, and these clusters are assigned to individual pro-
cessors. Several clusterings are possible when the number
of nodes exceeds the number of processors; each such
clustering exhibits different performance. One advantage
of static node assignment is that communication between
nodes in a cluster can be done “locally” without the over-
head for locking message queues. However, intercluster
message transmissions require queue locking.

The second approach, dynamic node assignment, as-
signs nodes to processors during the simulation. Idle pro-
cessors obtain work from a shared queue of unassigned
network nodes. This shared node work queue must be
locked before a processor can be allocated an unassigned
network node. When a processor obtains a node, it satis-
fies any outstanding work for the node before returning
the node to the tail of the node work queue. Because pro-
cessors are assigned only one node at any time, all com-
munication between nodes must be synchronized to guar-
antee exclusive access to shared message queues.

With dynamic node assignment, nodes must wait on the
work queue until assigned to a processor. The length of
this delay depends on size of the node work queue and
can be quite large for large networks. However, not all
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nodes on the work queue have outstanding work (i.e.,
there are input messages that will generate output mes-
sages when processed). In deadlock avoidance mode. for
example. those nodes awaiting input can only generate
null messages if processed. A natural strategy for improv-
ing performance places only those nodes with outstanding
work on the work queue. This reduces the size of the node
work queue and the waiting delay.

Our implementation of the above node waiting strategy
is conservative. When a processor identifies a node with
no outstanding work, it sets a “waiting” flag in the node’s
state and does not place the node on the work queue. When
a message is sent to a waiting node, the processor sending
the message will reset the waiting flag for the waiting node
and place it on the work queue. The implementation is
conservative because the new message may not actually
instigate any new work for the node.

To investigate the effects of this node waiting strategy,
we also implemented a no node waiting scheme. In this
approach, a node is immediately placed at the tail of the
work queue after it has been processed, even if it has no
outstanding work.

Although static node assignment is efficient for nodes
within a cluster, the node assignment cannot be changed
to balance network load. Conversely, dynamic node as-
signment naturally adjusts to network load but incurs syn-
chronization overhead not only for all messages but also
for access to the node work queue. Which implementation
is best for a particular simulation model depends on the
relative costs of synchronization and the beneficial effects
of load balancing.

Deadlock Avoidance and Recovery
Our deadlock avoidance approach is a straightforward

implementation of the algorithm described earlier [24],
[4]. In contrast, deadlock recovery merits further discus-
sion.

As described by Chandy and Misra, distributed simu-
lation with deadlock detection and recovery alternates be-
tween simulation and distributed deadlock detection and
recovery phases. The presence of shared memory ob-
viates the need for most of the protocol for distributed
deadlock detection [5]. Instead, each processor sets a flag
in global memory when it believes it is deadlocked. A
guardian processor monitors the global system state and
forces the processors to rendezvous at a synchronization
barrier when they all report potential deadlock. The dead-
lock recovery algorithm is then invoked.

Notice, however, that all processors reporting an ina-
bility to progress is a necessary but not sufficient condi-
tion for deadlock. Between the time a processor P reports
potential deadlock and the time the guardian processor
sees this report, processor P may have received messages
enabling it to progress. Consequently, the processors may
appear deadlocked when they are not. To reduce the prob-
ability of detecting such false deadlocks, the guardian uses
a backoflalgorithm  that must reverify a potential deadlock
before invoking deadlock recovery. This algorithm, con-

trolled by an input parameter, weighs the relative cost of
forcing synchronization and deadlock recovery for a false
deadlock against the lost time when detection of a real
deadlock is delayed.

One may well ask why this deadlock detection tech-
nique was used, rather than a variation of graph reduction
[lo] or the distributed deadlock detection proposed by
Chandy et al. [5]. Simply put, the number and frequency
of deadlocks in a distributed simulation is potentially
enormous. Hence, deadlock detection and recovery must
be fast. To obtain a consistent state for graph reduction,
the processors must either exchange messages or synchro-
nize-The overhead of the first is near that for deadlock
avoidance. The latter is as expensive as detecting false
deadrocks.  Thus, detecting some false deadlocks using a
backoff  mechanism seems a reasonable compromise.

SIMULATION  EXPERIMENTS

Experimental evaluation of distributed simulation re-
quires not only an implementation but also a set of test
cases. This is particularly important in light of earlier
simulation studies [25],  [22], which showed that the per-
formance of distributed simulation is extremely sensitive
to the topology of the simulated network. Simple tests
(e.g., tandem queues) have easily interpretable results,
but do not reflect typical simulations. Conversely, simu-
lations of complex queueing networks, although realistic,
make it difficult to interpret the sources of performance
degradation in distributed simulation.4

As a compromise, we selected several simple queueing
networks and a few complex ones.

l tandem networks (1, 2, 4, 8, and 16 server nodes)
l general, feed-forward networks (6, 10, and 14

nodes),
l cyclic networks (2, 4, and 8 nodes)
l central server networks (5 nodes), and
l cluster networks (10 and 18 nodes).

The tandem and feed-forward networks are open networks
and contain no cycles. With potentially linear speedup,
they represent the best-case performance of distributed
simulation. The cyclic networks show the performance
degradation of tandem networks when they are closed. As
an often used model of computer systems, central server
networks have pragmatic importance [ 11. In addition, they
have nested cycles, a more restrictive constraint than the
simple cyclic networks. Finally, the cluster networks il-
lustrate the effects of decomposability on simulation per-
formance.

Each of these networks was simulated for a variety of
workloads, (e.g., routing probabilities, arrival rates, and
service times) using six variations of a Chandy-Misra im-
plementation: static node assignment with deadlock
avoidance, static node assignment with deadlock recov-
ery, dynamic node assignment with deadlock avoidance,

“We distinguish between the performance of the Chandy-Misra simu-
lation and the performance measures for the simulated network. The former
are the subject of this study.
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dynamic node assignment with deadlock recovery, dy-
namic node assignment with waiting and deadlock avoid-
ance, and dynamic node assignment with waiting and
deadlock recovery. In all cases, we varied the number of
processors from one to the number of nodes in the simu-
lated network. Together, these simulations represent ap-
proximately two weeks of computation time on the Se-
quent Balance 21000. Figs. 3,4,  7-10, 12, 13 and Tables
II-IV, discussed below, show the results of a portion of
these experiments. All such figures and tables show 95
percent confidence intervals about mean values.

Speedup,  defined as

‘P

where T, and Tp are the respective execution times using
one and p processors, is the performance metric used to
compare all experimental results. All speedups are shown
relative to a one processor distributed simulation using
static assignment with deadlock recovery. In this case, all
simulated nodes execute on one processor. Consequently,
no synchronization is needed during queue insertion and
deletion. Deadlocks can occur with one processor. This
increases the value of T, and, consequently, increases the
apparent speedup. Although it might seem preferable to
use an event list oriented simulation as the point of ref-
erence, this would color the results with the idiosyncra-
sies of two implementations. For comparison, we con-
ducted equivalent event list simulations on the Balance
21000 using SMPL, a portable simulation package. These
results show that a single processor distributed simulation
always executes more slowly than the equivalent sequen-
tial simulations. Thus, the speedups presented can be
viewed as upper bounds on the speedup  achievable with
distributed simulation.

In addition to speedup,  we also use deadlock recovery
and null message fractions as performance measures.
These are defined as

FD =
number of deadlock recoveries

number of message transmissions

and

FN =
number of null message transmissions

number of message transmissions ’

respectively. The deadlock recovery and null message
fractions measure the amount of useful computation per-
formed by each simulation.

Tandem Networks
Tandem networks are a feasibility test of distributed

simulation; see Fig. 2. If distributed simulation cannot
achieve good pipelined speedups for tandem networks,
there is little prospect for success for networks containing
cycles.

Fig. 3 shows the speedups for both deadlock avoidance
and recovery when nodes are statically assigned to pro-

Fig. 2. Tandem queue.

Speedup

1 2 , / ,

. Deadlock Recovery - Maximum Parallelism
o Deadlock Recovery - Sequential
3 Deadlock Avoidance - Maximum Parallelism

7 10

Server Nodes

Fig. 3. Speedup for tandem queue (static node assignment).

cessors. Because there are no cycles, no deadlocks occur,
and there is little distinction between deadlock recovery
and avoidance. Recall that deadlock avoidance must con-
tinually verify that no null messages need be sent. Con-
versely , deadlock recovery does nothing until deadlock is
detected. Thus deadlock avoidance incurs a small over-
head even if no null messages need be sent. This differ-
ence is magnified as the number of nodes increases, lead-
ing to a small, but perceptible difference at 16 server
nodes.

Fig. 3 shows a linear speedup  for a small number of
nodes, and a decrease in the slope of the speedup curve
for additional nodes. This sublinear speedup  for a larger
number of nodes arises from memory and bus contention,
as well as synchronization overhead.

By comparison, Fig. 4 shows speedups when deadlock
recovery is used, and nodes are retrieved from a work
queue. 5 Dynamic node assignment yields greater speedup
than static assignment, but it too suffers from memory
contention. Using half as many processors as nodes re-
sults in near linear speedup, albeit a smaller speedup than
that obtained with maximal parallelism. This is the final
confirmation of the effects of memory contention.

Waiting (i.e., placing nodes on the work queue only
when they can profitably be evaluated), is ineffective be-

‘In Fig. 4, “half parallelism” means that the number of processors used
is equal to one half the number of network nodes.
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Speedup

1 2

. Deadlock Recovery - Maximum Parallelism
o Deadlock Recovery Half Parallelism
C Deadlock Recovery Sequential

gi
x with Waiting Maximum Parallelism.
T with Waiting - Half Parallelism

/ with Waiting - Sequential

1 4 7 10 13 16

Server Nodes

Fig. 4. Speedup for tandem queue with deadlock recovery (dynamic node
assignment).

cause, in a tandem network, all nodes are always active.
The additional overhead simply reduces the speedup,  as
shown when maximal parallelism is used.

The previous discussion, with one exception, assumed
the number of processors equaled the number of nodes.
When the number of nodes exceeds the number of pro-
cessors, nodes must, with static assignment, be clustered
onto processors. Table II shows the effects of this clus-
tering for a tandem network containing 16 server nodes.
For static assignment, speedup  declines precipitously as
the number of processors is reduced (e.g., reducing the
number of processors from 18 to 12 reduces the speedup
from approximately 9 to 4). In contrast, dynamic node
assignment allocates processors to nodes based on their
need for evaluation. When the number of nodes exceeds
the number of processors, dynamic assignment is the
method of choice.

Finally, we note that the sequential execution time, 113
seconds, compares favorably to the single processor dis-
tributed simulation. This suggests that the overhead for
distributed simulation, other than that for deadlock avoid-
ance or recovery, compares favorably to that for event-
driven simulation.

General Feed-Forward Networks
Among the simplest generalizations of a tandem net-

work are those containing forks and joins; see Fig. 5. Ta-
ble III shows the corresponding speedups as a function of
node clustering and deadlock technique.

Unlike the tandem networks, where deadlock avoid-
ance and recovery are indistinguishable, feed-forward
networks with forks necessarily distinguish between the
two deadlock techniques. Because this network is open

and contains no cycles, no deadlocks can occur, and dead-
lock detection detects none. In contrast, deadlock avoid-
ance requires that null messages be sent at each fork node.
This overhead is the reason for the difference in the per-
formance of the two deadlock techniques.

Although speedups are not linear in the number proces-
sors, the fork and join nodes do not require as much pro-
cessing time as the server nodes. Because of this, a linear
speedup from a sequential simulation cannot be expected.

Cyclic Networks
The closed equivalent of a tandem network is the cyclic

queue of Fig. 6. Unlike the tandem network, where the
in&arrival time at the source node does not affect the ex-
ecution time of the simulation, the cyclic network de-
pends on the simulated population. Fig. 7 shows the
speedup obtained for a four node cyclic network; similar
results also hold for larger cyclic networks. In contrast to
the tandem networks, the cyclic network does not show
linear speedup  as a function of the number of processors.

Initially, one might suspect deadlock avoidance or re-
covery caused this decrease in performance. However,
examination of the simulations shows that deadlock
avoidance sent no null messages. Instead, messages cir-
culate in large groups or trains; a node processes a train
of messages and waits until they return on their next cycle.
This suggests that fewer processors, dynamically as-
signed to the nodes, would achieve most of the potential
speedup.  Fig. 8 confirms this supposition: two, dynami-
cally assigned processors, achieve nearly 80 percent of
the speedup  obtained with four processors. When dy-
namic assignment is augmented with waiting, the differ-
enc grows even smaller.

The second important conclusion drawn from simulat-
ing cyclic queues is the extremely high cost for deadlock
recovery. As noted above, deadlock avoidance sent no
null messages. In contrast, deadlock recovery detected a
small number of potential deadlocks. At population 40,
the deadlock recovery fraction FD was 0.0015. This cor-
responds to approximately 250 deadlock recoveries in
160 000 message transmissions. As discussed earlier,
deadlock detection and recovery forces all processors to
synchronize at a barrier before invoking the deadlock re-
covery algorithm. Execution profiling showed that the
deadlock recovery routine and the barrier primitive com-
prised a negligible fraction of the simulation time. Syn-
chronizing is expensive, but .only because there is a sig-
nificant interval between the arrival of the first processor
at the barrier and the last. The parallelism declines as each
processor reaches the barrier. Were the transition from
computation to deadlock recovery abrupt, deadlock re-
covery would be inexpensive. As Fig. 8 shows, dynamic
node assignment improves the performance of deadlock
recovery, primarily because processors can more quickly
rendezvous at the synchronization barrier. Finally, be-
cause fewer processors are actively evaluating nodes, dy-
namic node assignment with waiting further reduces the
rendezvous delay.
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TABLE II
SPEEDUPS FOR TANDEM NETWORK WITH 16 SERVER NODES

Clustering
Case

A
B
C
D
E
F
G
H
I
.I

I STATIC I DYNAMIC I

Recovery Avoidance

9.24*0.41% 8.73 ,. 0.50%
8.53 iO.31% 8.23 kO.SS%
4.58 * 8.03% 4.27 3~ 11.29%
3.87 f 7.61% 3.28 * 23.16%

3.22 f 3.19%
3.60 * 0.23%
2.41 4~ 2.24%
1.87 *0.21%
1.00 * 0.33%

2.83i8.11%
3.51+ 0.86%
2.38 f 1.69%
1.83 + 0.62%
0.98 + 0.37%

Recouery

10.22 * 1.92%

7.50 * 0.99%

0.91*0.17%

Recovery
w,/ Waiting

9.97 *0.94%

7.52 k 1.32%

0.98 kO.37%

Avoidance Avoidance
UP/  Waiting

7.46 + 1.48%

9.74 + 1.25%

7.41-t 1.71%

0.91 * 0.39% 0.90 + 0.77%

Parameter VdW

Node  Service Time 0.0625
Confidence Level 95%
Spndup  Base One processor static deadlock recovery
Mean  Base Execution Time 117.88 seconds
Mean Sequential Execution Time 113.45 seconds
Cluster case A (l)...(18)a
CIurkr  CPM  B (1 17) (2)...(15)  (16 18)
Cluskr  case  C (1 17) (2 3) (4)...(13)  (14 15) (16 18)
Chskr  case D (1 17) (2 3) (4 5) (6)...(11)  (12 13) (14 15) (16 18)
Cluster cue E (1 17 2) (3 4 5) (6 7 8) (9 10 11) (12 13) (14)...(16)  (18)
Cluster  case F (1 17 2) (3 4 5) (6 7 8) (9 10 11) (12 13 14) (15 16 18)
Cluster  case  G (1 17 2 3 4) (5 6 7 8) (9 10 11 12) (13 14 15 16 18)
Cluster c=e  H (1 17 2 3 4 5) (6 7 8 9 10 11) (12 13 14 15 16 18)
Cluskr  CMI  I (1 17 2 3 4 5 6 7 8) (9 10 11 12 13 14 15 16 18)
Cluster  case  .I (1 17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18)

“Node nu’mbers refer to Figure 2. Parenthesized node groups execute on one processor.

TABLE III
SPEEDUPS FOR GENERALIZED FEED FORWARD NETWORK WITH 6 NODES

Clustering
ChSe

STATIC

Recovery Avoidance Recovery

DY NAME

Recovery Avoidance
w/ Waiting

A 3.34 * 1.00% 2.57f0.62%  3.74iO.O0% 3.66*  1 . 4 0 %  2.9Oi  1 . 8 0 %
B 2.16 * 0.64% 1.81* 1.67%
C 2.17 ;t 0.38% 1.36 zt 4.95
D 1.57 * 1.40% 1.21 iO.36% 2.47 & 1.13% 2.47 i 1.12% 1.86 * 1.31%
E 1.55 * 0.46% 1.25* 1.46%
F 1.00 +0.82% 0.76*0.51% 0.88 i-0.48% 0.87 iO.47% 0.65 *0.43%

Psrsmeter VdUC

Node Service Time 1.0
Confidence Level 95%
Speedup  Bare One  processor static deadlock recovery
Cluster case A (l)...(6)’
cluster case  B (1)  (2)  (3 4) (5 6)
Cluster case  c (1 2) (3 4) (5 6)
Cluster case D (1)  (3)  (3 4 5 6)
Cluster  case E (1 5 6) (2 3 4)
Cluster case F (1 2 3 4 5 6)

--i
Avoidance
w/ Waiting

2.81 f 1.35%

1.83 f 2.09%

0.65 f. 0.40%

“Node numbers refer to Figure 3. Parenthesized node groups execute on one processor.
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Speedup 0.40.

1.60

1.20
\

0.80

0.40

0.W

I

E
3

:

Fig. 5. Generalized feed forward network.

Ld-iy+ ... --qf+
Fig. 6. Cyclic network.

1.60-

.
0.80-

‘.

. Deadlock Recovery: Clustering’ (l)(2)(3)(4)
o Deadlock Recovery: Clustering (1 2)(3 4)
0 Deadlock Avoidance: Clustering (l)(2)(3)(4)
x Deadlock Avoidance: Clustering (1 2)(3  4)

I I I I I

0 8 16 24
Population

32 40

Node numbers refer to Figure 4.
Parenthesired  node groups execute on one processor.

Fig. 7. Speedup  for four node cyclic queue (static node allocation).

Central Server Networks
Central server networks have long been used as models

of computer systems [ 1] and consequently have pragmatic
importance. Because they contain nested cycles, central
server networks are susceptible to deadlock in a distrib-
uted simulation. Hence, they are a more realistic test of
distributed simulation. Figs. 9 and 10 show the
speedup obtained for a central server network containing
three servers; see Fig. 1 for the network topology. Even
with five processors, the speedup barely exceeds unity.
Moveover, this is using the single processor, static node
assignment case as the basis for calculating speedup.  As
Table IV shows, the parallel implementation rarely com-
pletes more quickly than the sequential implementation.

. Deadlock Recovery (4 PEs)
o Deadlock Recovery (2 PEs)
0 Deadlock Avoidance (4 PEs)
x Deadlock Avoidance (2 PEs)

0.00 \ I I I / 1
0 8 16 24 32 40

Population

Fig. 8. Speedup  for four node cyclic queue (dynamic node assignment).

Speedup

1.25.

1.00 c

0.75

0.50

(1.25

0.00

. Deadlock Recovery/Clustering: (l)(2)(3)(4)(5)
o Deadlock Recovery/Clustering: (1 ?)(3)(4 5)
0 Deadlock Recovery/Clustering: (1 2)(3 4 5)
x Deadlock Avoidance/Clustering:(i)(2)(3)(4)(5)
‘T Deadlock Avoidance/Clustering: (1 2)(3)(4  5)
I Deadlock Avoidance/Clustering: (1 2)(3  4 5)

16 24

Population

Fig. 9. Speedup  for five node central server (static node assignment).

Indeed, static node assignment with deadlock avoidance
runs 16 times more slowly than the sequential implemen-
tation. Consequently, the speedups over an event-driven
simulation are much lower than Figs. 9 and 10 suggest.

Unlike the simple cyclic network, where both deadlock
a&dance and recovery were rare, the central server net-
work frequently forces the simulation to either send null
messages or attempt deadlock recovery. With only one
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Popu-
lation

-

1
2
3
4
10
20
40

Speedup

/ . Deadlock Recovery (5 PEs)

1

o Deadlock Recovery (3 PEs)

0.75 0 Deadlock Recovery with waiting (5 PEs)
x Deadlock Recovery with waiting (3 PEs)
v Deadlock Avoidance (5 PEs)
Deadlock Avoidance (3 PEs)
A Deadlock Avoidance with waiting (5 PEs)

0.50 + Deadlock Avoidance with waiting (3 PEs)

0.25
1

’0.00 1 / / I
0 8 16 24 32 40

Population

Fig. 10. Speedup  for five node central server (dynamic node assignment).

TABLE IV
SEQUENTIAL AND PARALLEL MEAN EXECUTION TIME FOR FIVE NODE

CENTRAL SERVER (TIME GIVEN  IN SECONDS)

I I
STATIC

PARALLEL
3EQUENTIAL

Recovery  Avoidance Recovery

DYNAMIC
PARALLEL

Recovery Avoidance Avo idance
w/ Waiting w/ Wailing

26.32 28.97 491.85 33.62 35.47 569.00 i62.30
42.80 44.67 510.71 50.19 56.70 619.56 655.15
51.44 52.73 490.48 59.89 61.95 599.29 632.47
56.96 56.92 477.92 63.64 67.02 580.51 623.12
67.22 67.20 471.20 76.66 82.69 601.95 602.09
74.42 70.58 450.91 83.47 88.70 628.46 620.91
87.78 74.74 1419.22 86.08 93.38 602.21 595.28 i

Parameter VdU~

Routing Probability (1) 0.10, (4) 0.45, (5) 0.45
Clustering case (5 PEs) (1) (2) (3) (4) (5)O

“Node numbers refer to Figure 1. Parenthesized node groups execute on one processor.

circulating message, nearly fifty null messages are trans-
mitted for each movement of the real message. Although
the null fraction decreases as the number of circulating
messages increases, it converges to approximately twenty
null messages per real message transmission.6  In contrast,
the deadlock recovery fraction converges to 0.35. Al-
though these deadlock recoveries are expensive, as the

6This value, twenty, seems independent of the network routing proba-
bilities. Removing the nested cycle from Fig. 1 neither increases the ob-
served speedup  nor decreases the null fraction. We hypothesize that the
value is a function of the relative speeds of the processors and memory.

analysis of cyclic networks showed, their number is SO
small compared,to the number of null messages sent dur-
ing deadlock avoidance that deadlock recovery is signifi-
cantly faster.

Finally, we must emphasize that these results are sig-
nifcuntly  more negative than earlier simulated results
[22]. A sequential simulation of a network, but its nature,
imposes some sequential ordering on the evaluation of
network nodes. When those nodes are not being evalu-
ated, they do not generate null messages, nor can they
deadlock. In contrast, in a fully parallel implementation,
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all nodes are always active. Thus, they continue to re-
ceive and generate null messages while awaiting receipt
of real messages. Thus, the overhead is higher than sug-
gested by a sequential simulation of distributed simula-
tion.

0.95I--

Cluster Networks
Cluster networks were the most complex simulated dur-

ing our experimental study. As Fig. 11 shows, a cluster
network is composed of several tightly clustered subnet-
works. This has two important ramifications. First, the
network is nearly decomposed and should yield signifi-
cant speedups with parallel simulation. Secondly, the
clustering increases the expected execution time of the
simulation. Why? The clocks of all nodes must reach the
terminating value before the simulation completes. With
only a few circulating messages, some nodes may be idle
for long periods of time. Only when a message “escapes”
from a subcluster will the clocks of other nodes advance.
This asynchrony means that the clocks of some nodes may
run far past the terminating simulation value.

Fig. 12 shows the speedup of the cluster network with
static node assignment. For small populations, deadlock
recovery is significantly faster than deadlock avoidance.
As with the central server network, this is attributable to
the large number of null messages sent. As the population
i$reases, the null fraction decreases precipitously, and
deadlock avoidance becomes the method of choice. Inter-
estingly, the speedup  obtained with deadlock recovery is
relatively insensitive to the simulated population. With a
large number of processors, the delay to synchronize at a
barrier is prohibitive; this overhead is the reason for the
poor performance of deadlock recovery.

When nodes are dynamically assigned to processors,
Fig. 13, the performance of both deadlock avoidance and
deadlock recovery increase significantly. As noted ear-
lier, messages are often “trapped” in network subclusters
and many nodes are often idle. With deadlock avoidance
and static node assignment, many nodes continually gen-
erate null messages. These messages simply cause addi-
tional overhead and memory contention. With dynamic
assignment, a node must migrate from the tail to the head
of the node work queue before being evaluated. This ad-
ditional delay between evaluations reduces the number of
null messages and is the source of the additional speedup
with dynamic node assignment.

Fig. 13 also shows that a smaller number of processors
yields a marginally larger speedup than that obtained with
maximal parallelism. Although the difference is not sta-
tistically significant in this case, the difference becomes
large when node waiting is introduced. The reason is, as
before, the presence of many idle nodes. By suspending
nodes that cannot productively contribute to the simula-
tion, contention for the node work queue is reduced, and
those nodes with work can proceed without interference.

In summary, the cluster network shows that distributed
simulation can produce significant speedups if the net-
work is decoupled, and subclusters interact infrequently.

i - _ _  _.-.-
- Server Fork

I I0.95

Fig. 11. Cluster network.

Speedup

I Deadlock Avoidrnce (Cluster Cue

0 I 6 12 I6
Population

tNode oumben  refer to Figure 5.
Puentbaised  node groups  CXCCU~C  cm one procemor.

Fig. 12. Speedup  for four block cluster (static node assignment).

S U M M A R Y

Distributed simulation has been the subject of several
simulated performance studies; little or no experimental
data have heretofore been available. Obtaining such data
was the primary goal of this work. Using queueing net-
works as the simulation application, we simulated a va-
riety of such networks with varying workloads using sev-
eral variations of the Chandy-Misra algorithm on a shared
memory machine.



552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING.  VOL.  14.  NO. 4.  APRIL 1988

Speedup

0 I 1 1
0 4 8 12 16

Population

Fig. 13. Speedup  for four block cluster (dynamic node assignment).

These experiments, based on an implementation de-
scribed in [25],  suggest that the Chandy-Mista  distrib-
uted simulation technique may have limited performance
when applied to queueing network models. There are three
primary reasons for this. First, a single processor imple-

mentation of the Chandy-Misra algorithm is usually
slower than the equivalent sequential, event-driven sim-
ulation. Hence, multiple processors are often needed to
recoup the loss due to inefficiency. Second, networks with
cycles require deadlock avoidance or recovery tech-
niques. Third, the inability to lookahead [ 131,  in the gen-
eral case, limits parallelism.

Because queueing network simulation requires little
processing by server nodes, nodes interact frequently in
real time. Because of this, queueing networks are a stress
test for distributed simulation. In simulations that require
extensive computation between node interactions, distrib-
uted simulation is analogous to a group of decoupled pro-
cesses. In such cases, distributed simulation should prove
more attractive.

In conclusion, we caution that performance results are
extremely sensitive to underlying assumptions and imple-

mentation techniques. Our implementation, based on [25],
assumes limited lookahead [13] during deadlock avoid-
ance and does not rely on knowledge of the underlying
queueing network domain. We chose this approach be-
cause it is general and applicable to the widest variety of
problems. However, recent results show that careful tun-
ing of the implementation underlying the distributed sim-
ulation, based on knowledge of the queueing network do-
main, sometimes can result in significant performance
improvements [ 131,  albeit with consequent loss of gen-
erality. We believe the results presented in this paper ty-
pify the performance that would result when simulating

systems whose structure and complexity preclude obtain-
ing sufficient knowledge to tune the underlying parallel
simulation mechanism. Additional implementation and
experience are necessary, however, to determine the in-
terdependence of generality and performance.
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