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Abstract-Although architectural improvements in memory organi- 
zation of multiprocessor systems can increase effective data band- 
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width, the actual performance achieved is highly dependent upon the 
characteristics of the memory address streams; e.g., the data access 
rate, and the temporal and spatial distributions. Accurately quantify- 
ing the performance behavior of a multiprocessor memory system 
across a broad range of algorithmic parameters is crucial if users (and 
restructuring compilers) are to achieve high-performance codes. In this 
paper, we demonstrate how the behavior of a cache-based multivector 
processor memory system can be systematically characterized and its 
performance experimentally correlated with key features of the ad- 
dress stream. The approach is based on the definition of a family of 
parameterized kernels used to explore specific aspects of the memory 
system’s performance. The empirical results from this kernel suite 
provide the data from which architectural or algorithmic characteris- 
tics can be studied. The results of applying the approach to an Alliant 
FX/S are presented. 

Index Terms-Characterization, memory systems, multiprocessor, 
performance. 

I. INTRODUCTION 

For shared memory multiprocessors, access to the common 
memory is one of the key limiting factors in performance. One of 
the most attractive solutions to this problem is the use of a hierar- 
chical memory system. This approach reduces the apparent mem- 
ory latency as well as the memory contention. However, the per- 
formance is far from uniform and depends not only upon the 
characteristics of the memory hierarchy itself, but also on the char- 
acteristics of the address streams and the interaction between the 
two. This implies that the relationship of code characteristics to 
machine characteristics must be taken into account. For example, 
knowing the precise penalty in terms of number of cycles for a 
cache miss is not enough to understand the effectiveness of a given 
cache organization. We need to determine precisely, as a function 
of the temporal and spatial distribution of the requests, the data 
access rate and to try to correlate observed behavior with code 
characteristics. This requires a systematic investigation of the pa- 
rameter space (code characteristics). 

Classically, two main approaches are used for performance anal- 
ysis: analytical or experimental (simulation or measurement). The 
first solution is extremely powerful in the sense that it allows the 
analytical correlation of the performance with organizational pa- 
rameters. The drawback is that, in order to be tractable, they typ- 
ically require a drastic simplification of the hardware model and of 
the memory request stream. For example, queueing theory-based 
models assume a randomly distributed (both in time and space) 
memory request stream. This is particularly disturbing when mod- 
eling scientific codes on vector machines because these codes tend 
to exhibit very regular data access patterns and the vector instruc- 
tions used to implement the codes must exploit, and thereby em- 
phasize, this regularity in the spatial and temporal distribution of 
the requests. Experimental performance analysis (simulation or 
measurement) provides more accurate information in the sense that 
it is possible to take into account more details of the hardware and 
code characteristics. The drawback of such a solution is its exper- 
imental nature which limits the number of codes analyzed and gen- 
erally does not provide any methodology for extrapolating the per- 
formance of an arbitrary code from the performance of the 
benchmark codes. Furthermore, even when using very simple 
benchmarks, there is no general method for correlating code char- 
acteristics with the performance observed. 

Our primary goal in this paper is to present a systematic meth- 
odology for investigating and correlating the performance of a 
cache-based memory system (in our case, the Alliant FXB) in terms 
of architectural parameters and code characteristics typical of sci- 
entific numerical computations. The resulting characterization can 
be used for performance prediction of scientific codes. Further- 
more, the design of the empirical kernels upon which the meth- 

009%5589/90/0200-0216$01.00 0 1990 IEEE 



the 
ess 
fY- 
em 
Ind 
his 
tar 
its 

dd- 
of 

~ ory 

0” 
of 

ar- 
:m- 
jer- 
*he 
ar- 
:he 
to 

1% 
-a 
en 

ion 
3ta 
,de 
,a- 

iI- 
he 
he 
a- 

P- 
of 
ed 
d 

Id- 
ld 
c- 
“- 
of 
,I 
Jt 
rd 
r- 

/ ALLIANT MEMORY BUS \ 

I 
ALLIANT MEMORY BUS 

CE2 CE4 CE6 

CE 1 CE3 CE5 CE7 

Fig. I. Alliant FX/S architecture. 

odology is based allows an explanation of observed and predicted 
performance and is therefore suited to aid in performance tuning 
via an interactive restructuring compiler (See [9] for details of per- 
formance tuning usage on the Alliant FXI8.) 

The remainder of this paper is organized in four sections. In Sec- 
tion II, the architecture of the Alliant FXi8 is described. Section 
III contains the motivation and description of the LOAD/STORE 
kernel hierarchy. Experimental results are presented and analyzed 
for an Alliant FXI8 in Section IV and conclusions are given in 
Section V. 

II. THE TARGET ARCHITECTURE: ALLIANT FXi8 
The Alliant FXi8 (see Fig. I) machine consists of up to eight 

pipelined computational elements (CE’s) connected by a concur- 
rency control bus which is used as a fast synchronization facility. 
This mechanism enables the CE’s to cooperate in performing the 
computations of a single program unit with small granularity, e.g., 
a Fortran loop. A special set of instructions support the use of the 
synchronization hardware. This enhances greatly the performance 
of the system in parallel mode and makes its behavior more pm- 
dictable. When a portion of code requires the eight processors, e.g., 
a parallel loop, the iterations of the loop are directly allocated to 
the processors via an hardware self-scheduling mechanism without 
involving the operating system scheduler. 

The memory system of the Alliant FXl8 combines parallel data 
access with a hierarchical memory structure. It is organized in three 
levels, a large main memory, a cache shared by the CE’s, and sca- 
lar and vector registers private to each CE. The vector registers are 
32 double precision (64-bit) words long and can be operated on via 
the vector processing capabilities of each CE. (Throughout the dis- 
cussion below a word is taken as 64 bits.) The 16K-word write- 
back cache is organized into four banks and connected to the eight 
CE’s via a crossbar switch. The cache can service up to eight 
simultaneous accesses per cycle (170 ns). The cache is direct- 
mapped, meaning each memory location can be cached in exactly 
one cache location, and uses a cache block (quantum of exchange 
between the memory and the cache) of 4 words. The cache and the 
four-way interleaved main memory are connected through the main 
memory bus which is able to deliver up to four words per cycle. 
Therefore, the peak bandwidth between main memory and CE’s is 
23.5 Mwords/s which is half of the 47 Mwords/s possible between 
the cache and the CE’s. 

The internal organization and behaviorof the CE’s is rather sim- 
ple. Extensions. such as vector and concurrency instructions. have 
been made to the basic instruction set of the 68000. The vector 
instruction set contains compound insttuctmns such as multiply- 
add (this corresponds to the chaining of a load from memory wth 
a multiply followed by an addition). However. at most one operand 
can come from outside the CE. i.e., in cache or memory, due to 
the fact that there is only one port connecting the CE to the cache. 
All of the vector instructions of interest hex involving one operand 

external to the CE, use the same cache request mechanism. In par- 
ttcular they request the cache or memory at the same rate. The only 
difference in rhetr behavior is due to differing startup times-the 
time at which the first request IS issued. 

III. LOAD/STORE HIERARCHY 

A. Morivarron 
In this section, we describe the types of code segments that wll 

be used to generate the code characteristics of interest and the gen- 
eral principles of the characterization techniques used. 

The techniques for analyzing the performance of a given mem- 
oty organization depends upon the field of application. For exam- 
ple, in the area of benchmarks, the Lawrence Livermore Loops and 
LINPACK are used specifically to test the system performance for 
scientific computing. Similarly, we will focus on analyzing the per- 
formance of basic multiply-nested Fortran DO LOOPS. For the sake 
of simplicity, we will assume that the arrays in the loop body are 
referenced through linear subscripts. Indirect addressing can be 
handled via similar techniques [l3]. Finally, we will assume that 
the innermost loop is vectorizable and therefore parallelizable. As 
a consequence of the last assumption, a CE will spend most of its 
time executing vector instructions. 

The choice of such structures is motivated by the fact that they 
account for a large pa* of typical numerical programs execution 
time and because the hypothesis on the subscripts and conditional 
statements implies that the sequence of memory addresses accessed 
during program execution is extremely regular and can be analyzed 
statically at compile time by using techniques similar to the ones 
used for vectorization [7], [I I]. 

The Alliant vector instructions can be grouped in 2 categories: 
internal (register-register) where all operands are contained in vec- 
tor and scalar registen; and exrernol (register-memoly) where one 
operand comes from or goes to memory. Most of the vector instruc- 
tions in each class have similar timing characteristics typically dif- 
fering only in startup costs. Since the internal instructions do not 
depend on conditions external to the CE, their timings are essen- 
tially deterministic and their contribution to the total execution time 
can be derived in a straightforward manner fmm the hardware spec- 
ifications. The case of the timings of the external instructions is 
much more complex. Theoretically, they could be determined from 
hardware specilications. In practice, such a technique is difficult to 
apply directly due to the fact these timings are very dependent upon 
runtime conditions such as contention (either due to the previous 
requests of the same processors or other processors) and the exact 
location of the operand (memory or cache). In such cases petfor- 
mance characterization can be divided into two subproblems: de- 
termining the runtime conditions; and determining the performance 
under such conditions. 

For the purpose of investigating memory behavior, the key pa- 
rameter to be varied is the global memory request stream of all the 
processors. Unfortunately, the domain of this parameter is pmhib- 
itively large. We need to a systematic technique of exploring this 
space. In particular, we need to provide a parameterized mecha- 
nism by which the memory system can be probed to determine po- 
tential bottlenecks and, conversely, situations where high data 
transfers can be achieved and maintained. Additionally, it is ad- 
vantageous to have the characterization facilitate the prediction of 
performance of a given loop. 

The approach taken here is based on the definition of a family 
of parameterized kernels (these kernels, in fact, correspond to the 
choice of a set of address request streams). The choice of these 
kernels was guided by three major constraints. First, the kernels 
must be able to mimic the access patterns of the loop structures of 
interest using different parameter combinations. Second, the ker- 
nels should be elementary enough to allow the study of the impact 
of only one characteristic of the request stream at a time, e.g., 
varying the hit ratio but keeping the temporal distribution of the 
request constant. Third, we must be able to decompose a given loop 
in terms of these elementary kernels and then reconstruct the per- 
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formance of the loop using the performance data obtained for the 
kernels. The remainder of this section describes the kernel hier- 
archy in more detail and discusses the way the above requirements 
are satisfied. Since, in this paper, we are demonstrating the tech- 
niques by applying them to an Alliant FX/8, the discussion of the 
use of the kernel hierarchy is based on the characteristics of this 
machine. 

B. Load/Store Kernels 

The basic kernels in the hierarchy are a simple vector load or 
store. On the Alliant FX/8, these simple operations use both the 
concurrent and vector processing capabilities of the machine. Their 
basic function is loading (storing) a single vector of consecutive 
elements from (to) the memory system. The intent of these kernels 
is to determine the bandwidths of reads and writes that each com- 
ponent of the memory system is able to sustain and the conditions 
influencing these bandwidths. They are parameterized by the length 
of the vector (n), the location of the vector (cache or memory), 
the number of processors (p), and the partitioning and scheduling 
of the operations across the processors. 

The structure of the basic kernel is shown in Table I. The kernel 
has the form of a concurrent loop construct with the body of the 
loop iteration being a set of vector move instructions. 

At the top of the loop, the processors enter a concurrent pro- 
cessing mode (this has little overhead on the Alliant FX/8 due to 
its hardware concurrency support). The preamble code is executed 
once per processor and consists mostly of address computations for 
the load and store streams; in general, it can perform any initial- 
izing computation. The remainder of the kernel consists of code 
which is performed for each of the iterations of the concurrent loop. 
For the simplest load and store primitives, each iteration corre- 
sponds to the processing of a single block of length b of the n 
elements of the vector. The iteration code consists of address com- 
putations followed by a loop of nop instructions and a sequence of 
vmove instructions. The vector loop is required since b may be 
larger than the vector register size. 

Several scheduling strategies are possible; in this paper we will 
restrict ourselves to the most interesting: self-scheduling with con- 
tiguous blocks (for a detailed analysis of the different variants of 
scheduling see [8]). In self-scheduling, the vector of length n is 
broken into blocks of b contiguous elements. The original vector 
loop is decomposed into two loops. The outermost is performed in 
parallel across the CE’s while the innermost (operation on a block 
of b elements) is executed in vector mode within each CE. On the 
Alliant FX/8, the dispatching of the blocks to the processors is 
done by an hardware self-scheduling mechanism. That is, the blocks 
are logically arranged in a queue and as soon as a processor has 
finished operating on a block, it accesses the queue to get another 
block or goes idle if the blocks are exhausted. By changing the 
block size, the effect of synchronization can be analyzed as well as 
load balancing issues. 

This basic family is extended by including the variation of three 
other code characteristics: the temporal distribution of requests, the 
distribution of requests in the hierarchy (hit ratio), and the spatial 
distribution of the requests. The use and purpose of these param- 
eters are as follows: 

Temporal Distribution: The main purpose of this parameter is 
to study the interaction between a burst of requests, which corre- 
sponds to an external vector instruction, and a subsequent interval 
of several cycles without memory requests, which corresponds to 
the execution of internal vector instructions, address computation, 
or the different start-up times of the various vector instruction that 
could generate the memory request. The variation of the density of 
memory requests made by each processor is accomplished by al- 
tering the number of null instructions (informally called NOPS be- 
low) making up the nop sequence in the kernel. 

Hit Ratio: The purpose of this parameter is to study the effect 
of the distribution of requests between the two memory levels. The 
hit ratio can be experimentally varied by manipulating the vmove 

TABLE I 
THE BASIC LOAD/STORE PRIMITIVE TEMPLATE 

start concurrent execution 
preamble code executed once per processor 

loop body: 
initial computations of iteration body 

vector-loop: 
nop sequence 
“move sequence 
jump to vector-loop if work left in block 
get next concurrent iteration index and jump to loop-body 

resume sequential operation after iterations are exhausted 

sequence in each iteration of the kernel. The manipulation consists 
of inserting, after the single vmove instruction which loads (stores) 
a portion of vector, a variable number k of vmove instructions ref- 
erencing exactly the same locations. The first vector reference gen- 
erates a miss in the cache (this can be controlled) while the sub- 
sequent k references cause hits. Notice that this parameter describes 
the behavior of the memory system under variations of temporal 
locality with respect to the memory hierarchy while suppressing 
spatial locality variations of the requests (since the same locations 
just brought in to cache are repeatedly accessed). Furthermore, in- 
sight is gained into the behavior of the cache/main memory com- 
bination when simultaneously addressed. 

Spatial Distribution: Manipulating the stride of the vector ac- 
cess in the basic kernel can be used to characterize the effect on 
performance of the mapping strategy used to assign elements of an 
array to the banks in the two levels of the hierarchy. By manipu- 
lating the vector length all references can be kept in cache and the 
effectiveness of the mapping of elements to cache banks and bank 
conflict resolution strategy can be characterized. Similarly, by 
working with vector lengths large enough to flush cache on each 
pass through the vector, the effectiveness of the interleaving of the 
main memory system is probed. The stride can also be varied to 
manipulate the cache banks servicing the misses if knowledge of 
the address mapping is exploited. Finally, the stride can be used to 
identify the effect of the main-memory-to-cache mapping on per- 
formance. Characterizing this effect can be particularly important 
when implementing high-performance kernels such as the BLASS 
on machines, like the Alliant FX/8, which use a direct mapping 
POI. 

The above variations of the primitive kernels form the basis of 
a set of experiments used to characterize the behavior of the Alliant 
FX/8’s memory system. From this base, other levels of the LOAD/ 
STORE hierarchy are built by manipulating two additional aspects 
of the primitive: the number of vector address streams and the di- 
mension of the structured data element accessed. The former is 
accomplished by manipulating the vmove sequence within the vec- 
tor loop in the primitive template. This sequence is modified to be 
a series of vmove instructions to and from memory for several ad- 
dress streams. The three most basic multiple address stream kernels 
found in vector computations are: load-load, load-store, and load- 
load-store. The variation of the dimension of the structured vari- 
able accessed corresponds to determining the performance of the 
memory system when access pieces of structures more complex 
than simple vectors. For example, one of the most important class 
of algorithms in scientific computations is numerical linear algebra 
which must access efficiently submatrices as well as vectors. Ac- 
cesses of such objects can be modeled by a simple modification to 
the basic kernel which uses a hierarchy of strides to access a var- 
ious portions of a contiguous section of memory. 

The family of kernels is built in such a way that any parameter 
can be varied while the others remain constant. If all the points in 
the parameter space were to be tested, this would result in an over- 
whelming number of experiments. In practice, we proceed in a hi- 
erarchical manner. The parameter space is first explored in a coarse 
way, by making large steps in parameter variations. After coarse 
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performance is observed, refinement techniques are used by step- 
ping with smaller increments. The number of levels produced in 
the hierarchy and the subset of kernels used is determined by a 
knowledge of the architecture, the intended use of the information 
and the consistency (or lack thereof) found in the experiments as 
levels are added (see the comments on commutativity below). 

IV. EXPERIMENTAL RESULTS 

In this section, after a brief description of the experimental set- 
up, we summarize the major findings of the load-store experiments 
(for a more detailed study see [8]). We implemented a set of load/ 
store kernels in assembly language parameterized by the parame- 
ters described in the previous section. All the loads and stores in- 
structions operated on double precision data (64 bits). The align- 
ment did not significantly influence performance due to the fact that 
the address streams were fairly long. Each experimental value was 
obtained by running each kernel five times, eliminating the best 
and the worst experimental values, and taking the arithmetic aver- 
age of the three remaining values as a final number. Confidence 
intervals were computed for each set of five values and found to be 
satisfactory. All experimental values showed less than 5 percent 
variation between the extremes. 

The resolution of the timer used was 10 ms. In order to increase 
timing accuracy, each code was enclosed in a repetition loop such 
that the interval between two consecutive calls to the timer was at 
least 0.1 s. However, on a cache based system, such a technique 
has the following drawback. If the total working set of the loop fits 
in the cache (i.e., the working set is smaller than the cache size), 
the first timing iteration loads the cache and the subsequent itera- 
tions will operate from cache. This explains the general shape of 
our experimental curves. They have three distinct regions which 
depend on the relationship of the vector length n and the size of 
the cache, 16K double precision words. These regions are as fol- 
lows. 

Cache Region: 0 5 n 5 16K for the load and store kernels 
(respectively 0 5 n 5 8K for the load-load and load-store kernels 
and 0 5 n 5 5.3K for the load-load store kernels). In this region, 
all the operands are in cache. It should be noted that this region is 
large enough so that we reach a speed very close to the asymptotic 
rate. 

Fall Off Region: 16K 5 n 5 32K for the load and store kernels 
(respectively, 8K 5 n I 16K for the load-load and load-store ker- 
nels and 5.3K 5 n I 10.6K for the load-load-store kernels). In 
this region we observe a very strange phenomenon due to the direct 
mapped cache. Portions of the vector overlap in the cache forcing 
the elements to be fetched from memory from one iteration to the 
next. The other parts of the vector remain in the cache. In this 
region the hit ratio is decreasing from 1 to 0.25. 

Memory Region: 32K 5 n for the load and store kernels (re- 
spectively, 16K 5 n for the load-load and load-store kernels and 
10.6K I n load-load-store kernels). In this case the cache is flushed 
each iteration and the operands come from memory. 

A. Load Kernel 

In these experiments, a simple kernel reading a vector of length 
n was timed [Fig. 2(a),(b)]. 

On one processor, the performance is very regular. The memory 
region presents small drop in performance not due to the saturation 
of the memory bandwidth but rather due to the limit in the pipelined 
request-issue of the CE. Delays occur because the processor can 
only have two misses outstanding at any time. Notice the two pro- 
cessor case is perfectly scaled from the one processor (speedup of 
2) performance. For four processors, where the contention at the 
cache level is negligible (speedup of 4), the memory contention 
becomes more important (speedup of 3.3 ). 

For eight processors, cache contention begins to affect perfor- 
mance. In the cache region, 30 Megaloads/s may seem disappoint- 
ing compared to the potential peak of 43.5 Mwords/s. However, 
there are two reasons for such a situation. One reason is that the 
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Fig. 2. (a) Load performance. (b) Load speedup. (Block size 128.) 

overhead associated with each block (synchronization, address 
computations) is nonnegligible. This decreases the intensity of re- 
quests from each processor. By using larger blocks (which de- 
creases the relative importance of the overhead compared to the 
sequence of accesses) or by unrolling the loop (same effect), speeds 
up to 38 Megaload/s can be achieved. Still, in all cases the speedup 
is around 7.3. 

Secondly, due to the cyclic nature of bank referencing, we would 
expect to have first an initial transient phase with some bank con- 
flicts followed by a steady state where processors are synchronized 
with each other without any additional conflicts. Such a phenom- 
enon would occur if each processor had an infinitely long sequence 
of requests regularly spaced in time. In reality, due to the splitting 
in blocks and vector operations, the sequence of requests are not 
necessarily regularly spaced in time. Some operations between 
vector requests could encounter conflicts. This acts to disrupt the 
synchronized conflict-free referencing between the processors. By 
looking at a trace of processor activity generated with a logical 
analyzer, we noticed that the processors indeed entered a phase- 
sync with respect to their referencing behavior after a short tran- 
sient “conflict” phase at the beginning of a vector instruction. 
However, we also observed that random access could easily disrupt 
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the phase synchronization. Thus, instead of observing only a single 
transient phase followed by a long steady state, we saw a succes- 
sion of transient phases (with conflicts) followed by short steady 
state periods. 

At the memory level, the contention is far more severe (speed 
of 10 Megaloads/s and speedup around 5 while the peak speed of 
the system is supposedly 23.5 MWords/s). This is mainly caused 
by the fact that the memory bus cannot satisfy the requested band- 
width from the processors. The contention of the memory system 
combined with the request mechanism is responsible for most of 
the performance loss. 

B. Store Kernel 

The kernel used in these experiments is the same as the load 
kernel except that a vector write is performed instead of a vector 
read. A close look at the results [Fig. 3(a),(b)] indicates that the 
behavior of the store is very similar to the load. Only two main 
differences are worth noticing. First, the performance in cache is 
slightly lower (around 5 percent) due to the fact that the startup of 
a vector store is slightly higher. Second, the performance from 
memory is similar to the load for one and two processors, but four 
and eight processors show significantly less performance: 6.5 
Megastores per second versus 10.5 Megaloads per second in the 
eight processor case. This drop is due to the limitations in band- 
width at the memory level (bandwidth for sequential writes is 80 
percent of the bandwidth for sequential reads) and to the combined 
effect of miss-on-write and write-back mechanisms; although the 
write-back mechanism defers the penalty for write. When the cache 
is full and new blocks are to be loaded, part of the memory bus 
bandwidth will be consumed by these delayed writes. From the 
memory point of view, each block is accessed two times: first when 
it is written into the cache and then later when it is written back to 
memory. 

The speedup curves show very clearly this phenomenon. The 
contention at the memory with four processors is already severe 
(speedup less than 2.9), because each write requires two transac- 
tions on the bus. So, four processors writing are almost equivalent 
to eight processors reading. 

C. Temporal Distribution 

For these experiments, we modified the basic load kernel by in- 
serting a fixed number of NOPS after each vector instruction. We 
varied the number of NOPS between 0 and 80 by increment of 8. 

Introducing the NOPS has two effects: first, the time for an it- 
eration is lengthened, and second, the memory reference rate is 
decreased thereby decreasing memory contention. For the one pro- 
cessor case [Fig. 4(a)], the first effect is predominant because there 
is no contention. Accessing 32 elements from cache costs approx- 
imately 35 cycles. Adding 80 cycles (80 NOPS) after each vector 
instruction approximately triples the cost and we observe a corre- 
sponding decrease in performance of around three. From memory, 
accessing 32 elements cost around 80 cycles, so adding 80 NOPS 
should roughly divide the performance by two, which correlates 
exactly with the experimental results. 

The eight processor case is more complex to study due to the 
variations in contention [Fig. 4(b)]. From cache, the contention 
was not very important (speedup around 7) so increasing NOPS 
does not have a significant impact on the speedup. The main effect 
is seen in lengthening the time and we observe a corresponding 
drop in performance. 

From memory the situation is more complex. Notice with 0 
NOPS the memory bandwidth is saturated: the total aggregate 
bandwidth requested by the processors exceeds the bandwidth of 
the memory system. By adding NOPS, we are effectively decreas- 
ing the bandwidth requested by the processors. Therefore, we ob- 
serve the performance remaining constant while the bandwidth re- 
quested by the processors exceeds the capacity of the memory 
system until some point where the number of NOPS introduced 
results in the requested bandwidth exactly matching that of the 
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Fig. 3. (a) Store performance. (b) Store speedup. (Block size 128.) 

memory. From that point the bandwidth requested becomes less 
than the capacity of the memory system, and we observe a decrease 
in performance. 

D. Vector Hits 

For these experiments, each vector instruction was followed by 
a fixed number of vector instructions (called vector hits) with the 
same starting address (i.e., each vector instruction accessed the 
exact same set of addresses). For example, the 0 vector hit kernel 
corresponds to the standard load. The k  vector hit kernel corre- 
sponds to a sequence of (k + 1) vector instructions referencing 
exactly the same set of addresses. 

For the cache region, such experiments allow us to study the 
effect of unrolling; increasing k  is going to decrease the impact of 
the loop overhead on the performance. For the memory region, 
they give information about the interaction between the references 
to the two memory levels and the relationship between miss-ratio 
and performance: for the k vector hits kernel, the miss-ratio is 8 /(k 
+ 1) * 32. 

In cache, the effect of unrolling is very clear, it allows to reach 
38 Mwords/second [Fig. 5(a),(b)]. From memory, we observe a 
phenomenon similar to the one observed with the NOPS; increas- 
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Fig. 4. (a) Effects of NOP’s on one processor. (b) Effect of NOP’s on eight 
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ing the number of hits decreases the intensity of memory requests 
alleviating the contention problem at the memory level. Corre- 
spondingly, the speedup increases regularly from 5 to 6.3. The 
difference compared to the NOPS case is that hits and misses are 
contending with each other at the cache level. It is worthwhile to 
note that the difference in performance between 0 vector hits and 
10 vector hits reaches a factor of three while the advertised peak 
bandwidth between the two levels of memory differ only by a factor 
of two. 

E. Strides 

The kernel used corresponds to reading a vector of n elements 
and varying the stride. 

In cache, the main effect of strides is to partition the requests 
among the four banks. Stride 1 and stride 5 sweep all four banks 
and the performance is linear in the number of processors [Fig. 
6(a)]. Due to an Alliant-specific data skewing scheme, stride 2 still 
goes across all four banks and the performance is very similar to 
the stride 1 case. However, stride 4 concentrates the request on 
two banks effectively halving the potential performance. Four pro- 
cessors can saturate the bandwidth in this case. Stride 8 concen- 

Length of Vector Operation 

(b) 
Fig. 5. (a) Effect of cache miss ratio on one processor. (b) Effect of cache 

miss ratio on eight processors. (Load kernel, block size 128.) 

trates all requests on one bank and bandwidth saturation can be 
reached with two processors. 

From memory, the effect of strides is complicated by the cache 
line size [Fig. 6(b)]. Any stride greater than four will imply a miss 
for each access. Except for strides which are multiples of eight 
(missing occurs on a single bank), all strides greater than four will 
achieve bandwidth saturation with only four processors. Surpris- 
ingly, the performance of the stride-4 load and the stride-5 load are 
about the same. This indicates that missing on two banks gives the 
same performance as missing on all four cache banks. To be pre- 
cise, in the case of stride 4, we are missing on two cache banks 
located on different cache boards. Recall that the four cache banks 
of the Alliant are arranged on two cache boards, with each cache 
board having one port to the bus. More detailed experiments, where 
missing occurred on only two cache banks located on the same 
board. indicated that the speed obtained was about the same as the 
speeds stated above, implying that the memory bus cannot fully 
support two cache boards requesting at their maximum rate. 

F. Commutativity 

Remarkable observations can be made on the Alliant FX/8 with 
respect to the interchange of different load/store kernels, and/or 
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different insertions of NOP’s. By this we mean that the Alliant FX/ 
8 satisfies structural and temporal commutativity. Structural com- 
mutativity asserts that the order of the loads and stores in a kernel 
composed of multiple loads and stores is independent of the ker- 
nel’s performance; e.g., load-load-store shows similar perfor- 
mance to store-load-load-load, load-store-load-load, and load-load- 
store-load. Structural commutativity was observed on the Alliant 
FX/8 for all complex kernels discussed above. Spatial commuta- 
tivity relates to the effect that nonmemory reference operations 
have on kernel performance with respect to their location relative 
to the memory reference operations. 

Not only is the characterization simplified when these commu- 
tativity properties hold, it is also of crucial importance when pre- 
dicting codes. In the latter case, the database of empirical results 
can be considerably compressed to contain only data for represen- 
tatives of kernel equivalence classes. For more detailed discussion 
of the commutativity properties and their implication on predicting 
the performance of DO-loop structures see [9]. 

V. CONCLUSIONS 
The first conclusion is that the system has smooth behavior rel- 

ative to varying the different parameters and the trends can be eas- 

ily predicted qualitatively. From a quantitative point of view, the 
situation is more complex: we must distinguish two cases depend- 
ing on whether the system has one of its components at a saturation 
point or not. 

In the latter case (for example, the one and two processor ex- 
periments) we were able to predict the performance of the load/ 
store kernels to within 10 percent error using simple cycle counting 
techniques, i.e., inspecting the assembly code and computing the 
total execution by summing up the timings of elementary instruc- 
tion, augmented by certain empirically determined quantities. Such 
a simple technique proved to be very powerful and accurate even 
in the fall-off region. For this region, the situation was a bit more 
complex due to the fact that there is a mix of hits and misses. We 
used a straightforward model of the direct-mapped cache in order 
to determine how accesses will be directed to cache versus mem- 
ory. The resulting prediction gave good results. 

In the former case (saturation of one component, four and eight 
processor cases) the situation is different. First, the numbers pro- 
vided by the manufacturer (peak bandwidth) were inadequate. Fur- 
thermore, knowledge of the protocol used in handling exchanges 
between the different levels of the hierarchy did not help to deter- 
mine quantitatively the loss in performance due to saturation. This 
was due to the complexity of memory transactions from the pres- 
ence of multiple address streams. 

In such cases, controlled experimentation of the load/store type 
is crucial. This is particularly true when the experimental results 
can be deduced from more elementary data via relatively simple 
combinations. For example, the behavior of complex load patterns 
could be accurately approximated by averaging corresponding 
component load kernel results. We observed similar properties for 
the more complex parameter variations such as the hit ratio series 
of experiments. 

The experimental characterization as described in this paper is 
also used successfully for predicting performance for very simple 
kernels such as the Lawrence Livermore Loops [9]. We stress the 
point that even without being integrated into a performance predic- 
tion tool, the results of building an experimental database can be 
extremely useful for guiding the choice of a restructurer between 
several possible code optimization. For example determining the 
sensitivity of the system to the hit ratio, indicates quantitatively 
how much effort has to be devoted for increasing data locality. 

The basic conclusion is that for the Alliant FX/8, and most likely 
for similar architectures, careful combination of local analytical 
models and empirical observation can characterize the performance 
of the memory system. 
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Debugging Effort Estimation Using Software Metrics 

NARASIMHAIAH GORLA, ALAN C. BENANDER, AND 

BARBARA A. BENANDER 

Abstract-Measurements of 23 style characteristics, and the pro- 
gram metrics LOC, V(g), VARS, and PARS were collected from stu- 
dent Cobol programs by a program analyzer. These measurements, 
together with debugging time (syntax and logic) data, were analyzed 
using several statistical procedures of SAS, including linear, qua- 
dratic, and multiple regressions. Some of the characteristics shown to 
significantly correlate with debug time are GOT0 usage, structuring 
of the IF-ELSE construct, level 88 item usage, paragraph invocation 
pattern, and data name length. Among the observed characteristic 
measures which are associated with lowest debug times are: 17 percent 
blank lines in the Data Division, 12 percent blank lines in the Proce- 
dure Division, and 13 character long data items. A debugging effort 
estimator, DEST, was developed to estimate debug times. This esti- 
mator, a quadratic function of nine characteristics, has a coefficient of 
multiple determination (R*) of 0.7551 with the total debug time (sig- 
nificance level 0.0001). None of the software metrics LOC, V(g), 
VARS, and PARS has r* values greater than 0.3 when regressed with 
total debug time. The variables of DEST, when regressed with debug 
times from various subsets of the programs stratified by LOC, V(g), 
and student GPA, had high RZ values. 

Index Terms-Cobol, debugging, regression analysis, software met- 
rics, statistical analysis, style analyzers. 

I. INTRODUCTION 

It has been estimated that in a typical programming project, de- 
bugging accounts for over 50 percent of the time spent on the proj- 
ect [lo]. Many factors influence debugging time, including pro- 
gramming style, program length, program complexity, program 
volume, and programmer competence. Among these factors, how- 
ever, a programmer has most control over programming style. This 
experiment studies the relationship between programming style and 
debugging time, while taking the other factors into consideration. 

Research has been conducted investigating the components of 
good programming style and their effect on various programming 
tasks [2], [4], [6]-[9], [l 11. Program style analyzers [2], [8] have 
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been written for the purpose of assigning a numerical value to the 
style of a program, based on some set of program style character- 
istics. However, little experimental research using software met- 
rics for Cob01 has been done, despite its prominence as the most 
widely used language in industry [3]. 

In the experiment described in this paper, raw data measure- 
ments of 23 style characteristics were collected. Also data on pro- 
gram correctness and program debugging time (syntax and logic) 
were obtained. Linear, quadratic, and multiple regression analyses 
were performed using SAS (statistical analysis system) procedures 
to obtain relationships between style characteristics and debugging 
times. Using the results of these analyses, desirable ranges (those 
associated with lowest debugging times) for some of the style char- 
acteristics are suggested, and a debugging effort estimator, DEST, 
based on selected style characteristics is developed. Other well 
known software metrics, as well as student CPA are shown to have 
lower correlations with debugging time than DEST. 

II. EXPERIMENTAL METHODOLOGY 

A total of 3 11 student Cobol programs from 5 intermediate Cobol 
classes were saved on secondary storage following the quarter in 
which the classes were conducted. All of the classes dealt with files 
using Cobol. All students were computer and information science 
(CIS) majors. Most of the students were in their second year (a few 
of them were in their third year) of the CIS program. The students 
had very similar programming backgrounds, having had an intro- 
ductory Pascal course and a data structures course in Pascal prior 
to this files course in Cobol. 

In each class, about five programs were collected. The types of 
programs were similar, involving creation and updating of (in the 
following order) sequential files, relative files, and indexed se- 
quential files. The level of difficulty, as judged from student feed- 
back, was neither increasing nor decreasing. All students were en- 
couraged to use structured programming techniques. 

In order to maintain consistency in grading of programs among 
instructors, it was made clear to each participating instructor that 
a program should be regarded as “correct” (for purposes of this 
experiment) if and only if the output was complete and accurate. 
These were the two criteria for program correctness used by all 
instructors in this experiment. 

Also, for each lab assignment, each student was asked to com- 
plete a form indicating their syntax and logic debugging times. 
Syntax debugging time was defined to be time spent in correcting 
errors before a successful compilation. Logic debugging time was 
defined to be time spent in correcting errors after successful com- 
pilation. To encourage honesty in their responses, students used 
code names on their forms and were assured that in no way would 
their responses affect their grade. All programs were run on an IBM 
3081 under OS/VSI in a batch environment. 

A PL/I program was written to obtain raw data measurements 
of 23 style characteristics found in Cobol programs (see Fig. 1). 
In addition, the analyzer produced measures for LOC (lines of 
code), V(g) (complexity), VARS (number of data items), and 
PARS (number of paragraphs). 

The style characteristic measurements from correct programs 
which had corresponding debugging data information (a total of 
57) were used as input to SAS procedures for statistical analyses. 
Linear and quadratic regression analyses were performed through 
the GLM Procedure of SAS to correlate the style characteristic 
measurements and the logic, syntax, and total debugging times for 
these programs. 

Also, to identify the most significant style characteristics which 
were used in forming the debugging effort estimator, DEST, the 
stepwise regression procedure with quadratic terms was used. The 
stepwise procedure was also used to obtain the relative contribu- 
tions toward debugging time of identification and environment di- 
visions, data divisions, and procedure divisions. 
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