
216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 2. FEBRUARY 1990

REFERENCES

[I] A. Avizienis and J. C. Laprie. “Dependable computing: From con-
cept to design diversity,” Proc. IEEE, vol. 74, pp. 629-638, May
1986.

[2] K. G. Shin and Y. H. Lee, “Error detection process-Model, design,
and impact on computer performance,” fEEE Trans. Compuf., vol.
C-33, pp. 529-540, June 1984.

[3] A. L. Hopkins, T. B. Smith, and J. H. Lala, “FTMP-A highly re-
liable fault-tolerant multiprocessor for aircraft,” Proc. IEEE, vol. 66,
pp. 1221-1240, Oct. 1978.

[4] R. K. lyer, S. E. Butner. and E. J. McCluskey, “A statistical failure/
load relationship: Results of a multicomputer study,” IEEE Trans.
Cornput., vol. C-31, pp. 697-706, July 1982.

[5] R. K. lyer and D. J. Rosetti, “Effect of system workload on operating
system reliability: A study onlBM 3081,” IEEE Trans. SoftwareEng.,
vol. SE-II, pp. 1438-1448, Dec. 1985.

[6] X. Castillo and D. P. Siewiorek, “Workload, performance, and re-
liability of digital computing systems, ” in Proc. 11th Annu. Int. Symp.
Fault-Tolerant Computing, 1981, pp. 84-89.

[7] J. G. McGough and F. L. Swem, “Measurement of fault latency in
a digital avionic mini processor,” Tech. Rep. 365 1, NASA Contrac-
tor Rep., Jan. 1983.

[8] R. Chillarege and R. K. lyer, “Fault latency in the memory-An ex-
perimental study on VAX 1 l/780,” in Proc. 16th Annu. Int. Symp.
Fault-Tolerant Computing, 1986, pp. 258-263.

[9] M. H. Woodbury and K. G. Shin, “Workload effects on fault latency
for real-time computing systems, ” in Proc. Real-Time Systems Symp.,
Dec. 1987, pp. 188-197.

[lo] T. B. Smith and J. H. Lala, “Development and evaluation of a fault-
tolerant multiprocessor (FTMP) computer: Volume I FTMP princi-
ples of operation,” NASA Contractor Rep., Tech. Rep. 16607 1, May
1983.

[l I] J. H. Lala and T. B. Smith, “Development and evaluation of a fault-
tolerant multiprocessor (FTMP) computer: Volume II FTMP soft-
ware,” NASA Contractor Rep., Tech. Rep. 166072, May 1983.

[12] K. G. Shin and Y. H. Lee, “Measurement and application of fault
latency,” IEEE Trans. Cornput., vol. C-35, pp. 370-375, Apr. 1986.

[13] F. Feather, “Validation of a fault-tolerant multiprocessor: Baseline
experiments and workload implementation,” Master’s thesis, Dep.
ECE, Carnegie-Mellon Univ., Pittsburgh, PA, 1984.

[14] J. H. Lala and T. B. Smith, “Development and evaluation of a fault-
tolerant multiprocessor (FTMP) computer: Volume Ill FTMP test and
evaluation,” NASA Contractor Rep., Tech. Rep. 166073, May 1983.

[151 R. E. Barlow et al., Statistical Inference Under Order Restrictions.
New York: Wiley, 1972.

[161 D. A. Schoenfeld, “Confidence bounds for normal means under order
restrictions, with application to dose-response curves, toxicology ex-
periments, and low-dose extrapolation,” J. Amer. Sfar. Assoc., vol.
81, pp. 186-195, Mar. 1986.

1171 E. L. Ellis and R. W. Butler, “Estimating the distribution of fault
latency in a digital processor,” NASA Tech. Memo., Tech. Rep.
100521, Nov. 1987.

Experimentally Characterizing the Behavior of
Multiprocessor Memory Systems: A Case Study

K. GALLIVAN, D. GANNON, W. JALBY, A. MALONY,
AND H. WIJSHOFF

Abstract-Although architectural improvements in memory organi-
zation of multiprocessor systems can increase effective data band-

Manuscript received April 3, 1989; revised October 2, 1989. Recom-
mended by R. K. lyer. This work was supported by the National Science
Foundation under Grant US NSF MIP-8410110, the Department of Energy
under Gram US DOE-DE-FG02-85ER25001, the Air Force Office of Sci-
entific Research under Grants AFOSR-85-0211 and AFOSR 86-0147, and
an IBM Donation.

The authors are with the Center for Supercomputing Research and De-
velopment, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

IEEE Log Number 8932234.

width, the actual performance achieved is highly dependent upon the
characteristics of the memory address streams; e.g., the data access
rate, and the temporal and spatial distributions. Accurately quantify-
ing the performance behavior of a multiprocessor memory system
across a broad range of algorithmic parameters is crucial if users (and
restructuring compilers) are to achieve high-performance codes. In this
paper, we demonstrate how the behavior of a cache-based multivector
processor memory system can be systematically characterized and its
performance experimentally correlated with key features of the ad-
dress stream. The approach is based on the definition of a family of
parameterized kernels used to explore specific aspects of the memory
system’s performance. The empirical results from this kernel suite
provide the data from which architectural or algorithmic characteris-
tics can be studied. The results of applying the approach to an Alliant
FX/S are presented.

Index Terms-Characterization, memory systems, multiprocessor,
performance.

I. INTRODUCTION

For shared memory multiprocessors, access to the common
memory is one of the key limiting factors in performance. One of
the most attractive solutions to this problem is the use of a hierar-
chical memory system. This approach reduces the apparent mem-
ory latency as well as the memory contention. However, the per-
formance is far from uniform and depends not only upon the
characteristics of the memory hierarchy itself, but also on the char-
acteristics of the address streams and the interaction between the
two. This implies that the relationship of code characteristics to
machine characteristics must be taken into account. For example,
knowing the precise penalty in terms of number of cycles for a
cache miss is not enough to understand the effectiveness of a given
cache organization. We need to determine precisely, as a function
of the temporal and spatial distribution of the requests, the data
access rate and to try to correlate observed behavior with code
characteristics. This requires a systematic investigation of the pa-
rameter space (code characteristics).

Classically, two main approaches are used for performance anal-
ysis: analytical or experimental (simulation or measurement). The
first solution is extremely powerful in the sense that it allows the
analytical correlation of the performance with organizational pa-
rameters. The drawback is that, in order to be tractable, they typ-
ically require a drastic simplification of the hardware model and of
the memory request stream. For example, queueing theory-based
models assume a randomly distributed (both in time and space)
memory request stream. This is particularly disturbing when mod-
eling scientific codes on vector machines because these codes tend
to exhibit very regular data access patterns and the vector instruc-
tions used to implement the codes must exploit, and thereby em-
phasize, this regularity in the spatial and temporal distribution of
the requests. Experimental performance analysis (simulation or
measurement) provides more accurate information in the sense that
it is possible to take into account more details of the hardware and
code characteristics. The drawback of such a solution is its exper-
imental nature which limits the number of codes analyzed and gen-
erally does not provide any methodology for extrapolating the per-
formance of an arbitrary code from the performance of the
benchmark codes. Furthermore, even when using very simple
benchmarks, there is no general method for correlating code char-
acteristics with the performance observed.

Our primary goal in this paper is to present a systematic meth-
odology for investigating and correlating the performance of a
cache-based memory system (in our case, the Alliant FXB) in terms
of architectural parameters and code characteristics typical of sci-
entific numerical computations. The resulting characterization can
be used for performance prediction of scientific codes. Further-
more, the design of the empirical kernels upon which the meth-

009%5589/90/0200-0216$01.00 0 1990 IEEE

the
ess
fY-
em
Ind
his
tar
its

dd-
of

~ ory

0”
of

ar-
:m-
jer-
*he
ar-
:he
to

1%
-a
en

ion
3ta
,de
,a-

iI-
he
he
a-

P-
of
ed
d

Id-
ld
c-
“-
of
,I
Jt
rd
r-

/ ALLIANT MEMORY BUS \

I
ALLIANT MEMORY BUS

CE2 CE4 CE6

CE 1 CE3 CE5 CE7

Fig. I. Alliant FX/S architecture.

odology is based allows an explanation of observed and predicted
performance and is therefore suited to aid in performance tuning
via an interactive restructuring compiler (See [9] for details of per-
formance tuning usage on the Alliant FXI8.)

The remainder of this paper is organized in four sections. In Sec-
tion II, the architecture of the Alliant FXi8 is described. Section
III contains the motivation and description of the LOAD/STORE
kernel hierarchy. Experimental results are presented and analyzed
for an Alliant FXI8 in Section IV and conclusions are given in
Section V.

II. THE TARGET ARCHITECTURE: ALLIANT FXi8
The Alliant FXi8 (see Fig. I) machine consists of up to eight

pipelined computational elements (CE’s) connected by a concur-
rency control bus which is used as a fast synchronization facility.
This mechanism enables the CE’s to cooperate in performing the
computations of a single program unit with small granularity, e.g.,
a Fortran loop. A special set of instructions support the use of the
synchronization hardware. This enhances greatly the performance
of the system in parallel mode and makes its behavior more pm-
dictable. When a portion of code requires the eight processors, e.g.,
a parallel loop, the iterations of the loop are directly allocated to
the processors via an hardware self-scheduling mechanism without
involving the operating system scheduler.

The memory system of the Alliant FXl8 combines parallel data
access with a hierarchical memory structure. It is organized in three
levels, a large main memory, a cache shared by the CE’s, and sca-
lar and vector registers private to each CE. The vector registers are
32 double precision (64-bit) words long and can be operated on via
the vector processing capabilities of each CE. (Throughout the dis-
cussion below a word is taken as 64 bits.) The 16K-word write-
back cache is organized into four banks and connected to the eight
CE’s via a crossbar switch. The cache can service up to eight
simultaneous accesses per cycle (170 ns). The cache is direct-
mapped, meaning each memory location can be cached in exactly
one cache location, and uses a cache block (quantum of exchange
between the memory and the cache) of 4 words. The cache and the
four-way interleaved main memory are connected through the main
memory bus which is able to deliver up to four words per cycle.
Therefore, the peak bandwidth between main memory and CE’s is
23.5 Mwords/s which is half of the 47 Mwords/s possible between
the cache and the CE’s.

The internal organization and behaviorof the CE’s is rather sim-
ple. Extensions. such as vector and concurrency instructions. have
been made to the basic instruction set of the 68000. The vector
instruction set contains compound insttuctmns such as multiply-
add (this corresponds to the chaining of a load from memory wth
a multiply followed by an addition). However. at most one operand
can come from outside the CE. i.e., in cache or memory, due to
the fact that there is only one port connecting the CE to the cache.
All of the vector instructions of interest hex involving one operand

external to the CE, use the same cache request mechanism. In par-
ttcular they request the cache or memory at the same rate. The only
difference in rhetr behavior is due to differing startup times-the
time at which the first request IS issued.

III. LOAD/STORE HIERARCHY

A. Morivarron
In this section, we describe the types of code segments that wll

be used to generate the code characteristics of interest and the gen-
eral principles of the characterization techniques used.

The techniques for analyzing the performance of a given mem-
oty organization depends upon the field of application. For exam-
ple, in the area of benchmarks, the Lawrence Livermore Loops and
LINPACK are used specifically to test the system performance for
scientific computing. Similarly, we will focus on analyzing the per-
formance of basic multiply-nested Fortran DO LOOPS. For the sake
of simplicity, we will assume that the arrays in the loop body are
referenced through linear subscripts. Indirect addressing can be
handled via similar techniques [l3]. Finally, we will assume that
the innermost loop is vectorizable and therefore parallelizable. As
a consequence of the last assumption, a CE will spend most of its
time executing vector instructions.

The choice of such structures is motivated by the fact that they
account for a large pa* of typical numerical programs execution
time and because the hypothesis on the subscripts and conditional
statements implies that the sequence of memory addresses accessed
during program execution is extremely regular and can be analyzed
statically at compile time by using techniques similar to the ones
used for vectorization [7], [I I].

The Alliant vector instructions can be grouped in 2 categories:
internal (register-register) where all operands are contained in vec-
tor and scalar registen; and exrernol (register-memoly) where one
operand comes from or goes to memory. Most of the vector instruc-
tions in each class have similar timing characteristics typically dif-
fering only in startup costs. Since the internal instructions do not
depend on conditions external to the CE, their timings are essen-
tially deterministic and their contribution to the total execution time
can be derived in a straightforward manner fmm the hardware spec-
ifications. The case of the timings of the external instructions is
much more complex. Theoretically, they could be determined from
hardware specilications. In practice, such a technique is difficult to
apply directly due to the fact these timings are very dependent upon
runtime conditions such as contention (either due to the previous
requests of the same processors or other processors) and the exact
location of the operand (memory or cache). In such cases petfor-
mance characterization can be divided into two subproblems: de-
termining the runtime conditions; and determining the performance
under such conditions.

For the purpose of investigating memory behavior, the key pa-
rameter to be varied is the global memory request stream of all the
processors. Unfortunately, the domain of this parameter is pmhib-
itively large. We need to a systematic technique of exploring this
space. In particular, we need to provide a parameterized mecha-
nism by which the memory system can be probed to determine po-
tential bottlenecks and, conversely, situations where high data
transfers can be achieved and maintained. Additionally, it is ad-
vantageous to have the characterization facilitate the prediction of
performance of a given loop.

The approach taken here is based on the definition of a family
of parameterized kernels (these kernels, in fact, correspond to the
choice of a set of address request streams). The choice of these
kernels was guided by three major constraints. First, the kernels
must be able to mimic the access patterns of the loop structures of
interest using different parameter combinations. Second, the ker-
nels should be elementary enough to allow the study of the impact
of only one characteristic of the request stream at a time, e.g.,
varying the hit ratio but keeping the temporal distribution of the
request constant. Third, we must be able to decompose a given loop
in terms of these elementary kernels and then reconstruct the per-

218 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 2, FEBRUARY 1990

formance of the loop using the performance data obtained for the
kernels. The remainder of this section describes the kernel hier-
archy in more detail and discusses the way the above requirements
are satisfied. Since, in this paper, we are demonstrating the tech-
niques by applying them to an Alliant FX/8, the discussion of the
use of the kernel hierarchy is based on the characteristics of this
machine.

B. Load/Store Kernels

The basic kernels in the hierarchy are a simple vector load or
store. On the Alliant FX/8, these simple operations use both the
concurrent and vector processing capabilities of the machine. Their
basic function is loading (storing) a single vector of consecutive
elements from (to) the memory system. The intent of these kernels
is to determine the bandwidths of reads and writes that each com-
ponent of the memory system is able to sustain and the conditions
influencing these bandwidths. They are parameterized by the length
of the vector (n), the location of the vector (cache or memory),
the number of processors (p), and the partitioning and scheduling
of the operations across the processors.

The structure of the basic kernel is shown in Table I. The kernel
has the form of a concurrent loop construct with the body of the
loop iteration being a set of vector move instructions.

At the top of the loop, the processors enter a concurrent pro-
cessing mode (this has little overhead on the Alliant FX/8 due to
its hardware concurrency support). The preamble code is executed
once per processor and consists mostly of address computations for
the load and store streams; in general, it can perform any initial-
izing computation. The remainder of the kernel consists of code
which is performed for each of the iterations of the concurrent loop.
For the simplest load and store primitives, each iteration corre-
sponds to the processing of a single block of length b of the n
elements of the vector. The iteration code consists of address com-
putations followed by a loop of nop instructions and a sequence of
vmove instructions. The vector loop is required since b may be
larger than the vector register size.

Several scheduling strategies are possible; in this paper we will
restrict ourselves to the most interesting: self-scheduling with con-
tiguous blocks (for a detailed analysis of the different variants of
scheduling see [8]). In self-scheduling, the vector of length n is
broken into blocks of b contiguous elements. The original vector
loop is decomposed into two loops. The outermost is performed in
parallel across the CE’s while the innermost (operation on a block
of b elements) is executed in vector mode within each CE. On the
Alliant FX/8, the dispatching of the blocks to the processors is
done by an hardware self-scheduling mechanism. That is, the blocks
are logically arranged in a queue and as soon as a processor has
finished operating on a block, it accesses the queue to get another
block or goes idle if the blocks are exhausted. By changing the
block size, the effect of synchronization can be analyzed as well as
load balancing issues.

This basic family is extended by including the variation of three
other code characteristics: the temporal distribution of requests, the
distribution of requests in the hierarchy (hit ratio), and the spatial
distribution of the requests. The use and purpose of these param-
eters are as follows:

Temporal Distribution: The main purpose of this parameter is
to study the interaction between a burst of requests, which corre-
sponds to an external vector instruction, and a subsequent interval
of several cycles without memory requests, which corresponds to
the execution of internal vector instructions, address computation,
or the different start-up times of the various vector instruction that
could generate the memory request. The variation of the density of
memory requests made by each processor is accomplished by al-
tering the number of null instructions (informally called NOPS be-
low) making up the nop sequence in the kernel.

Hit Ratio: The purpose of this parameter is to study the effect
of the distribution of requests between the two memory levels. The
hit ratio can be experimentally varied by manipulating the vmove

TABLE I
THE BASIC LOAD/STORE PRIMITIVE TEMPLATE

start concurrent execution
preamble code executed once per processor

loop body:
initial computations of iteration body

vector-loop:
nop sequence
“move sequence
jump to vector-loop if work left in block
get next concurrent iteration index and jump to loop-body

resume sequential operation after iterations are exhausted

sequence in each iteration of the kernel. The manipulation consists
of inserting, after the single vmove instruction which loads (stores)
a portion of vector, a variable number k of vmove instructions ref-
erencing exactly the same locations. The first vector reference gen-
erates a miss in the cache (this can be controlled) while the sub-
sequent k references cause hits. Notice that this parameter describes
the behavior of the memory system under variations of temporal
locality with respect to the memory hierarchy while suppressing
spatial locality variations of the requests (since the same locations
just brought in to cache are repeatedly accessed). Furthermore, in-
sight is gained into the behavior of the cache/main memory com-
bination when simultaneously addressed.

Spatial Distribution: Manipulating the stride of the vector ac-
cess in the basic kernel can be used to characterize the effect on
performance of the mapping strategy used to assign elements of an
array to the banks in the two levels of the hierarchy. By manipu-
lating the vector length all references can be kept in cache and the
effectiveness of the mapping of elements to cache banks and bank
conflict resolution strategy can be characterized. Similarly, by
working with vector lengths large enough to flush cache on each
pass through the vector, the effectiveness of the interleaving of the
main memory system is probed. The stride can also be varied to
manipulate the cache banks servicing the misses if knowledge of
the address mapping is exploited. Finally, the stride can be used to
identify the effect of the main-memory-to-cache mapping on per-
formance. Characterizing this effect can be particularly important
when implementing high-performance kernels such as the BLASS
on machines, like the Alliant FX/8, which use a direct mapping
POI.

The above variations of the primitive kernels form the basis of
a set of experiments used to characterize the behavior of the Alliant
FX/8’s memory system. From this base, other levels of the LOAD/
STORE hierarchy are built by manipulating two additional aspects
of the primitive: the number of vector address streams and the di-
mension of the structured data element accessed. The former is
accomplished by manipulating the vmove sequence within the vec-
tor loop in the primitive template. This sequence is modified to be
a series of vmove instructions to and from memory for several ad-
dress streams. The three most basic multiple address stream kernels
found in vector computations are: load-load, load-store, and load-
load-store. The variation of the dimension of the structured vari-
able accessed corresponds to determining the performance of the
memory system when access pieces of structures more complex
than simple vectors. For example, one of the most important class
of algorithms in scientific computations is numerical linear algebra
which must access efficiently submatrices as well as vectors. Ac-
cesses of such objects can be modeled by a simple modification to
the basic kernel which uses a hierarchy of strides to access a var-
ious portions of a contiguous section of memory.

The family of kernels is built in such a way that any parameter
can be varied while the others remain constant. If all the points in
the parameter space were to be tested, this would result in an over-
whelming number of experiments. In practice, we proceed in a hi-
erarchical manner. The parameter space is first explored in a coarse
way, by making large steps in parameter variations. After coarse

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 2. FEBRUARY 1990 219

performance is observed, refinement techniques are used by step-
ping with smaller increments. The number of levels produced in
the hierarchy and the subset of kernels used is determined by a
knowledge of the architecture, the intended use of the information
and the consistency (or lack thereof) found in the experiments as
levels are added (see the comments on commutativity below).

IV. EXPERIMENTAL RESULTS

In this section, after a brief description of the experimental set-
up, we summarize the major findings of the load-store experiments
(for a more detailed study see [8]). We implemented a set of load/
store kernels in assembly language parameterized by the parame-
ters described in the previous section. All the loads and stores in-
structions operated on double precision data (64 bits). The align-
ment did not significantly influence performance due to the fact that
the address streams were fairly long. Each experimental value was
obtained by running each kernel five times, eliminating the best
and the worst experimental values, and taking the arithmetic aver-
age of the three remaining values as a final number. Confidence
intervals were computed for each set of five values and found to be
satisfactory. All experimental values showed less than 5 percent
variation between the extremes.

The resolution of the timer used was 10 ms. In order to increase
timing accuracy, each code was enclosed in a repetition loop such
that the interval between two consecutive calls to the timer was at
least 0.1 s. However, on a cache based system, such a technique
has the following drawback. If the total working set of the loop fits
in the cache (i.e., the working set is smaller than the cache size),
the first timing iteration loads the cache and the subsequent itera-
tions will operate from cache. This explains the general shape of
our experimental curves. They have three distinct regions which
depend on the relationship of the vector length n and the size of
the cache, 16K double precision words. These regions are as fol-
lows.

Cache Region: 0 5 n 5 16K for the load and store kernels
(respectively 0 5 n 5 8K for the load-load and load-store kernels
and 0 5 n 5 5.3K for the load-load store kernels). In this region,
all the operands are in cache. It should be noted that this region is
large enough so that we reach a speed very close to the asymptotic
rate.

Fall Off Region: 16K 5 n 5 32K for the load and store kernels
(respectively, 8K 5 n I 16K for the load-load and load-store ker-
nels and 5.3K 5 n I 10.6K for the load-load-store kernels). In
this region we observe a very strange phenomenon due to the direct
mapped cache. Portions of the vector overlap in the cache forcing
the elements to be fetched from memory from one iteration to the
next. The other parts of the vector remain in the cache. In this
region the hit ratio is decreasing from 1 to 0.25.

Memory Region: 32K 5 n for the load and store kernels (re-
spectively, 16K 5 n for the load-load and load-store kernels and
10.6K I n load-load-store kernels). In this case the cache is flushed
each iteration and the operands come from memory.

A. Load Kernel

In these experiments, a simple kernel reading a vector of length
n was timed [Fig. 2(a),(b)].

On one processor, the performance is very regular. The memory
region presents small drop in performance not due to the saturation
of the memory bandwidth but rather due to the limit in the pipelined
request-issue of the CE. Delays occur because the processor can
only have two misses outstanding at any time. Notice the two pro-
cessor case is perfectly scaled from the one processor (speedup of
2) performance. For four processors, where the contention at the
cache level is negligible (speedup of 4), the memory contention
becomes more important (speedup of 3.3).

For eight processors, cache contention begins to affect perfor-
mance. In the cache region, 30 Megaloads/s may seem disappoint-
ing compared to the potential peak of 43.5 Mwords/s. However,
there are two reasons for such a situation. One reason is that the

MLoads/sec

18-

0 8192 16384 24516 32708 40900 49152
Length of Vector Operation

(a)

Speedup

8

2
im

1
1

0-l
0 8192 16384 24576 32768 40960 49152

Length of Vector Operation
(b)

Fig. 2. (a) Load performance. (b) Load speedup. (Block size 128.)

overhead associated with each block (synchronization, address
computations) is nonnegligible. This decreases the intensity of re-
quests from each processor. By using larger blocks (which de-
creases the relative importance of the overhead compared to the
sequence of accesses) or by unrolling the loop (same effect), speeds
up to 38 Megaload/s can be achieved. Still, in all cases the speedup
is around 7.3.

Secondly, due to the cyclic nature of bank referencing, we would
expect to have first an initial transient phase with some bank con-
flicts followed by a steady state where processors are synchronized
with each other without any additional conflicts. Such a phenom-
enon would occur if each processor had an infinitely long sequence
of requests regularly spaced in time. In reality, due to the splitting
in blocks and vector operations, the sequence of requests are not
necessarily regularly spaced in time. Some operations between
vector requests could encounter conflicts. This acts to disrupt the
synchronized conflict-free referencing between the processors. By
looking at a trace of processor activity generated with a logical
analyzer, we noticed that the processors indeed entered a phase-
sync with respect to their referencing behavior after a short tran-
sient “conflict” phase at the beginning of a vector instruction.
However, we also observed that random access could easily disrupt

220 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 2, FEBRUARY 1990

the phase synchronization. Thus, instead of observing only a single
transient phase followed by a long steady state, we saw a succes-
sion of transient phases (with conflicts) followed by short steady
state periods.

At the memory level, the contention is far more severe (speed
of 10 Megaloads/s and speedup around 5 while the peak speed of
the system is supposedly 23.5 MWords/s). This is mainly caused
by the fact that the memory bus cannot satisfy the requested band-
width from the processors. The contention of the memory system
combined with the request mechanism is responsible for most of
the performance loss.

B. Store Kernel

The kernel used in these experiments is the same as the load
kernel except that a vector write is performed instead of a vector
read. A close look at the results [Fig. 3(a),(b)] indicates that the
behavior of the store is very similar to the load. Only two main
differences are worth noticing. First, the performance in cache is
slightly lower (around 5 percent) due to the fact that the startup of
a vector store is slightly higher. Second, the performance from
memory is similar to the load for one and two processors, but four
and eight processors show significantly less performance: 6.5
Megastores per second versus 10.5 Megaloads per second in the
eight processor case. This drop is due to the limitations in band-
width at the memory level (bandwidth for sequential writes is 80
percent of the bandwidth for sequential reads) and to the combined
effect of miss-on-write and write-back mechanisms; although the
write-back mechanism defers the penalty for write. When the cache
is full and new blocks are to be loaded, part of the memory bus
bandwidth will be consumed by these delayed writes. From the
memory point of view, each block is accessed two times: first when
it is written into the cache and then later when it is written back to
memory.

The speedup curves show very clearly this phenomenon. The
contention at the memory with four processors is already severe
(speedup less than 2.9), because each write requires two transac-
tions on the bus. So, four processors writing are almost equivalent
to eight processors reading.

C. Temporal Distribution

For these experiments, we modified the basic load kernel by in-
serting a fixed number of NOPS after each vector instruction. We
varied the number of NOPS between 0 and 80 by increment of 8.

Introducing the NOPS has two effects: first, the time for an it-
eration is lengthened, and second, the memory reference rate is
decreased thereby decreasing memory contention. For the one pro-
cessor case [Fig. 4(a)], the first effect is predominant because there
is no contention. Accessing 32 elements from cache costs approx-
imately 35 cycles. Adding 80 cycles (80 NOPS) after each vector
instruction approximately triples the cost and we observe a corre-
sponding decrease in performance of around three. From memory,
accessing 32 elements cost around 80 cycles, so adding 80 NOPS
should roughly divide the performance by two, which correlates
exactly with the experimental results.

The eight processor case is more complex to study due to the
variations in contention [Fig. 4(b)]. From cache, the contention
was not very important (speedup around 7) so increasing NOPS
does not have a significant impact on the speedup. The main effect
is seen in lengthening the time and we observe a corresponding
drop in performance.

From memory the situation is more complex. Notice with 0
NOPS the memory bandwidth is saturated: the total aggregate
bandwidth requested by the processors exceeds the bandwidth of
the memory system. By adding NOPS, we are effectively decreas-
ing the bandwidth requested by the processors. Therefore, we ob-
serve the performance remaining constant while the bandwidth re-
quested by the processors exceeds the capacity of the memory
system until some point where the number of NOPS introduced
results in the requested bandwidth exactly matching that of the

MStores/sec

24-

.

: X

1 Processor
2 Processors
4 Processors - 8 Processors

18.

01
0 8192 16384 24576 32768 40960 49152

Length of Vector Operation

(a)
Speedup

8

7-

6-

5.

4-

3.

2 Processors 4 Processors -
8 Processors

01 I
0 8192 16384 24576 32768 40960 49152

Length of Vector Operation

(b)
Fig. 3. (a) Store performance. (b) Store speedup. (Block size 128.)

memory. From that point the bandwidth requested becomes less
than the capacity of the memory system, and we observe a decrease
in performance.

D. Vector Hits

For these experiments, each vector instruction was followed by
a fixed number of vector instructions (called vector hits) with the
same starting address (i.e., each vector instruction accessed the
exact same set of addresses). For example, the 0 vector hit kernel
corresponds to the standard load. The k vector hit kernel corre-
sponds to a sequence of (k + 1) vector instructions referencing
exactly the same set of addresses.

For the cache region, such experiments allow us to study the
effect of unrolling; increasing k is going to decrease the impact of
the loop overhead on the performance. For the memory region,
they give information about the interaction between the references
to the two memory levels and the relationship between miss-ratio
and performance: for the k vector hits kernel, the miss-ratio is 8 /(k
+ 1) * 32.

In cache, the effect of unrolling is very clear, it allows to reach
38 Mwords/second [Fig. 5(a),(b)]. From memory, we observe a
phenomenon similar to the one observed with the NOPS; increas-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 2, FEBRUARY 1990 221

hJLoads/sec

10240 20480 30720 40980
Length of Vector Operation

MLoads/sec
(a)

MLoads/sec

Length of Vector Operation

(a)
MWords/sec

10240 20480 30720 40960

Length of Vector Operation

(b)
Fig. 4. (a) Effects of NOP’s on one processor. (b) Effect of NOP’s on eight

processors. (Load kernel, block size 128.)

ing the number of hits decreases the intensity of memory requests
alleviating the contention problem at the memory level. Corre-
spondingly, the speedup increases regularly from 5 to 6.3. The
difference compared to the NOPS case is that hits and misses are
contending with each other at the cache level. It is worthwhile to
note that the difference in performance between 0 vector hits and
10 vector hits reaches a factor of three while the advertised peak
bandwidth between the two levels of memory differ only by a factor
of two.

E. Strides

The kernel used corresponds to reading a vector of n elements
and varying the stride.

In cache, the main effect of strides is to partition the requests
among the four banks. Stride 1 and stride 5 sweep all four banks
and the performance is linear in the number of processors [Fig.
6(a)]. Due to an Alliant-specific data skewing scheme, stride 2 still
goes across all four banks and the performance is very similar to
the stride 1 case. However, stride 4 concentrates the request on
two banks effectively halving the potential performance. Four pro-
cessors can saturate the bandwidth in this case. Stride 8 concen-

Length of Vector Operation

(b)
Fig. 5. (a) Effect of cache miss ratio on one processor. (b) Effect of cache

miss ratio on eight processors. (Load kernel, block size 128.)

trates all requests on one bank and bandwidth saturation can be
reached with two processors.

From memory, the effect of strides is complicated by the cache
line size [Fig. 6(b)]. Any stride greater than four will imply a miss
for each access. Except for strides which are multiples of eight
(missing occurs on a single bank), all strides greater than four will
achieve bandwidth saturation with only four processors. Surpris-
ingly, the performance of the stride-4 load and the stride-5 load are
about the same. This indicates that missing on two banks gives the
same performance as missing on all four cache banks. To be pre-
cise, in the case of stride 4, we are missing on two cache banks
located on different cache boards. Recall that the four cache banks
of the Alliant are arranged on two cache boards, with each cache
board having one port to the bus. More detailed experiments, where
missing occurred on only two cache banks located on the same
board. indicated that the speed obtained was about the same as the
speeds stated above, implying that the memory bus cannot fully
support two cache boards requesting at their maximum rate.

F. Commutativity

Remarkable observations can be made on the Alliant FX/8 with
respect to the interchange of different load/store kernels, and/or

222 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 2, FEBRUARY 1990

MLoads/sec

31

28

25

22

19

16

13

10

7

4
1 2 3 4 5 6 7 8

Length of Vector Operation
(a)

MLoads/sec

lo-

9-

8-

7-

6.

5-

I
1 2 3 4 5 6 7 8

of Processors
(b)

Fig. 6. (a) Effect of strides in cache. (b) Effect of stride in memory. (Load
kernel.)

different insertions of NOP’s. By this we mean that the Alliant FX/
8 satisfies structural and temporal commutativity. Structural com-
mutativity asserts that the order of the loads and stores in a kernel
composed of multiple loads and stores is independent of the ker-
nel’s performance; e.g., load-load-store shows similar perfor-
mance to store-load-load-load, load-store-load-load, and load-load-
store-load. Structural commutativity was observed on the Alliant
FX/8 for all complex kernels discussed above. Spatial commuta-
tivity relates to the effect that nonmemory reference operations
have on kernel performance with respect to their location relative
to the memory reference operations.

Not only is the characterization simplified when these commu-
tativity properties hold, it is also of crucial importance when pre-
dicting codes. In the latter case, the database of empirical results
can be considerably compressed to contain only data for represen-
tatives of kernel equivalence classes. For more detailed discussion
of the commutativity properties and their implication on predicting
the performance of DO-loop structures see [9].

V. CONCLUSIONS
The first conclusion is that the system has smooth behavior rel-

ative to varying the different parameters and the trends can be eas-

ily predicted qualitatively. From a quantitative point of view, the
situation is more complex: we must distinguish two cases depend-
ing on whether the system has one of its components at a saturation
point or not.

In the latter case (for example, the one and two processor ex-
periments) we were able to predict the performance of the load/
store kernels to within 10 percent error using simple cycle counting
techniques, i.e., inspecting the assembly code and computing the
total execution by summing up the timings of elementary instruc-
tion, augmented by certain empirically determined quantities. Such
a simple technique proved to be very powerful and accurate even
in the fall-off region. For this region, the situation was a bit more
complex due to the fact that there is a mix of hits and misses. We
used a straightforward model of the direct-mapped cache in order
to determine how accesses will be directed to cache versus mem-
ory. The resulting prediction gave good results.

In the former case (saturation of one component, four and eight
processor cases) the situation is different. First, the numbers pro-
vided by the manufacturer (peak bandwidth) were inadequate. Fur-
thermore, knowledge of the protocol used in handling exchanges
between the different levels of the hierarchy did not help to deter-
mine quantitatively the loss in performance due to saturation. This
was due to the complexity of memory transactions from the pres-
ence of multiple address streams.

In such cases, controlled experimentation of the load/store type
is crucial. This is particularly true when the experimental results
can be deduced from more elementary data via relatively simple
combinations. For example, the behavior of complex load patterns
could be accurately approximated by averaging corresponding
component load kernel results. We observed similar properties for
the more complex parameter variations such as the hit ratio series
of experiments.

The experimental characterization as described in this paper is
also used successfully for predicting performance for very simple
kernels such as the Lawrence Livermore Loops [9]. We stress the
point that even without being integrated into a performance predic-
tion tool, the results of building an experimental database can be
extremely useful for guiding the choice of a restructurer between
several possible code optimization. For example determining the
sensitivity of the system to the hit ratio, indicates quantitatively
how much effort has to be devoted for increasing data locality.

The basic conclusion is that for the Alliant FX/8, and most likely
for similar architectures, careful combination of local analytical
models and empirical observation can characterize the performance
of the memory system.

111

121

[31

[41

151

[61

171

[81

REFERENCES

W. Abu-Sufah and A. Kwok, “Performance prediction tools for Ce-
dar: A multiprocessor sunercomouter.” in Proc. 12th Inr. Symp.
Computer Architecture, 1485, pp: 406-413.
J. Andrews, D. Lavery, and R. Iyer, “A measurement based study
of cache contention in a shared memory multiprocessor,” Univ. Il-
linois, CSL Rep., 1987.
D. Bailey, “Vector computer memory bank contention,” IEEE Trans.
Cornput., vol. C-36, no. 3, pp. 293-298, Mar. 1987.
1. Bucher and M. Simmons, “A close look at vector performance of
register-to-register vector computers and a new model,” in Proc. 1987
ACM SIGMETRICS, 1987, pp. 39-45.
D. Calahan, “Performance evaluation of static and dynamic memory
systems on the Cray-2,” in Proc. 1988 Int. Conf. Supercomputing.
ACM Press, 1988, pp. 519-524.
T. Cheung and J. Smith, “ An analysis of the Cray X-MP memory
system,” in Proc. Int. Conf Parallel Processing, Aug. 1984. pp.
494-50s.
K. Gallivan. D. Gannon, and W. Jalby. “On the problem of optim-
izing data transfers for complex memory systems,” in Proc. 1988 Int.
Conf. Supercomputing, ACM Press, 1988, pp. 238-253.
K. Gallivan. D. Gannon. W. Jalbv. A. Malony, and H. Wijshoff.
“Behavoral characterization of m;l;iprocessor memory systems: A
case study.” Univ. Illinois at Urbana-Champaign, CSRD Rep. 808.
Oct. 1988.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 2, FEBRUARY 1990 223

[9] K. Gallivan, W. Jalby, A. Malony, and H. Wijshoff, “Performance
prediction of loop constructs on multiprocessor hierarchical memory
systems,” in Proc. 1989 ht. Conf. Supercomputing, ACM Press,
1989,pp.433-442.

[lo] K. Gallivan, W. Jalby, U. Meier, and A. Sameh, “The impact of
hierarchical memory systems on linear algebra algorithm design,” Inr.
J. Supercompur. Applicar., vol. 2, no. 1, pp. 12-48, Spring 1988.

[ll] D. Gannon, W. Jalby, and K. Gallivan, “Strategies for cache and
local memory management by global program transformation,” 1.
Parallel Distributed Computing, pp. 587-616, Oct. 1988.

[12] G. Phister and A. Norton, “Hot spot contention and combining in
multistage interconnection networks,” in Proc. In?. Conf. Parallel
Processing, 1985, pp. 790-797.

[131 Y. Saad and H. Wijshoff, “A benchmark package for sparse matrix
computations, ” in Proc. ht. Conf: Supercomputing, 1988, pp. 500-
509.

Debugging Effort Estimation Using Software Metrics

NARASIMHAIAH GORLA, ALAN C. BENANDER, AND

BARBARA A. BENANDER

Abstract-Measurements of 23 style characteristics, and the pro-
gram metrics LOC, V(g), VARS, and PARS were collected from stu-
dent Cobol programs by a program analyzer. These measurements,
together with debugging time (syntax and logic) data, were analyzed
using several statistical procedures of SAS, including linear, qua-
dratic, and multiple regressions. Some of the characteristics shown to
significantly correlate with debug time are GOT0 usage, structuring
of the IF-ELSE construct, level 88 item usage, paragraph invocation
pattern, and data name length. Among the observed characteristic
measures which are associated with lowest debug times are: 17 percent
blank lines in the Data Division, 12 percent blank lines in the Proce-
dure Division, and 13 character long data items. A debugging effort
estimator, DEST, was developed to estimate debug times. This esti-
mator, a quadratic function of nine characteristics, has a coefficient of
multiple determination (R*) of 0.7551 with the total debug time (sig-
nificance level 0.0001). None of the software metrics LOC, V(g),
VARS, and PARS has r* values greater than 0.3 when regressed with
total debug time. The variables of DEST, when regressed with debug
times from various subsets of the programs stratified by LOC, V(g),
and student GPA, had high RZ values.

Index Terms-Cobol, debugging, regression analysis, software met-
rics, statistical analysis, style analyzers.

I. INTRODUCTION

It has been estimated that in a typical programming project, de-
bugging accounts for over 50 percent of the time spent on the proj-
ect [lo]. Many factors influence debugging time, including pro-
gramming style, program length, program complexity, program
volume, and programmer competence. Among these factors, how-
ever, a programmer has most control over programming style. This
experiment studies the relationship between programming style and
debugging time, while taking the other factors into consideration.

Research has been conducted investigating the components of
good programming style and their effect on various programming
tasks [2], [4], [6]-[9], [l 11. Program style analyzers [2], [8] have

Manuscript received September 6, 1989; revised October 2, 1989. Rec-
ommended by R. K. lyer.

The authors are with the Department of Computer Science, Cleveland
State University, Cleveland, OH 44115.

IEEE Log Number 8932235.

been written for the purpose of assigning a numerical value to the
style of a program, based on some set of program style character-
istics. However, little experimental research using software met-
rics for Cob01 has been done, despite its prominence as the most
widely used language in industry [3].

In the experiment described in this paper, raw data measure-
ments of 23 style characteristics were collected. Also data on pro-
gram correctness and program debugging time (syntax and logic)
were obtained. Linear, quadratic, and multiple regression analyses
were performed using SAS (statistical analysis system) procedures
to obtain relationships between style characteristics and debugging
times. Using the results of these analyses, desirable ranges (those
associated with lowest debugging times) for some of the style char-
acteristics are suggested, and a debugging effort estimator, DEST,
based on selected style characteristics is developed. Other well
known software metrics, as well as student CPA are shown to have
lower correlations with debugging time than DEST.

II. EXPERIMENTAL METHODOLOGY

A total of 3 11 student Cobol programs from 5 intermediate Cobol
classes were saved on secondary storage following the quarter in
which the classes were conducted. All of the classes dealt with files
using Cobol. All students were computer and information science
(CIS) majors. Most of the students were in their second year (a few
of them were in their third year) of the CIS program. The students
had very similar programming backgrounds, having had an intro-
ductory Pascal course and a data structures course in Pascal prior
to this files course in Cobol.

In each class, about five programs were collected. The types of
programs were similar, involving creation and updating of (in the
following order) sequential files, relative files, and indexed se-
quential files. The level of difficulty, as judged from student feed-
back, was neither increasing nor decreasing. All students were en-
couraged to use structured programming techniques.

In order to maintain consistency in grading of programs among
instructors, it was made clear to each participating instructor that
a program should be regarded as “correct” (for purposes of this
experiment) if and only if the output was complete and accurate.
These were the two criteria for program correctness used by all
instructors in this experiment.

Also, for each lab assignment, each student was asked to com-
plete a form indicating their syntax and logic debugging times.
Syntax debugging time was defined to be time spent in correcting
errors before a successful compilation. Logic debugging time was
defined to be time spent in correcting errors after successful com-
pilation. To encourage honesty in their responses, students used
code names on their forms and were assured that in no way would
their responses affect their grade. All programs were run on an IBM
3081 under OS/VSI in a batch environment.

A PL/I program was written to obtain raw data measurements
of 23 style characteristics found in Cobol programs (see Fig. 1).
In addition, the analyzer produced measures for LOC (lines of
code), V(g) (complexity), VARS (number of data items), and
PARS (number of paragraphs).

The style characteristic measurements from correct programs
which had corresponding debugging data information (a total of
57) were used as input to SAS procedures for statistical analyses.
Linear and quadratic regression analyses were performed through
the GLM Procedure of SAS to correlate the style characteristic
measurements and the logic, syntax, and total debugging times for
these programs.

Also, to identify the most significant style characteristics which
were used in forming the debugging effort estimator, DEST, the
stepwise regression procedure with quadratic terms was used. The
stepwise procedure was also used to obtain the relative contribu-
tions toward debugging time of identification and environment di-
visions, data divisions, and procedure divisions.

0098-5589/90/0200-0223$01 .OO 0 1990 IEEE

