
Making Performance Analysis and Tuning Part of the
Software Development Cycle

Wyatt Spear, Sameer Shende, and Allen Malony

ParaTools, Inc., Eugene, OR
{wspear, sameer, malony}@paratools.com

Ricardo Portillo and Patricia J. Teller
University of Texas at El Paso

raportil@miners.utep.edu, pteller@utep.edu

David Cronk, Shirley Moore, and Dan Terpstra
University of Tennessee, Knoxville, TN
{cronk, shirley, terpstra}@cs.utk.edu

Abstract

 Although there are a number of performance tools
available to DoD users, the process of performance
analysis and tuning has yet to become an integral part of
the DoD software development cycle. Instead,
performance analysis and tuning is the domain of a small
number of experts who cannot possibly address all the
codes that need attention. We believe the main reasons
for this are a lack of knowledge about these tools, the real
or perceived steep learning curve required to use them,
and the absence of a centralized method that incorporates
their use in the software development cycle.
 This paper presents ongoing efforts to enable a larger
number of DoD HPCMP users to benefit from available
performance analysis tools by integrating them into the
Eclipse Parallel Tools Platform (Eclipse/PTP), an
integrated development environment for parallel
programs.

1. Introduction

 As evidenced by the CREATE[1] program, a
Department of Defense (DoD) funded initiative to deploy
computational engineering tool sets, improving the
software development environment has been identified as
an important task for the High Performance Computing
Modernization Program (HPCMP)[2]. Although the
process of code structuring and debugging should play
the largest role during the software development cycle,
code developers also should pay attention to increasing
the performance of their applications, especially when
designing codes destined to run on high-end computing
systems. The growing gap between sustained
performance and theoretical peak performance in HPC
environments[3] only heightens the need for parallel code
developers to devote more resources to performance
tuning.

 Although there are a number of performance tools
available, they usually are employed by a small number
of specialists who analyze and improve applications
developed by third parties. This reduces the efficiency of
performance tuning in two ways. First, relegating this
task to a small number of performance specialists over-
utilizes their expertise as there are usually more
applications than they can address in a timely manner.
Second, performance specialists often must devote time
and effort to understanding the inner-workings of the
target applications; this would not be necessary if
application developers, who already have a thorough
understanding of their own codes, took on the
responsibility of performance analysis and tuning.
Therefore, in general, enabling application developers to
analyze and tune their own software increases the
efficiency and employment of performance tuning.
 We believe that the main reasons why developers do
not utilize performance tools are a lack of knowledge
about these tools, the real or perceived steep learning
curve required to use them, and the absence of a
centralized method that incorporates their use in the
software development cycle. To address these issues, we
investigated the inclusion of performance analysis tools
within the Eclipse[4] Parallel Tools Platform[5]
(Eclipse/PTP), an integrated development environment
(IDE) for parallel programs. Within Eclipse/PTP, users
can edit, build, run, debug, and analyze their parallel
codes from an easy-to-use graphical user interface (GUI).
 Our first phase in performance tool integration resulted
in the implementation of plug-ins for several Eclipse IDE
configurations[6], including Eclipse/PTP; these plug-ins
integrated the functionality of the Tuning and Analysis
Utilities (TAU)[7], a portable profiling and tracing toolkit
for serial and parallel programs.
 This paper describes new extensions to the Eclipse/PTP
version of our TAU plug-in (from here on referred to as
TAU PTP). The paper also describes the External Tools
Framework (ETFw)[8][9], a performance tool integration

method that evolved from our work with TAU PTP.
ETFw is an XML-based framework that facilitates the
integration, selection, and configuration of external
performance tools within Eclipse/PTP. We demonstrated
the capabilities of ETFw by integrating the functionality
of several third-party performance tools into Eclipse/PTP,
including Valgrind[10], SCALASCA[11], and
VampirTrace[12].
 We believe our integration strategy will facilitate the
adoption of performance analysis tools by code
developers for three reasons. First, integrating
performance tools into a widely used IDE such as Eclipse
increases their visibility. Second, introducing these tools
into an environment with a GUI makes them more
intuitive and reduces the effort required to learn how to
use them. Third, centralizing these tools into one
environment improves performance-tuning efficiency
because developers do not need to switch back and forth
between different performance analysis tool environments
when working on the same source code.
 The remainder of this paper is organized as follows:
Section 2 explains the software stack that supports ETFw
and TAU PTP. Section 3 introduces the TAU PTP plug-in
and its initial functionality, while Section 4 describes the
extensions we have made to TAU PTP. Section 5
introduces ETFw and Section 6 demonstrates its
capabilities. Finally, Section 7 presents related work and
Section 8 offers conclusions and future work.

2. Background

 ETFw and the TAU PTP plug-in rely on an underlying
hierarchy of software components, i.e., a software stack,
which is depicted in Figure 1. Each component of the
stack is described below, along with a definition of its
role in support of ETFw and TAU PTP.

2.1 Eclipse

 Serving as the foundation for our integrated
environment, Eclipse is a widely used, open source,
software development platform. By default, Eclipse
serves as an IDE for Java programs but its most powerful
feature, its plug-in framework[13], easily extends its
capability to the support of the development and analysis
of multiple programming languages and paradigms. This
extensibility, coupled with its open source philosophy,
has led to the creation of hundreds of plug-ins supported
by a large community of dedicated contributors. Three of
these third-party plug-ins, CDT, Photran, and PTP, serve
as the next level of software components that support our
TAU PTP plug-in, and enable the functionality of ETFw.

2.2 CDT and Photran Plug-ins

 The majority of parallel codes are written in C/C++ and
Fortran. Therefore, for our purposes, the C/C++
Development Tools (CDT)[14] and Photran[15] plug-ins are
required to extend Eclipse and provide a fully functional
IDE for C/C++ and Fortran, respectively. Both plug-ins
provide a host of development features for their
respective languages such as project management, code
debugging, automated builds, syntax coloring, and code
completion. Users can download and install CDT into
their existing Eclipse environment or they can acquire an
official release of Eclipse with CDT already installed.
Photran, originally a separate plug-in project, recently has
been merged into the larger PTP project, which is
described in the following section. This merger is
expected to grow Photran’s contributor base and produce
more frequent and consistent plug-in releases.

2.3 Parallel Tools Platform (PTP) Plug-in

 The Parallel Tools Platform plug-in is extending
Eclipse to support high-performance parallel computing
for programs written in Fortran, C, and C++, with
parallelism implemented using MPI[16] and/or
OpenMP[17]. Therefore, the CDT and, optionally, Photran
plug-ins are required to support these paradigms. The idea
is to provide a single interface for editing, building (i.e.,
compiling and linking), and executing parallel
applications. PTP supports Open MPI[18] and MPICH2[19]
MPI implementations as well as various runtime
environments, including batch and remote job submission
configurations. In addition, PTP provides a series of static
analysis tools for parallel programs in the form of the
Parallel Language Development Tools (PLDT) plug-in.
These tools enable developers to perform several code
analysis tasks, including deadlock detection via MPI
barrier analysis and OpenMP thread concurrency
analysis.

2.4 Third-Party Performance Analysis Tools

 Taking advantage of the Eclipse plug-in framework,
and the above-described plug-ins, we created our own
plug-in, TAU PTP, and, subsequently, ETFw to facilitate
the integration of third-party performance tools. A brief
description of the tools we integrated, with the help of
TAU PTP and ETFw, follows.
 TAU: The Tuning and Analysis Utilities TAU[7], is a
profiling, tracing, and visualization toolkit for
performance analysis of serial and parallel programs.
TAU also can interact with several third-party
performance tools, including PAPI, SCALASCA, and
Vampir, to perform multi-tool performance analysis
tasks.

 PAPI: The Performance Application Programming
Interface (PAPI)[20] provides a set of library functions
that, when called within an application, can access
hardware performance counters. Its main goal is to
provide a performance counter interface that is portable
and consistent across disparate hardware architectures.
 SCALASCA: The SCalable performance Analysis of
LArge SCale Applications (SCALASCA) tool[11], a
profiling and tracing toolkit that is an extension of
KOJAK[21], can analyze separate trace files in parallel,
thereby increasing the feasibility of event trace analysis
of large parallel program executions.
 Valgrind: Operating as an instrumentation framework,
Valgrind[10] can automatically detect many memory
management and threading errors. It is comprised of six
tools that enable analysis tasks such as memory leak
detection and branch-prediction profiling.
 VampirTrace: The VampirTrace[12] library enables
users to instrument their parallel codes and generate
traces of MPI communication events during program
execution. These traces can then be fed into Vampir, a
visualization and analysis tool for MPI traces.

3. TAU PTP Plug-in

 As mentioned previously, TAU is a performance
toolkit that can generate, analyze, profile and trace
information from parallel program executions. Users who
wish to capture and analyze performance data with TAU
must perform four basic steps:

1) Code Instrumentation: TAU captures performance
data via the use of Application Programming
Interface (API) library calls inserted within the target
program. By default, TAU instruments the entry and
exit points of all routines within an application. TAU
also provides the ability to define specific source
code regions to instrument. Users can do this
manually by inserting TAU API calls at strategic
locations in the target program or employ TAU’s
Performance Database Toolkit (PDT) to selectively
instrument the code automatically.

2) Configure TAU: TAU supports a rich set of data
collection options for profiling and tracing. Users
must define these options at compile time either in
their application’s makefile or at the command line.

3) Compile and Link: Once the source code is
instrumented and a TAU configuration is defined, the
target program must be compiled and linked to
TAU’s API library. TAU provides a set of compile
scripts that automate these tasks as well.

4) Execute and Analyze: During the execution of the
target program, TAU’s API calls capture the desired
information and store it in a specified directory or
performance database. Users can then analyze these

data using TAU’s pprof or ParaProf tools. TAU also
can generate these performance data in formats
compatible with several third-party trace and profile
analysis tools, including KOJAK and Valgrind.

 Although TAU provides utilities such as PDT and
compiler scripts, which facilitate the process of acquiring
and analyzing performance data, it is apparent that users
still must memorize, or refer to, a large set of
instrumentation and configuration task work flows to
analyze their codes. Thus, a method is required that
enables users to employ TAU’s functionality both
intuitively and with a minimum amount of effort.
 The core functionality of our TAU PTP plug-in[6] takes
advantage of Eclipse’s open framework environment to
provide a graphical interface for the configuration and
execution of TAU profiling and tracing tasks. As seen in
Figure 2, TAU PTP lists available TAU configuration
options as a series of tabs and checkboxes. Once all
desired options are selected, users can profile or trace
their codes under this configuration with a single menu or
button selection. We believe this approach greatly
improves TAU’s usability because it allows users to forgo
memorization of data collection and instrumentation
options and automates the compilation, linking, and
execution of a TAU instrumented program; all within a
portable and widely available GUI.
 Since our initial implementation of TAU PTP, we
added functionality that further integrates TAU data
collection and analysis tasks. We also generalized our
tool integration method and developed ETFw to facilitate
the integration of additional performance tools into
Eclipse/PTP. Both of these endeavors are presented in the
following sections.

4. TAU PTP Plug-in Extensions

 This section describes new functionality that we added
to our original TAU PTP plug-in implementation.

4.1 Selective Instrumentation

 Our initial implementation of TAU PTP utilized TAU’s
default instrumentation scheme, which captures
performance data at the entry and exit points of all user
routines in the target program. Although this usually is
appropriate for the initial stages of performance analysis
and identification of performance bottlenecks,
instrumenting all routines may result in unacceptable
runtime overhead.
 To address this issue, we integrated TAU’s selective
instrumentation functionality into TAU PTP. We added
three basic instrumentation schemes:

1) Specification-based Instrumentation: Users may
create a selective instrumentation file that specifies
source code regions, routines, or events of interest, and
directs TAU PTP to instrument the program according
to this specification.

2) Highlight-based Instrumentation: Users may use the
mouse to highlight specific regions of code and
automatically generate a selective instrumentation file
to place start and stop TAU API calls at the beginning
and end of these regions.

3) Event-based Instrumentation: Users may select a
project, source file, or routine, and direct TAU PTP to
capture specific runtime event information from these
regions. As can be seen in Figure 3, TAU PTP can
automatically instrument a target program to capture
various types of runtime events, including memory
allocation/de-allocation instructions, I/O calls, and
static/dynamic callpath phases.

 In addition to these new instrumentation capabilities,
users now can direct TAU PTP to create a binary
executable of the instrumented target application, which
can be launched from outside the Eclipse IDE. This
feature enables users to instrument their codes and launch
them in non-interactive execution environments such as
batch job submission systems, which are employed in
many time-shared HPC installations.

4.2 Management of Performance Data

 TAU PTP initially stored all generated performance
data in a local directory. Although acceptable for small
analysis studies, a directory-based storage approach does
not scale in usability or performance as the number and
size of performance data increases. As in other data
management domains, the use of a database can greatly
increase the manageability and accessibility of large
performance data sets.
 TAU supports the use of performance databases with
its Performance Data Management Framework
(PerfDMF), an API/toolkit that sits on top of a Database
Management System (DBMS). PerfDMF’s primary
function is to link TAU to a third-party DBMS such as
MySQL or Oracle. Once linked, TAU stores all generated
performance data in a specified database supported by the
underlying DBMS.
 Our TAU PTP plug-in now supports performance
databases via the use of TAU’s PerfDMF toolkit. Once a
database is specified, TAU PTP uses it to store data
generated during profiling and tracing tasks. TAU PTP
also makes performance database entries visible and
accessible via a profile viewer integrated into the
Eclipse/PTP environment. We also enhanced the
accessibility and shareability of performance data by
enabling users to employ databases that reside remotely
over a network. We believe these enhancements greatly

simplify the analysis of large performance datasets such
as those generated by parallel program profiles and traces.

4.3 Visualization of Performance Data

 TAU’s main analysis tool, ParaProf, is a portable and
scalable performance utility for profile data visualization;
see Figure 4. It is compatible with various profile
specifications including TAU, gprof, and KOJAK data
formats. When using ParaProf, users may choose to load
specific data files for analysis or link ParaProf to a
performance database created via TAU’s PerfDMF
utility, described in Section 4.2. ParaProf provides several
data categorization methods, including views at the
thread, MPI, and hardware counter levels, and can derive
new metrics from user-designated profile events. ParaProf
also provides various formats for 2D and 3D
visualization.
 To further integrate TAU into Eclipse/PTP, we included
ParaProf’s functionality into our TAU PTP plug-in. Now
users can select a data set from a profile viewer within
Eclipse/PTP and launch ParaProf to visualize it. This
enhancement, in conjunction with the additional
functionality described in previous sections, enables users
to perform all four steps required for TAU-based analysis
without leaving the Eclipse/PTP environment.
Specifically, users now can instrument their codes, select
TAU data collection options, compile and link
instrumented code, and perform visualization analysis on
the generated performance data all within a single
integrated development environment.

4.4 Memory Leak Detection

 As mentioned in Section 4.1, TAU PTP can instrument
target programs automatically to capture memory
allocation/deallocation instruction events during a
program’s execution. In addition to enabling this type of
memory profiling, we also integrated TAU’s memory
leak detection functionality into the TAU PTP plug-in.
 Users who wish to perform memory leak detection
with TAU PTP must first instrument their codes to
capture memory events. As already mentioned, TAU PTP
can do this automatically at the project, source file, and
routine levels. When automatic memory instrumentation
is activated, TAU PTP analyzes the source code of the
program and, for Fortran programs, inserts memory
instrumentation calls at allocate and deallocate
statements. For C and C++ programs, malloc and free
wrappers are used to redirect calls to allocation and
deallocation routines. When the target program executes,
memory instrumentation is activated, which triggers
atomic events that track the volume of memory used.
Context events map the executing callstack to the
memory allocation, deallocation, and leak events. This

allows the user to observe the source file, line, and
variable names associated with a memory leak in the
source code along a callpath. Once this profile
information is generated, ParaProf can take these data and
render various views showing when and where memory
leaks occurred during a parallel program’s execution.

4.5 PAPI Hardware Counter Support

 Most modern day processors contain special-purpose
registers that can count events such as floating-point
operations and cache misses at runtime. Since these
counters reside in hardware, and are accessible to the
user, performance counters are widely used as a low-
overhead approach to high-granularity code profiling. To
access these counters, users must utilize an architecture-
specific API. Unfortunately, this forces users to
instrument their codes differently for each unique target
architecture, thus, making performance analysis across
computing platforms a nontrivial task. PAPI addresses
this issue by providing a single hardware counter API that
is portable across a wide range of processor architectures.
 We enhanced the usability of PAPI by integrating its
functionality into our TAU PTP plug-in. With the use of
PAPI, TAU PTP now enables the automatic identification
and selection of available hardware counters, see Figure
5, as well as the automatic instrumentation of PAPI API
calls within Eclipse/PTP. TAU PTP also can work with
Component PAPI (PAPI-C), a PAPI extension that allows
users to configure support for non-CPU events such as
temperature, kernel statistics, and Ethernet and Myrinet
interface events. Our plug-in enables users to capture
performance counter data for both profiles and traces. For
performance counter profiles, users can view the
generated data within the ParaProf visualization tool,
which, as described in Section 4.3, is integrated into TAU
PTP.

4.6 Parametric Study Support

 Parametric studies, where machine/application pairs are
run under various compile and runtime parameter sets, are
widely used in the area of performance analysis. These
studies are particularly useful for identifying scalability
bottlenecks in the software and hardware stack of HPC
environments. Thus, such studies enable program
developers to tune their codes to reduce performance
penalties from such bottlenecks. Additionally, parametric
studies aid the design of future HPC systems by
informing designers on which parts of the system
software and hardware to focus improvement.
 Given the importance of parametric studies in HPC
tuning, we added support for these analyses within TAU
PTP[22]. As can be seen in Figure 6, now users may use a
configuration interface specific to parametric analysis to

define sets of parameter values. Users may choose from
various parameter types, including number of processors,
compiler optimization levels, and environment variables.
Once defined, TAU PTP runs the target application with
each parameter set in succession and stores the generated
data in a performance database. Once the data are
generated, TAU’s PerfExplorer tool can be used to
analyze and visualize the performance data within
Eclipse/PTP. PerfExplorer is a multi-experiment analysis
and data-mining tool that was designed to provide
parametric study analysis and intelligent analysis of
results using performance data, metadata, analysis scripts,
and inference rules.

4.7 Two-stage Routine and Loop Level Profiling

 Performance analysis typically begins with routine-
level instrumentation, which can guide further
instrumentation to routines that use significant resources.
For example, scientific applications are typically iterative
in nature and use multiple nested loops and, thus, use
significant computational resources. In the second stage
of performance analysis, a user may instrument the code
at loop boundaries to track the performance of loops.
Two-stage routine and loop level profiling can enhance a
user’s understanding of which loops in the application
contribute most to the overall runtime and the system
resources consumed by them.
 As described in Section 4.1, TAU PTP enables users to
instrument their codes at many levels of the program
hierarchy, this includes routine and loop-level
instrumentation. Thus, users may use the TAU PTP plug-
in to realize TAU-specific two-stage routine and loop-
level profiling. The TAU performance tool also can insert
instrumentation calls from other profiling tracing tools
including VampirTrace. We have enabled TAU PTP to
instrument target programs with VampirTrace calls as
well, thus, providing users with additional two-stage
analysis options.
 VampirTrace provides a performance measurement
library for generating time-stamped MPI event traces
from parallel program executions. Our TAU PTP plugin
now supports automatic insertion of VampirTrace trace
functions at selective routine and loop exit/entry
locations. Once the target program is instrumented, a user
can automatically link the instrumented program with the
appropriate VampirTrace libraries, execute the program,
capture the generated time-stamped events, and, as shown
in Figure 7, visualize the data with the Vampir analysis
tool.

5. External Tools Framework (ETFw)

 During the development of the TAU plug-ins, which
included TAU PTP, it became evident that much of the

work being done was applicable to other performance
analysis systems and similar command-line based tools.
At a high level, such tools typically operate on some
combination of compilation, execution, and analysis steps
and their inputs are similar to those of TAU.
 To take advantage of this congruity, the workflow logic
and User Interface (UI) elements, which were initially
hard-coded into the original TAU plug-ins, were
converted to a generalized API. Additionally, to make the
system more easily accessible and extensible, we
developed an XML interface for defining both
performance tool workflows and their UIs within
Eclipse/PTP. The result is the general-purpose External
Tools Framework (ETFw). ETFw allows both tool and
application developers to integrate performance analysis
systems into an Eclipse environment without the effort
and expertise that are required to develop new Eclipse
plug-ins. In fact, XML workflow definitions for external
performance tools can be added or updated without
restarting the Eclipse platform.
 Although ETFw generalized much of the hard-coded
behavior of the original TAU plug-ins, advanced TAU-
specific functionality remains encapsulated within a plug-
in structure, see Sections 3 and 4. However, the advanced
API extension points used by the TAU-specific plug-ins
are available to other tools that require logic or UI
elements that are too application-specific for the ETFw to
handle.
 The ETFw's XML workflow format, depicted in Figure
8, consists of three fundamental elements, which define
the compilation, execution, and analysis steps of the
workflow. The order, number, and presence of these steps
may vary depending on the intent of the workflow and the
employed analysis tools.

• The compilation step assigns compiler commands to be
used for the relevant programming languages.

• The execution step defines commands to be composed
with the target executable, if any. This covers tools
such as Valgrind that take the target application as an
input argument.

• The analysis step defines a series of commands that
may be run on any data generated during program
execution.

 Each application or tool defined in an XML workflow
may have its command and input parameters specified in
the XML file. Alternatively, command-line options may
be specified, which will appear in the Eclipse/PTP UI,
where the user may enable, disable, and assign values to
them dynamically. Once an XML workflow has been
composed, it can be modified easily to suit different use
cases. It also can be distributed to other users, who can
easily load it into their Eclipse/PTP environments and run
their applications with the performance analysis

workflow, without concerning themselves with tool
invocation details.
 In addition to adding support for arbitrary performance
tools, the ETFw's abstraction of performance tool
operations simplifies the implementation of more
complicated workflows. This includes workflows that
require multiple executions of the target application, such
as parametric studies[22]. ETFw is now part of the PTP
plug-in and is, thus, available to all users with a current
Eclipse/PTP IDE configuration.

6. ETFw Case Studies

 This section describes the new analysis capabilities that
we added to Eclipse/PTP by integrating additional
performance tools via our ETFw implementation. The
ETFw tool definitions required to run these performance
tools within Eclipse/PTP were released as part of the
TAU PTP plug-in distribution available from the official
TAU website[7]. As shown in Figure 9, users can select
from a list of integrated performance tools once the
appropriate XML tool definitions are loaded into
Eclipse/PTP.

6.1 PerfSuite and VampirTrace/Vampir Support

 To demonstrate the usability of our integration
framework, we created ETFw XML tool definitions for
PerfSuite and VampirTrace/Vampir tool workflows.
Figure 8 presents an abridged version of our tool
definition for VampirTrace and Vampir. As this figure
demonstrates, VampirTrace compile, execute, and
Vampir analysis commands can be easily described in our
ETFw XML format. Users who load this tool definition
into their Eclipse/PTP environment will be presented with
additional UI options that enable the specified
VampirTrace/Vampir functionality. The tool definitions
we created to enable VampirTrace, Vampir and PerfSuite
functionality within Eclipse/PTP are available along with
our distribution of TAU PTP.

6.2 Parallel Event-Trace Analysis with SCALASCA

 Event-trace analysis is a useful, low-overhead method
for identifying in-depth runtime program behavior.
During a program’s execution, time-stamped events such
as function calls and messages are captured and stored in
a trace file. Once the target program finishes, the resulting
trace file can be thoroughly analyzed for performance
bottlenecks and other behavioral characterizations.
Unfortunately, the growing size and complexity of
modern programs is resulting in equally large, and
unmanageable, trace file data sets. This is particularly
apparent in parallel program analysis where it is not

uncommon to run thousands, if not hundreds of
thousands, of processes at a time.
 SCALASCA, an extension of the KOJAK profiling and
tracing toolkit, addresses this issue by optimizing the
analysis procedure for trace files generated from parallel
program executions. Instead of aggregating all data into a
single trace file and analyzing it sequentially,
SCALASCA optimizes this process by generating
smaller, local trace files on each compute node and
analyzes each in parallel.
 Since SCALASCA’s tracing functionality is geared
towards HPC performance analysis, we integrated this
tool into Eclipse/PTP using ETFw’s XML tool definition
functionality. With our SCALASCA tool definition, we
enabled users to instrument, trace, analyze, and visualize
their target codes with SCALASCA within Eclipse/PTP.
Additionally, as shown in Figure 10, we developed
interoperability between our TAU PTP plug-in and
SCALASCA by enabling users to visualize TAU PTP-
generated data with SCALASCA and vice versa, thereby
providing a flexible analysis environment for these tools
within Eclipse/PTP.

6.3 Memory Leak Detection with Valgrind

 As demonstrated in Section 4.4, TAU PTP now
provides memory leak detection to users of Eclipse/PTP.
Although TAU PTP’s method of leak detection is sound,
it is sometimes prudent to characterize memory behavior
via other detection methods, which may confirm or
supplement the original analysis. To complement TAU
PTP’s leak detection functionality, we created an ETFw
XML tool definition for Valgrind’s Memcheck utility.
 Valgrind’s method of leak detection differs from that
used by TAU PTP. While TAU PTP runs an instrumented
target program natively and analyzes the generated
performance data offline, Memcheck emulates an un-
instrumented target in a virtual machine and detects
memory leaks upon program exit. These two methods can
serve to confirm each other’s results.
 Our ETFw tool definition for Valgrind provides a
simple process for memory leak detection. When the user
selects Valgrind from a configuration menu and profiles
the target application, Valgrind spawns the program
under a virtual machine and tracks all memory events. As
shown in Figure 11, Valgrind’s analysis results are then
displayed in Eclipse/PTP’s console tab upon program
termination.

7. Related Work

 There are a few examples of other performance
analysis plug-ins that are available for the Eclipse IDE
platform. The Test & Performance Tools Platform
(TPTP)[23] provides many performance tool capabilities,

including execution, memory, and thread behavior
analyses. Although TPTP is a robust, well-supported
performance analysis tool for Eclipse, currently it can
only analyze Java applications. Although Java is a widely
used programming language, parallel programs are
mainly written in C/C++ and Fortran and, therefore, are
unable to take advantage of TPTP’s functionality.
 However, there are two performance tools that do
support C/C++ and Fortran, i.e., Intel’s Vtune
Performance Analyzer[24] and IBM’s Visual Performance
Analyzer (VPA)[25]. Both tools provide a wide variety of
mature profiling and tracing capabilities. Although these
tools enable application developers to analyze the
performance of parallel codes within Eclipse, they do not
provide the extensibility of TAU PTP. TAU PTP and
ETFw allow easy integration of further performance
analysis tools into Eclipse/PTP, thus, providing a highly
moldable and adaptive interface for current and future
analysis technologies.

8. Conclusions

 As evidenced by the CREATE program, improving the
software development environment has been identified as
an important task by the HPCMP. As HPC systems scale
up to hundreds of thousands of processors, the growing
gap between theoretical performance and sustained
performance provides a major incentive for application
and system developers to devote more time and effort into
performance analysis and tuning of parallel codes.
Although mature and robust performance tools are freely
available to the programming community, the use of these
tools is largely the domain of a minority of performance
analysis experts. To increase the awareness, usability, and
efficiency of available performance tools, we developed a
performance tool integration methodology for the
Eclipse/PTP integrated development environment. We
demonstrated the power of this methodology by
integrating a large set of TAU analysis capabilities into
Eclipse/PTP. Additionally, we demonstrated the
flexibility of our implementation by providing case
studies of other analysis tools that were easily added to
Eclipse/PTP via our ETFw integration framework.
 With regards to future work, currently we are focusing
on enabling TAU PTP to analyze target programs that
reside on remote file systems. This capability will greatly
facilitate performance analysis of parallel programs since
many HPC environments often are utilized through a
remote connection. In addition, we plan to take advantage
of Eclipse/PTP’s new remote development features to
reduce response time lags inherent in running the Eclipse
IDE over a network, which is currently the case for many
users of Eclipse/PTP.
 TAU PTP has been released in the public domain
distribution of TAU, which is available from the official

website[5]. Users also can acquire TAU PTP and ETFw as
part of the PTP plug-in, which is freely available to the
Eclipse community via the PTP website[5].
 We believe the integration of performance tools into
Eclipse/PTP will increase their use by parallel program
developers, thus, enabling them to produce applications
that take full advantage of increasingly powerful HPC
systems.

Acknowledgments

 This publication was made possible through support
provided by DoD HPCMP User Productivity
Enhancement and Technology Transfer (PET) activities
through Mississippi State University under contract No.
GS04T01BFC0060. The opinions expressed herein are
those of the author(s) and do not necessarily reflect the
views of the DoD or Mississippi State University.

References

 [1] S. Arevalo, et al., “A New DoD Initiative: the

Computational Research and Engineering
Acquisition Tools and Environments (CREATE)
Program,” Journal of Physics: Conference Series,
vol. 125, pp. 012090, August 2008.

 [2] U.S. Department of Defense, “High Performance
Computing and Modernization Program,” available
online at: http://www.hpcmo.hpc.mil [Accessed: Apr
21, 2009].

 [3] W. Kramer, “How Terascale Experience Will Shape
Petascale Systems,” presented at 27th Asia-Pacific
Advanced Network Meeting, Kaohsiung, Taiwan,
March 2009, available online at:
http://www2.jp.apan.net/meetings/kaohsiung2009/pre
sentations/opening/kramer.pdf [Accessed: April 21,
2009].

 [4] Eclipse Foundation, “Eclipse Integrated Development
Environment,” available online at:
http://www.eclipse.org [Accessed: April 21, 2009].

 [5] Eclipse PTP Project, “Eclipse Parallel Tools
Platform,” available online at:
http://www.eclipse.org/ptp [Accessed: April 21,
2009].

 [6] W. Spear, A. Malony, A. Morris, and S. Shende,
“Integrating TAU with Eclipse: a Performance
Analysis System in an Integrated Development
Environment,” in Proceedings of the 2nd
International Conference on High Performance
Computing and Communications (HPCC’06),
Lecture Notes in Computer Science, vol. 4208/2006,
pp. 230-239, September 2006.

 [7] University of Oregon, “TAU - Tuning and Analysis
Utilities,” available online at:

http://www.cs.uoregon.edu/research/tau [Accessed:
Apr 21, 2009].

 [8] W. Spear, A. Malony, A. Morris, and S. Shende,
“Performance Tool Workflows,” in Proceedings of
the 8th International Conference on Computational
Science (ICCS’08), Lecture Notes in Computer
Science, vol. 5103/2008, pp. 276-285, July 2008.

 [9] Eclipse PTP Project, “ETFw - External Tools
Framework,” available online at:
http://wiki.eclipse.org/PTP/ETFw/PTP_External_To
ols_Framework [Accessed: April 21, 2009].

 [10] Valgrind Project, “Valgrind Tool Suite,” available
online at: http://valgrind.org [Accessed: April 21,
2009].

[11] Jülich Supercomputing Centre, “SCALASCA
Toolset,” available online at: http://www.fz-
juelich.de/jsc/scalasca [Accessed: April 21, 2009].

[12] Technische Universität Dresden, “VampirTrace
Library,” available online at: http://www.tu-
dresden.de/zih/vampirtrace [Accessed: April 21,
2009].

[13] J. Amsden, “Levels of Integration: Five Ways You
Can Integrate the Eclipse Platform,” available online
at: http://www.eclipse.org/articles/Article-Levels-
Of-Integration/levels-of-integration.html [Accessed:
April 21, 2009].

[14] Eclipse CDT Project, “Eclipse C/C++ Development
Tooling - CDT,” available online at:
http://www.eclipse.org/cdt [Accessed: April 21,
2009].

[15] Photran Project, “Photran - an Integrated
Development Environment for Fortran,” available
online at: http://www.eclipse.org/photran [Accessed:
April 21, 2009].

[16] Message Passing Interface Forum, “MPI: a Message
Passing Interface Standard,” in International Journal
of Supercomputer Applications, vol. 8, number 3/4,
pp. 165-414, Fall-Winter 1994.

[17] L. Dagum and R. Menon, “OpenMP: An Industry-
Standard API for Shared-Memory Programming,” in
Computing in Science and Engineering, vol. 5, issue
1, pp. 46-55, January-March 1998.

[18] Open MPI Project, “Open MPI: Open Source High
Performance Computing,” available online at:
http://www.open-mpi.org [Accessed: April 21,
2009].

[19] Argonne National Laboratory, “MPICH2: High
Performance and Widely Portable MPI,” available
online at:
http://www.mcs.anl.gov/research/projects/mpich2
[Accessed: April 21, 2009].

[20] University of Tennessee, “PAPI - Performance
Application Programming Interface,” available
online at: http://icl.cs.utk.edu/papi [Accessed: April
21, 2009].

[21] University of Tennessee, “KOJAK - Kit for
Objective Judgment and Knowledge-based Detection
of Performance Bottlenecks,” available online at:
http://icl.cs.utk.edu/kojak [Accessed: April 21, 2009].

[22] K. Huck, W. Spear, A. Malony, S. Shende, and A.
Morris, “Parametric Studies in Eclipse with TAU and
PerfExplorer,” in Proceedings of the Workshop on
Productivity and Performance (PROPER’08), Euro-
Par 2008 Workshops - Parallel Processing, vol.
5415/2009, pp. 283-294, 2009.

[23] Eclipse TPTP Project, “Eclipse Test & Performance
Tools Platform - TPTP,” available online at:
http://www.eclipse.org/tptp [Accessed: April 21,
2009].

[24] Intel Corporation, “Vtune Performance Analyzer.”
Available online at: http://www.eclipse.org/tptp
[Accessed: Apr 21, 2009].

[25] IBM Corporation, “Visual Performance Analyzer.”
Available online at:
http://www.alphaworks.ibm.com/tech/vpa [Accessed:
Apr 21, 2009].

Figure 1. TAU PTP and ETFw Software Hierarchy

Figure 2. TAU PTP enables easy selection of TAU

profiling and tracing options

Figure 3. TAU PTP Selective Instrumentation context

menu

Figure 4. The ParaProf visualization tool

Figure 5. Native x86_64 events show hierarchical

events in the Eclipse/PTP interface.

Figure 6. TAU PTP Parametric Study configuration

menu

Figure 7. VampirTrace intrumentation and Vampir

visualization of trace data within Eclipse/PTP

Figure 8. Sample ETFw XML file for VampirTrace

(color coded for clarity)

Figure 9. Selection of integrated performance tools via
ETFw

Figure 10. TAU PTP plug-in demonstrating the

ParaProf and SCALASCA performance analysis tools

Figure 11. Valgrind memory leak detection within

Eclipse/PTP

