
TAU User’s Guide

TAU User’s Guide

version 2.13

Department of Computer and Information Science,
University of Oregon, OR
Los Alamos National Laboratory, NM
Research Centre Jülich, ZAM, Germany

http://www.cs.uoregon.edu/research/paracomp/tau

Copyright © 1997-2004

Department of Computer and Information Science, University of Oregon
Advanced Computing Laboratory, LANL, NM
Research Centre Jülich, ZAM, Germany

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
name of University of Oregon (UO) Research Centre Jülich, (ZAM) and Los
Alamos National Laboratory (LANL) not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. The University of Oregon, ZAM and LANL make no
representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

UO, ZAM AND LANL DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
UNIVERSITY OF OREGON, ZAM OR LANL BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 2004.

All rights reserved.

TAU Portable Profiling and Tracing Toolkit User’s Guide 1

TABLE OF CONTENTS

CHAPTER 1 Installation 1

Installing TAU -2
Examples: -11
Platforms Supported - - - - - - - - - - - - - - - - - - -13
Software Requirements - - - - - - - - - - - - - - - - -14

CHAPTER 2 Compiling 17

TAU Stub Makefile -18
Enabling and Disabling the Instrumentation - - -20
Using TAU with MPI - - - - - - - - - - - - - - - - - - -21
Environment Variables - - - - - - - - - - - - - - - - - -21
Application Scenarios - - - - - - - - - - - - - - - - - -22

CHAPTER 3 Instrumentation 27

Automatic Instrumentation of C++, C and F90 source
code -28
Using TAU with PDT and MPI - - - - - - - - - - - -31
Using TAU with PDT for an F90 MPI app. - - - -32
Using TAU with PDT and Opari - - - - - - - - - - -34
Selective Instrumentation - - - - - - - - - - - - - - - -35
TAU_REDUCE: A tool for reducing instrumentation
overhead -37
C++ Measurement API - - - - - - - - - - - - - - - - -39
TAU Mapping API -62
C Measurement API - - - - - - - - - - - - - - - - - - -67
Fortran90 Measurement API- - - - - - - - - - - - - -68
Summary -75

CHAPTER 4 Profiling 77

Running the application - - - - - - - - - - - - - - - - -78
Running an application using DynInstAPI- - - - -78
Using Hardware Performance Counters - - - - - -79

TABLE OF CONTENTS

2 TAU Portable Profiling and Tracing Toolkit User’s Guide

Using Multiple Hardware Counters for
Measurement -86
Running a JAVA application with TAU - - - - - - -87
Running a Python application with TAU - - - - - -88
pprof -89
paraprof -91

CHAPTER 5 Tracing 101

Generating Event Traces - - - - - - - - - - - - - - - -102
Vampir: Visualizing TAU traces - - - - - - - - - - -103

CHAPTER 6 Performance Database 115

Prerequisites -116
Installation -116

CHAPTER 7 Summary 121

Software Availability - - - - - - - - - - - - - - - - - -122
Acknowledgments -122

CHAPTER 8 Appendix: Configuration Issues 123

Instructions for Installing TAU under Windows 124

CHAPTER 9 References 127

URLs -127

TAU Portable Profiling and Tracing Toolkit User’s Guide 1

CHAPTER 1 Installation

TAU (Tuning and Analysis Utilities) is a portable profiling and tracing toolkit for
performance analysis of parallel programs written in Java, C++, C, and Fortran.
The model that TAU uses to profile parallel, multi-threaded programs maintains
performance data for each thread, context, and node in use by an application. The
profiling instrumentation needed to implement the model captures data for func-
tions, methods, basic blocks, and statement execution at these levels. All C++ lan-
guage features are supported in the TAU profiling instrumentation including
templates and namespaces, which is available through an API at the library or
application level. The API also provides selection of profiling groups for organizing
and controlling instrumentation. The instrumentation can be inserted in the source
code using an automatic instrumentor tool based on the Program Database Toolkit
(PDT), dynamically using DyninstAPI, at runtime in the Java virtual machine, or
manually using the instrumentation API.

TAU’s profile visualization tool, paraprof, provides graphical displays of all the
performance analysis results, in aggregate and single node/context/thread forms.
The user can quickly identify sources of performance bottlenecks in the application
using the graphical interface. In addition, TAU can generate event traces that can be
displayed with the Vampir or Paraver trace visualization tools.

This chapter discusses installation of the TAU portable profiling package.

Installation

2 TAU Portable Profiling and Tracing Toolkit User’s Guide

Installing TAU

After uncompressing and untarring TAU, the user needs to configure, compile and
install the package. This is done by invoking:

FIGURE 1. Ar chitecture of TAU

TAU Portable Profiling and Tracing Toolkit User’s Guide 3

Installing T AU

%./configure
% make install

TAU is configured by running theconfigure script with appropriate options that
select the profiling and tracing components that are used to build the TAU library.
The `configure’ shell script attempts to guess correct values for various system-
dependent variables used during compilation, and creates the Makefile(s) (one in
each subdirectory of the source directory).

The following command-line options are available to configure:

-prefix=<directory>

Specifies the destination directory where the header, library and binary files are
copied. By default, these are copied to subdirectories <arch>/bin and <arch>/lib in
the TAU root directory.

-arch=<architecture>

Specifies the architecture. If the user does not specify this option, configure deter-
mines the architecture. For SGI, the user can specify either of sgi32, sgin32 or
sgi64 for 32, n32 or 64 bit compilation modes respectively. The files are installed in
the <architecture>/bin and <architecture>/lib directories.

-c++=<C++ compiler>

Specifies the name of the C++ compiler. Supported C++ compilers include KCC
(from KAI/Intel), CC (SGI, Sun), g++ (from GNU), FCC (from Fujitsu), xlC (from
IBM), guidec++ (from KAI/Intel), cxx (Tru64) and aCC (from HP), c++ (from
Apple), icpc and ecpc (from Intel) and pgCC (from PGI).

-cc=<C Compiler>

Specifies the name of the C compiler. Supported C compilers include cc, gcc (from
GNU), pgcc (from PGI), fcc (from Fujitsu), xlc (from IBM), and KCC (from KAI/
Intel), icc and ecc (from Intel).

Installation

4 TAU Portable Profiling and Tracing Toolkit User’s Guide

-pdt_c++=<C++ Compiler>

Specifies a different C++ compiler for PDT (tau_instrumentor). This is typically
used when the library is compiled with a C++ compiler (specified with -c++) and
the tau_instrumentor is compiled with a different <pdt_c++> compiler. For e.g.,

-c++=pgCC -cc=pgcc -pdt_c++=KCC -openmp ...

uses PGI’s OpenMP compilers for TAU’s library and KCC for tau_instrumentor.

-fortran=<Fortran Compiler>

Specifies the name of the Fortran90 compiler. Valid options are: gnu, sgi, ibm,
ibm64, hp, cray, pgi, absoft, fujitsu, sun, kai, nec, hitachi, compaq, and intel.

-pthr ead

Specifies pthread as the thread package to be used. In the default mode, no thread
package is used.

-tulipthr ead=<directory> -smarts

Specifies SMARTS (Shared Memory Asynchronous Runtime System) as the
threads package to be used. <directory> gives the location of the SMARTS root
directory. [SMARTS-URL]

-openmp

Specifies OpenMP as the threads package to be used.[OPENMP-URL]

-opari=<dir>

Specifies the location of the Opari OpenMP directive rewriting tool. The use of
Opari source-to-source instrumentor in conjunction with TAU exposes OpenMP
events for instrumentation. See examples/opari directory. [OPARI-URL] Note:
There are two versions of Opari: standalone - (opari-pomp-1.1.tar.gz) and the newer
KOJAK - kojak-<ver>.tar.gz opari/ directory. Please upgrade to the KOJAK version
(especially if you’re using IBM xlf90) and specify -opari=<kojak-dir>/opari while
configuring TAU.

-opari_region

TAU Portable Profiling and Tracing Toolkit User’s Guide 5

Installing T AU

Report performance data for only OpenMP regions and not constructs. By default,
both regions and constructs are profiled with Opari.

-opari_construct

Report performance data for only OpenMP constructs and not regions. By default,
both regions and constructs are profiled with Opari.

-pdt=<dir ectory>

Specifies the location of the installed PDT (Program Database Toolkit) root direc-
tory. PDT is used to build tau_instrumentor, a C++, C and F90 instrumentation
program that automatically inserts TAU annotations in the source code [PDT-URL].
If PDT is configured with a subdirectory option (-compdir=<opt>) then TAU can be
configured with the same option by specifying

 -pdt=<dir> -pdtcompdir=<opt> .

-pcl=<directory>

Specifies the location of the installed PCL (Performance Counter Library) root
directory. PCL provides a common interface to access hardware performance
counters on modern microprocessors. The library supports Sun UltraSparc I/II,
PowerPC 604e under AIX, MIPS R10000/12000 under IRIX, Compaq Alpha
21164, 21264 under Tru64Unix and Cray Unicos (T3E) and the Intel Pentium fam-
ily of microprocessors under Linux. This option specifies the use of hardware per-
formance counters for profiling (instead of time). To measure floating point
instructions, set the environment variablePCL_EVENT to PCL_FP_INSTR (for
example). See the section “Using Hardware Performance Counters” in Chapter 4
for details regarding its usage. [PCL-URL]

-papi=<directory>

Specifies the location of the installed PAPI (Performance Data Standard and API)
root directory. PCL provides a common interface to access hardware performance
counters and timers on modern microprocessors. Most modern CPUs provide on-
chip hardware performance counters that can record several events such as the
number of instructions issued, floating point operations performed, the number of
primary and secondary data and instruction cache misses, etc. To measure floating
point instructions, set the environment variablePAPI_EVENT to PAPI_FP_INS

Installation

6 TAU Portable Profiling and Tracing Toolkit User’s Guide

(for example). This option (by default) specifies the use of hardware performance
counters for profiling (instead of time). When used in conjunction with
-PAPIWALLCLOCK or -PAPIVIR TUAL , it specifies the use of wallclock or vir-
tual process timers respectively. See the section “Using Hardware Performance
Counters” in Chapter 4 for details regarding its usage. [PAPI-URL]

-PAPIWALLCLOCK

When used in conjunction with the -papi=<dir> option, this option allows TAU to
use high resolution, low overhead CPU timers for wallclock time based measure-
ments. This can reduce the TAU overhead for accessing wallclock time for profile
and trace measurements. (See NOTE below.)

-PAPIVIR TUAL

When used in conjunction with the -papi=<dir> option, this option allows TAU to
use the process virtual time (time spent in the “user” mode) for profile measure-
ments, instead of the default wallclock time. (See NOTE below.)

-CPUTIME

Specifies the use of user+ system time (collectively CPU time) for profile measure-
ments, instead of the default wallclock time. This may be used with multi-threaded
programs only under the LINUX operating system which provides bound threads.
On other platforms, this option may be used for profiling single-threaded programs
only.

-MULTIPLECOUNTERS

Allows TAU to track more than one quantity (multiple hardware counters, CPU-
time, wallclock time, etc.) Configure with other options such as -papi=<dir>, -
pcl=<dir>, -LINUXTIMERS, -SGITIMERS, -CPUTIME, -PAPIVIRTUAL, etc.
See Section “Using Multiple Hardware Counters” in Chapter 4 for detailed instruc-
tions on setting the environment variables COUNTER<1-25> for this option. If-
MULTIPLECOUNTERS is used with the-TRACE option, tracing employs the
COUNTER1 environment variable for wallclock time.

NOTE: The default measurement option in TAU is to use the wallclock time, which
is the total time a program takes to execute, including the time when it is waiting for
resources. It is the time measured from a real-time clock. The process virtual time

TAU Portable Profiling and Tracing Toolkit User’s Guide 7

Installing T AU

(-PAPIVIR TUAL) is the time spent when the process is actually running. It does
not include the time spent when the process is swapped out waiting for CPU or
other resources and it does not include the time spent on behalf of the operating
system (for executing a system call, for instance). It is the time spent in the “user”
mode. TheCPUTIME on the other hand, includes both the time the process is run-
ning (process virtual time) and the time the system is providing services for it (such
as executing a system call). It is the sum of the process virtual (user) time and the
system time (Seeman getrusage()).

-jdk=<dir ectory>

Specifies the location of the installed Java 2 Development Kit (JDK1.2+) root
directory. TAU can profile or trace Java applications without any modifications to
the source code, byte-code or the Java virtual machine. See README.JAVA on
instructions on using TAU with Java 2 applications. This option should only be
used for configuring TAU to use JVMPI for profiling and tracing of Java applica-
tions. It should not be used for configuring paraprof, which uses java from the
user’s path.

-dyninst=<dir>

Specifies the directory where the DynInst dynamic instrumentation package is
installed. Using DynInst, a user can invoke tau_run to instrument an executable
program at runtime or prior to execution by rewriting it. [DYNINST-URL][PARA-
DYN-URL].

-mpiinc=<dir>

Specifies the directory where MPI header files reside (such as mpi.h and mpif.h).
This option also generates the TAU MPI wrapper library that instruments MPI rou-
tines using the MPI Profiling Interface. See the examples/NPB2.3/config/make.def
file for its usage with Fortran and MPI programs. [MPI-URL]

-mpilib=<dir>

Specifies the directory where MPI library files reside. This option should be used in
conjunction with the -mpiinc=<dir> option to generate the TAU MPI wrapper
library.

Installation

8 TAU Portable Profiling and Tracing Toolkit User’s Guide

-mpilibrary=<lib>

Specifies the use of a different MPI library. By default, TAU uses -lmpi or -lmpich
as the MPI library. This option allows the user to specify another library. e.g., -
mpilibrary=-lmpi_r for specifying a thread-safe MPI library.

-nocomm

Allows the user to turn off tracking of messages (synchronous/asynchronous) in
TAU’s MPI wrapper interposition library. Entry and exit events for MPI routines are
still tracked. Affects both profiling and tracing.

-epilog=<dir>

Specifies the directory where the EPILOG tracing package [EPILOG-URL] is
installed.This option should be used in conjunction with the -TRACE option to gen-
erate binary EPILOG traces (instead of binary TAU traces). EPILOG traces can
then be used with other tools such as EXPERT. EPILOG comes with its own imple-
mentation of the MPI wrapper library and the POMP library used with Opari. Using
option overrides TAU’s libraries for MPI, and OpenMP.

-pythoninc=<dir>

Specifies the location of the Python include directory. This is the directory where
Python.h header file is located. This option enables python bindings to be gener-
ated. The user should set the environment variable PYTHONPATH to
<TAUROOT>/<ARCH>/lib/bindings-<options> to use a specific version of the
TAU Python bindings. By importing package pytau, a user can manually instrument
the source code and use the TAU API. On the other hand, by importing tau and
using tau.run(‘<func>’), TAU can automatically generate instrumentation. See
examples/python directory for further information.

-pythonlib=<dir>

Specifies the location of the Python lib directory. This is the directory where *.py
and *.pyc files (and config directory) are located. This option is mandatory for IBM
when Python bindings are used. For other systems, this option may not be specified
(but -pythoninc=<dir> needs to be specified).

TAU Portable Profiling and Tracing Toolkit User’s Guide 9

Installing T AU

-PROFILE

This is the default option; it specifies summary profile files to be generated at the
end of execution. Profiling generates aggregate statistics (such as the total time
spent in routines and statements), and can be used in conjunction with the profile
browserracy to analyze the performance. Wallclock time is used for profiling pro-
gram entities.

-PROFILECALLP ATH

This option generates call path profiles which shows the time spent in a routine
when it is called by another routine in the calling path. “a => b” stands for the time
spent in routine “b” when it is invoked by routine “a”. This option is an extension of
-PROFILE, the default profiling option. Specifying TAU_CALLPATH_DEPTH
environment variable, the user can vary the depth of the callpath. See examples/
calltree for further information.

-PROFILESTATS

Specifies the calculation of additional statistics, such as the standard deviation of
the exclusive time/counts spent in each profiled block. This option is an extension
of -PROFILE, the default profiling option.

-PROFILECOUNTERS

Specifies use of hardware performance counters for profiling under IRIX using the
SGI R10000 perfex counter access interface. The use of this option is deprecated in
favor of the -pcl=<dir> and -papi=<dir> options described above.

-SGITIMERS

Specifies use of the free running nanosecond resolution on-chip timer on the
R10000+. This timer has a lower overhead than the default timer on SGI, and is rec-
ommended for SGIs (similar to the -papi=<dir> -PAPIWALLCLOCK options).

-CRAYTIMERS

Specifies use of the free running nanosecond resolution on-chip timer on the CRAY
X1 cpu (accessed by the rtc() syscall). This timer has a significantly lower overhead
than the default timer on the X1, and is recommended for profiling. Since this timer
is not synchronized across different cpus, this option should not be used with the -

Installation

10 TAU Portable Profiling and Tracing Toolkit User’s Guide

TRACE option for tracing a multi-cpu application, where a globally synchronized
realtime clock is required.

-LINUXTIMERS

Specifies the use of the free running nanosecond resolution time stamp counter
(TSC) on Pentium III+ and Itanium family of processors under Linux. This timer
has a lower overhead than the default time and is recommended.

-TRACE

Generates event-trace logs, rather than summary profiles. Traces show when and
where an event occurred, in terms of the location in the source code and the process
that executed it. Traces can be merged and converted usingtau_merge and
tau_convert utilities respectively, and visualized using Vampir, a commercial trace
visualization tool. [VAMPIR-URL]

-muse

Specifies the use of MAGNET/MUSE to extract low-level information from the
kernel. To use this configuration, Linux kernel has to be patched with MAGNET
and MUSE has to be install on the executing machine. Also, magnetd has to be
running with the appropriate handlers and filters installed. User can specify pack-
age by setting the environment variable TAU_MUSE_PACKAGE. [MUSE-URL]

-noex

Specifies that no exceptions be used while compiling the library. This is relevant for
C++.

-useropt=<options-list>

Specifies additional user options such as -g or -I. For multiple options, the options
list should be enclosed in a single quote. For example

%./configure -useropt=’-g -I/usr/local/stl’

-help

Lists all the available configure options and quits.

TAU Portable Profiling and Tracing Toolkit User’s Guide 11

Examples:

To installmultiple (typical) configurations of TAU at a site, you may use the script
‘installtau’. It takes options similar to those described above. It invokes ./configure
<opts>; make clean install; to create multiple libraries that may be requested by the
users at a site. The installtau script accepts the following options:

% installtau -help

TAU Configuration Utility

Usage: installtau [OPTIONS]
 where [OPTIONS] are:
-arch=<arch>
-fortran=<compiler>
-cc=<compiler>
-c++=<compiler>
-useropt=<options>
-pdt=<pdtdir>
-papi=<papidir>
-mpiinc=<mpiincdir>
-mpilib=<mpilibdir>
-mpilibrary=<mpilibrary>
-opari=<oparidir>

**

These options are similar to the options used by the configure script.

Examples:

(See Appendix for POOMA & W indows installation instructions)

a) Install TAU using KCC on SGI, with trace and profile options:

%./configure -c++=KCC -SGITIMERS -arch=sgi64 -TRACE
-PROFILE -prefix=/usr/local/packages/tau

Installation

12 TAU Portable Profiling and Tracing Toolkit User’s Guide

b) Installing TAU with Java

%./configure -c++=g++ -jdk=/usr/local/packages/jdk1.4
% make install
% set path=($path <taudir>/<tauarch>/bin)
% setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:<taudir>/
<tauarch>/lib
% cd examples/java/pi
% java -XrunTAU Pi 200000
% racy

c) Use TAU with KCC, and cc on 64 bit SGI systems and use MPI wrapper libraries
with SGI’s low cost timers and use PDT for automated source code instrumenta-
tion. Enable both profiling and tracing.

% ./configure -c++=KCC -cc=cc -arch=sgi64 -mpiinc=/
local/apps/mpich/include -mpilib=/local/apps/mpich/
lib/IRIX64/ch_p4 -SGITIMERS -pdt=/local/apps/pdt

d) Use OpenMP+MPI using KAI’s Guide compiler suite, Opari for OpenMP instru-
mentation and use PAPI for accessing hardware performance counters for profile
based measurements.

% ./configure -c++=guidec++ -cc=guidec -papi=/usr/
local/packages/papi -openmp -mpiinc=/usr/pack-
ages/mpich/include -mpilib=/usr/packages/mpich/lib
-opari=/usr/local/opari

e) Use CPUTIME measurements for a multi-threaded application using pthreads
under LINUX.

% configure -pthread -CPUTIME

f) Use multiple hardware performance counters

% configure -MULTIPLECOUNTERS -papi=/usr/local/papi -
PAPIWALLCLOCK -PAPIVIRTUAL -LINUXTIMERS -mpiinc=/
usr/local/mpich/include -mpilib=/usr/local/mpich/
lib/ -pdt=/usr/local/pdtoolkit -useropt=-O2

% setenv COUNTER1 LINUX_TIMERS

TAU Portable Profiling and Tracing Toolkit User’s Guide 13

Platf orms Suppor ted

% setenv COUNTER2 PAPI_FP_INS
% setenv COUNTER3 PAPI_L1_DCM ...

NOTE: Also see Section “Application Scenarios” in Chapter 2 (Compiling) for an
explanation of simple examples that are included with the TAU distribution.

Platforms Supported

TAU has been tested on the following platforms:

1. SGI

On IRIX 6.x based systems, including Indy, Power Challenge, Onyx, Onyx2 and
Origin 200, 2000, 3000 Series, CC 7.2+, KAI [KAI-URL] KCC and g++/egcs
[GNU-URL] compilers are supported.

2. LINUX Clusters

On Linux based Intel x86 PC clusters, KAI/Intel’s KCC, g++, egcs (GNU), pgCC
(PGI) [PGI-URL], FCC (Fujitsu) [FUJITSU-URL] and icpc/ecpc Intel compilers
have been tested. TAU also runs under IA-64, Opteron, PowerPC, Alpha, Apple
PowerMac, Sparc and other processors running Linux.

3. Sun Solaris

Sun Workshop Pro 5.0 compilers (CC, F90), KAI KCC, KAP/Pro and GNU g++
work with TAU.

4. IBM AIX

On IBM SP2 and AIX systems, KAI KCC, KAP/Pro, IBM xlC, xlc, xlf90 and g++
compilers work with TAU.

5. HP HP-UX

On HP PA-RISC systems, aCC and g++ can be used.

6. HP Alpha Tru64

On HP Alpha Tru64 machines, cxx and g++, and Guide compilers may be used
with TAU.

Installation

14 TAU Portable Profiling and Tracing Toolkit User’s Guide

7. NEC SX series vector machines

On NEC SX-5 systems, NEC c++ may be used with TAU.

8. Cray X1, T3E, SV-1

On Cray T3E systems, KAI KCC and Cray CC compilers have been tested with
TAU. On Cray SV-1 and X1 systems, Cray CC compilers have been tested with
TAU.

9. Hitachi SR8000 vector machines

On Hitachi machines, Hitachi KCC, g++ and Hitachi cc compilers may be used
with TAU.

10. Apple OS X

On Apple OS X machines, c++ or g++ may be used to compile TAU. Also, IBM’s
xlf90, xlf compilers for G4/G5 may be used with TAU.

11. Microsoft Windows

On Windows, Microsoft Visual C++ 6.0 or higher and JDK 1.2+ compilers have
been tested with TAU.

NOTE: TAU has been tested with JDK 1.2, 1.3, 1.4.x under Solaris, SGI, IBM,
Linux, and MacOS X.

Software Requirements

1. Java v 1.2

TAU’s GUI paraprof requires Java v1.2 or better in your path. We recommend Java
version 1.4x from Sun. An older Tcl/Tk based browserracy is also included with
TAU for compatibility. It requires the executable wish to be in your path. racy is
also available in this distribution but support for racy will be gradually phased out.
Users are encouraged to use paraprof instead. Paraprof does *not* require -

TAU Portable Profiling and Tracing Toolkit User’s Guide 15

Software Requirements

jdk=<dir> option to be specified (which is used for configuring TAU for analyzing
Java applications). Thejava program should be in the user’s path.

Installation

16 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU Portable Profiling and Tracing Toolkit User’s Guide 17

Software Requirements

CHAPTER 2 Compiling

Source-based instrumentation with TAU measurement code requires compilation.
At compile time, the TAU system provides several options and configuration alter-
natives. This chapter explains compilation options to enable profiling or tracing.

Compiling

18 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU Stub Makefile

TAU configuration generates a Makefile stub as well as a library. The Makefile
name has the formMakefile.tau-<options> , the library name the form
libtau-<options>.a . For example,

%./configure -TRACE -c++=KCC -arch=sgin32

generates

Makefile.tau-trace-kcc libtau-trace-kcc.a

in tau-2.x/sgin32/lib

Using different configuration options, several modular libraries can be built and
co-exist even in the same architecture. To choose a particular version of the library,
the corresponding Makefile stub must be included in the application Makefile. The
stub Makefile defines the following variables:

• TAU_CXX for the C++ compiler

• TAU_CC for the C compiler

• TAU_F90 for the F90 compiler

• TAU_LINKER for the linker

• TAU_INCLUDE for the include directories

• TAU_DEFS for the defines on the command-line

• TAU_LIBS for the TAU static library

• TAU_SHLIBS for the TAU shared object (dynamic library)

• TAU_MPI_INCLUDE for the directory where MPI header files reside

• TAU_MPI_LIBS for the TAU MPI library with the MPI libraries for C/C++

• TAU_MPI_FLIBS for the TAU MPI library with MPI libraries for Fortran

• TAU_FORTRANLIBS for additional fortran libraries for linking with C++

• TAU_CXXLIBS for linking with C++ libraries when native f90 linker is used

• TAU_TRACE_INPUT_LIB for linking with the TAU trace reader library to
process binary TAU traces (typically used for making a trace converter).

• TAU_DISABLE for the default TAU stub library for Fortran, and

• USER_OPT for any user defined options specified during configuration

TAU Portable Profiling and Tracing Toolkit User’s Guide 19

TAU Stub Makefile

In addition to these options, the stub makefile also contains information about other
packages configured with TAU. The stub makefile defines the following variables:

• PDTDIR for the location of the PDT root directory

• OPARIDIR for the location of the Opari root directory

• TULIPDIR for the location of the Tulip root directory

• PCLDIR for the location of the PCL root directory

• PAPIDIR for the location of the PAPI root directory

• EPILOGDIR for the location of the EPILOG root directory

• JDKDIR for the location of the JDK root directory

• DYNINSTDIR for the location of the DyninstAPI root directory

It should be noted that the TAU library is written in C++. It may be linked with a
Fortran or a C object file in two ways. Either the TAU_LINKER (typically C++
compiler) may be used or the native linker (C, F90 compiler) may be used. For For-
tran programs that use the C++ linker, the TAU_FORTRANLIBS macro contains
additional Fortran libraries that need to be linked in to create the executable. If the
F90 linker is used, TAU_CXXLIBS should be added to the link line which links in
the necessary C++ libraries.

A typical makefile that uses these Makefile variables is shown below:

TAUROOTDIR = /usr/local/packages/tau-2.x

include $(TAUROOTDIR)/sgin32/lib/Makefile.tau-trace-kcc
CXX = $(TAU_CXX)
CC = $(TAU_CC)
CFLAGS = $(TAU_INCLUDE) $(TAU_DEFS)
LIBS = $(TAU_LIBS) -lm
LDFLAGS = $(USER_OPT)

RM = /bin/rm -f
TARGET = matrix
##
all: $(TARGET)
install: $(TARGET)
$(TARGET): $(TARGET).o
 $(CXX) $(LDFLAGS) $(TARGET).o -o $@ $(LIBS)
$(TARGET).o : $(TARGET).cpp
 $(CXX) $(CFLAGS) -c $(TARGET).cpp

Compiling

20 TAU Portable Profiling and Tracing Toolkit User’s Guide

clean:
 $(RM) $(TARGET).o $(TARGET)
##

To use a different configuration, simply change the included makefile to some
other. For example, for

% ./configure -pthread -arch=sgi64

substitute

include $(TAUROOTDIR)/sgi64/lib/Makefile.tau-pthread

in the makefile above. Also,

$(TAUROOTDIR)/include/Makefile

points to the most recently configured version of the library.

Enabling and Disabling the Instrumentation

Using the TAU stub makefile variableTAU_DEFS while compiling C++ and C
source code enables profiling (or tracing) instrumentation and generates the perfor-
mance data files. To disable the instrumentation,TAU_DEFS should not be used. In
its absence, all the TAU profiling macros defined in the source code for instrumen-
tation purposes are automatically defined to null (the default behavior). Thus, the
instrumentation can be retained in the source code, since it has no overhead when it
is disabled.

For Fortran however, the instrumentation can be disabled in the program by using
the TAU stub makefile variableTAU_DISABLE on the link command line. This
points to a library that contains empty TAU instrumentation routines.

TAU Portable Profiling and Tracing Toolkit User’s Guide 21

Using TAU with MPI

Using TAU with MPI

TAU MPI wrapper library (libTauMpi.a) uses the MPI Profiling Interface for instru-
mentation. To use the library,

1. Configure TAU with -mpiinc=<dir> and -mpilib=<dir> command-line options
that specify the location of MPI header files and the directory where MPI librar-
ies reside. Example:

% ./configure -mpiinc=/usr/local/packages/mpich/
include -mpilib=/usr/local/packages/mpich/
lib/LINUX/ch_p4 -c++=KCC -cc=cc

2. Include the TAU stub Makefile generated in the application makefile.
TAUROOTDIR=/usr/local/packages/tau2
include $(TAUROOTDIR)/i386_linux/Makefile.tau-kcc

3. Use the Makefile variables$(TAU_MPI_LIBS) for C/C++ applications and
$(TAU_MPI_FLIBS) for Fortran 90 applications, to specify the TAU MPI
libraries before the$(TAU_LIBS) in the link command line. Also, use
$(TAU_MPI_INCLUDE) in the compiler command line to specifies the MPI
include directory to be used. Example:

CXX = $(TAU_CXX)
CFLAGS = $(TAU_INCLUDE) $(TAU_DEFS) $(TAU_MPI_INCLUDE)
LIBS = $(TAU_MPI_LIBS) $(TAU_LIBS)

4. Compile and run the MPI application as usual to generate the performance data.

Environment Variables

When the program has been compiled, it can be executed as it normally would be
(for example, using mpirun for an MPI task). TAU generates profile data files or
trace files in the current working directory. One file for each context and thread is
generated. To better manage different experiments, set the environment variables

• PROFILEDIR to name the directory that should contain the profile data files
and

• TRACEDIR the directory where event traces should be stored.

Compiling

22 TAU Portable Profiling and Tracing Toolkit User’s Guide

• LD_LIBRARY_PATH (or LIBPATH for IBM) should include the <tauroot>/
<tauarch>/lib directory if TAU is used with JAVA 2 (using the -jdk=<dir> con-
figuration option) or dyninstAPI (using the -dyninst=<dir> configuration
option).

Example:

% make
% setenv TRACEDIR /users/foo/tracedata/experiment1
% mpirun -np 4 matrix

NOTE: TAU also uses the environment variablePCL_EVENT and
PAPI_EVENT to specify the hardware performance counter to be used when -
pcl=<dir> or -papi=<dir> configuration options are used, respectively. See section
“Using Hardware Performance Counters” in Chapter 4 for further details.

Application Scenarios

TAU’s examples directory contains programs that illustrate the use of TAU
instrumentation and measurement options.

instrument - This contains a simple C++ example that shows how TAU’s API
can be used for manually instrumenting a C++ program.

thr eads - A simple multi-threaded program that shows how the main func-
tion of a thread is instrumented. Performance data is generated for
each thread of execution. Uses pthread library and TAU must be
configured with the -pthread option.

cthreads - Same as threads above, but for a C program. An instrumented C
program may be compiled with a C compiler, but needs to be
linked with a C++ linker.

sproc - SGI sproc threads example. TAU should be configured with the -
sproc option to use this.

pi - An MPI program that calculates the value of pi and e. It high-
lights the use of TAU’s MPI wrapper library. TAU needs to be con-
figured with -mpiinc=<dir> and -mpilib=<dir> to use this.

TAU Portable Profiling and Tracing Toolkit User’s Guide 23

Application Scenarios

mpishlib - Demonstrates the use of MPI wrapper library in instrumenting a
shared object. The MPI application is instrumented is instrumented
as well. TAU needs to be configured with -mpiinc=<dir> and -
mpilib=<dir> flags.

python - Instrumentation of a python application can be done automatically or
manually using the TAU Python bindings. Two examples, auto.py
and manual.py demonstrate this respectively. TAU needs to be con-
figured with-pythoninc=<dir that contains Python.h> option and the
user needs to set PYTHONPATH to <taudir>/<arch>/lib to use this
feature.

traceinput - To build a trace converter/trace reader application, we provide the
TAU trace input library. This directory contains two examples (in c
and c++ subdirectories) that illustrate how an application can use
the trace input API to read online or post-mortem TAU binary
traces. It shows how the user can register routines with the callback
interface and how TAU invokes these routines when events take
place.

papi - A matrix multiply example that shows how to use TAU statement
level timers for comparing the performance of two algorithms for
matrix multiplication. When used with PAPI or PCL, this can high-
light the cache behaviors of these algorithms. TAU should be con-
figured with -papi=<dir> or -pcl=<dir> and the user should set
PAPI_EVENT or PCL_EVENT respective environment variables,
to use this.

papithr eads - Same as papi, except uses threads to highlight how hardware per-
formance counters may be used in a multi-threaded application.
When it is used with PAPI, TAU should be configured with -
papi=<dir> -pthread

autoinstrument - Shows the use of Program Database Toolkit (PDT) for automat-
ing the insertion of TAU macros in the source code. It requires con-
figuring TAU with the -pdt=<dir> option. The Makefile is
modified to illustrate the use of a source to source translator
(tau_instrumentor).

reduce - Shows the use oftau_reduce, a utility that can read profiles and a
set of rules and determine which routines should not be instru-

Compiling

24 TAU Portable Profiling and Tracing Toolkit User’s Guide

mented (for frequently called light-weight routines). See <tau>/
utils/TAU_REDUCE.README file for further details. It requires
configuring TAU with -pdt=<dir> option.

cinstrument - Shows the use of PDT for C. Requires configuring TAU with
 -pdt=<dir> option.

mixedmode - This example illustrates the use of PDT, hand-instrumentation (for
threads), MPI library instrumentation and TAU system call wrapper
library instrumentation. Requires configuring TAU with
-mpiinc=<dir> -mpilib=<dir> -pdt=<dir> -pthread options.

pdt_mpi - This directory contains C, C++ and F90 examples that illustrate
how TAU/PDT can be used with MPI. Requires configuring TAU
with -pdt=<dir> -mpiinc=<dir> -mpilib=<dir> options. You may
also try this with the -TRACE -epilog=<dir> options to use the EPI-
LOG tracing package (from FZJ).

callpath - Shows the use of callpath profiling. Requires configuring TAU
with the -PROFILECALLPATH option. Setting the environment
variable TAU_CALLPATH_DEPTH changes the depth of the call-
path recorded by TAU. The default value of this variable is 2.

selective - This example illustrates the use of PDT, and selective profiling
using profile groups in the tau_instrumentor. Requires configuring
TAU with -pdt=<dir> -fortran=<...> options.

NPB2.3 - The NAS Parallel Benchmark 2.3 [NPB-URL]. It shows how to
use TAU’s MPI wrapper with a manually instrumented Fortran pro-
gram. LU and SP are the two benchmarks. LU is instrumented
completely, while only parts of the SP program are instrumented
to contrast the coverage of routines. In both cases MPI level instru-
mentation is complete. TAU needs to be configured with -mpi-
inc=<dir> and -mpilib=<dir> to use this.

dyninst - An example that shows the use of DyninstAPI [DYNINST-URL]
to insert TAU instrumentation. Using Dyninst, no modifications
are needed and tau_run, a runtime instrumentor, inserts TAU calls
at routine transitions in the program. [This represents work in
progress].

TAU Portable Profiling and Tracing Toolkit User’s Guide 25

Application Scenarios

dyninstthr eads - The above example with threads.

java/pi - Shows a java program for calculating the value of pi. It illustrates
the use of the TAU JVMPI layer for instrumenting a Java program
without any modifications to its source code, byte-code or the JVM.
It requires a Java 2 compliant JVM and TAU needs to be configured
with the -jdk=<dir> option to use this.

java/api The same Pi program as above that illustrates the use of the TAU
API. There are subdirectories for C, C++ and F90 to show the dif-
ferences in instrumentation and Makefiles. TAU needs to be config-
ured with the -openmp option to use this.

openmp - Shows how to manually instrument an OpenMP program using
the TAU API. There are subdirectories for C, C++ and F90 to show
 the differences in instrumentation and Makefiles. TAU needs to be
configured with the -openmp option to use this.

opari - Opari is an OpenMP directive rewriting tool that works with TAU.
Configure TAU with -opari=<dir> option to use this. This provides
detailed instrumentation of OpenMP constructs. There are subdi-
rectories for C++, pdt_f90, and OpenMPI to demonstrate the use of
this tool. The pdt_f90 directory contains an example that shows the
use of PDT with Opari for a Fortran 90 program.

openmpi - Illustrates TAU’s support for hybrid execution models in the form
of MPI for message passing and OpenMP threads. TAU needs to be
configured with -mpiinc=<dir> -mpilib=<dir> -openmp options to
use this.

fork - Illustrates how to register a forked process with TAU. TAU pro-
vides two options: TAU_INCLUDE_PARENT_DATA and
TAU_EXCLUDE_PARENT_DATA which allows the child process
to inherit or clear the performance data when the fork takes place.

mapping - Illustrates two examples in the embedded and external subdirecto-
ries. These correspond to profiling at the object level, where the
time spent in a method is displayed for a specific object. There are
two ways to achieve this using an embedded association. The first
method requires an extension of the class definition with a TAU
pointer and the second scheme uses external hash-table lookup that

Compiling

26 TAU Portable Profiling and Tracing Toolkit User’s Guide

relies on looking at the object address at each method invocation.
Both of these examples illustrate the use of the TAU Mapping API.

multicounters - Illustrates the use of multiple measurement options configured
simultaneously in TAU. See README file for instructions on set-
ting the env. variables COUNTERS<1-25> for specifying measure-
ments. Requires configuring TAU with -MULTIPLECOUNTERS.

selectiveAccess- Illustrates the use of TAU API for runtime access of TAU perfor-
mance data. A program can get information about routines execut-
ing in its context. This can be used in conjunction with multiple
counters.

TAU Portable Profiling and Tracing Toolkit User’s Guide 27

Application Scenarios

CHAPTER 3 Instrumentation

For TAU instrumentation, macros must be added to the source code to identify rou-
tine transitions. It can be done automatically using the C++ instrumentor -
tau_instrumentor, based on the Program Database Toolkit, manually using the
instrumentation API (Application Programmers Interface) or using thetau_run, a
runtime instrumentor, based on the DynInstAPI dynamic instrumentation package.
Python applications can be instrumented automatically by using the tau python
package. Java applications can be instrumented automatically by using the JVMPI
TAU library.

Instrumentation

28 TAU Portable Profiling and Tracing Toolkit User’s Guide

Automatic Instrumentation of C++, C and F90
source code

tau_instrumentor inserts TAU instrumentation in C++ source code using PDT
[PDT-URL].

1. Install pdtoolkit. Refer to the README file in the PDT directory.
 % ./configure -arch=IRIX64 -KCC

2. Install TAU using the -pdt configuration option.
 % ./configure -pdt=/usr/local/packages/pdtoolkit-1.0

-c++=KCC -arch=sgi64 -SGITIMERS
 % make install

3. Modify the makefile to invoke cxxparse from PDT which generates a program
database file (.pdb) that contains program entities (such as routine locations)
and tau_instrumentor which uses the .pdb file and the C++ source code to gener-
ate an instrumented version of the source code.

4. tau_instrumentor takes the following commandline options:

Usage: /apps/tau-2.x/sgi64/bin/tau_instrumentor
<pdbfile> <sourcefile> [-o <outputfile>] [-noinline]
[-noinit][-g groupname] [-i headerfile] [-c|-c++|-
fortran] [-f <instr_req_file>] [-rn
<return_keyword>] [-rv <return_void_keyword>]

The -noinline option prevents the instrumentation of inlined routines. All rou-
tines in the source file can be logically grouped into a TAU group using the -g
“groupname” option. An alternate header file can be used (instead of the
default Profiler.h using the -i headerfile option. For a C/C++ program, TAU
inserts the TAU_INIT call to parse the commandline parameters in main. To
prevent this default behavior, specify -noinit on the commandline. The instru-
mentor can automatically deduce the language of the source file by examining
the pdb file. The user can override this behavior using the -c, -c++ or -fortran
option by specifying the language associated with the source file. This affects
the placement of instrumentation in the source file. To specify a selective
instrumentation file, use the -f file option. A selective instrumentation file can
contain a list of routines to exclude from instrumentation (one per line brack-
eted by BEGIN_EXCLUDE_LIST and END_EXCLUDE_LIST). Alternately,
you can specify a list of routines that should be included for instrumentation
(no other routines are instrumented besides the ones in this list). Such a list is
bracketed by BEGIN_INCLUDE_LIST and END_INCLUDE_LIST as shown

TAU Portable Profiling and Tracing Toolkit User’s Guide 29

Automatic Instrumentation of C++, C and F90 sour ce code

in the <taudir>/examples/autoinstrument/select file. The final -rn and -rv <key-
words> options to tau_instrumentor allows the user to specify a macro that
calls return in a routine with a non-void and a void return type respectively.
TAU’s timers need to be stopped before a return statement. When the source
code contains a macro that calls return, it is important to stop the timers before
the macro is invoked in the instrumented source code. These -rn and -rv
options help the tau_instrumentor identify the location of subroutine exits.

5. See
examples/autoinstrument/Makefile . For example, the original
makefile

CXX = CC
CFLAGS =
LIBS = -lm
TARGET = klargest
##
Original Rules
##
all: $(TARGET)
$(TARGET): $(TARGET).o
 $(CXX) $(LDFLAGS) $(TARGET).o -o $@ $(LIBS)
$(TARGET).o : $(TARGET).cpp
 $(CXX) $(CFLAGS) -c $(TARGET).cpp
clean:
 $(RM) $(TARGET).o $(TARGET)
##

is modified as follows. Some changes are shown in bold font.

TAUROOTDIR = /usr/local/packages/tau2/
include $(TAUROOTDIR)/sgi64/Makefile.tau
CXX = $(TAU_CXX)
CFLAGS = $(TAU_INCLUDES) $(TAU_DEFS)
LIBS = -lm $(TAU_LIBS)
PDTPARSE =$(PDTDIR)/$(CONFIG_ARCH)/bin/cxxparse
TAUINSTR =$(TAUDIR)/$(CONFIG_ARCH)/bin/tau_instrumentor
##
Modified Rules
##

all: $(TARGET) $(PDTPARSE) $(TAUINSTR)

Instrumentation

30 TAU Portable Profiling and Tracing Toolkit User’s Guide

$(TARGET): $(TARGET).o
 $(CXX) $(LDFLAGS) $(TARGET).o -o $@ $(LIBS)

Use the instrumented source code to generate the
object code
$(TARGET).o : $(TARGET).inst.cpp
 $(CXX) -c $(CFLAGS) $(TARGET).inst.cpp -o $(TAR-
GET).o

Generate the instrumented source from the original
source and the pdb file
$(TARGET).inst.cpp : $(TARGET).pdb $(TARGET).cpp
$(TAUINSTR)

 $(TAUINSTR) $(TARGET).pdb $(TARGET).cpp -o $(TAR-
GET).inst.cpp

Parse the source file to generate the pdb file
$(TARGET).pdb : $(PDTPARSE) $(TARGET).cpp
 $(PDTPARSE) $(TARGET).cpp $(CFLAGS)

clean:
 $(RM) $(TARGET).o $(TARGET).inst.cpp $(TARGET)
$(TARGET).pdb
##
$(PDTPARSE):
 @echo “**”
 @echo “Download and Install Program Database Toolkit “
 @echo “ERROR: Cannot find $(PDTPARSE)”
 @echo “*************************************”
$(TAUINSTR):
 @echo “*************************************”
 @echo “Configure TAU with -pdt=<dir> option to use”
 @echo “C++ instrumentation with PDT”
 @echo “ERROR: Cannot find $(TAUINSTR)”
 @echo “*************************************”

6. Compile and execute the application.

The user may also opt to manually insert TAU macros in the source code using the
C++ instrumentation API. The following section describes this API in detail.

TAU Portable Profiling and Tracing Toolkit User’s Guide 31

Using TAU with PDT and MPI

Using TAU with PDT and MPI

To use PDT for source code instrumentation and TAU’s MPI wrapper interposition
library, modify the default compilation rule as shown in the example below:

TAUROOTDIR = /usr/local/packages/tau-2.x
include $(TAUROOTDIR)/include/Makefile
USE_TAU = 1
Comment above line to disable TAU

CXX = $(TAU_CXX)
PDTCXXPARSE = $(PDTDIR)/$(PDTARCHDIR)/bin/cxxparse
TAUINSTR = $(TAUROOTDIR)/$(CONFIG_ARCH)/bin/

tau_instrumentor

CFLAGS = $(TAU_INCLUDE) $(TAU_DEFS) $(TAU_MPI_INCLUDE)
LIBS = $(TAU_MPI_LIBS) $(TAU_LIBS) $(LEXTRA1)

$(EXTRALIBS) -lm

LDFLAGS = $(USER_OPT) $(TAU_LDFLAGS)

##
ifdef USE_TAU
COMP_RULE = $(PDTCXXPARSE) $< $(CFLAGS); \
 $(TAUINSTR) $*.pdb $< -o $*.inst.cpp -g
RING;\
 $(CXX) $(CFLAGS) -c $*.inst.cpp -o $@ ; \
rm -f $*.pdb ;
else
DISABLE TAU INSTRUMENTATION
TAU_DEFS =
Don’t use TAU MPI wrapper library
TAU_MPI_LIBS = -L/usr/local/lib -lmpich
TAU_LIBS =
TAU_WRAPPER_LIB =
TAU_INCLUDE =
COMP_RULE = $(CXX) $(CFLAGS) -c $< -o $@ ;
endif
########################
TARGET = ring
all: $(TARGET)

Instrumentation

32 TAU Portable Profiling and Tracing Toolkit User’s Guide

OBJS = $(TARGET).o
$(TARGET): $(OBJS)
 $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)
Compilation rule
.cpp.o:
 $(COMP_RULE)

Using TAU with PDT for an F90 MPI application

A typical Fortran90 MPI program uses a Makefile that builds object files from a set
of Fortran90 source files and links libraries with the objects to build an executable.
The original Makefile might look like this:

LIBS=<libraries>
OBJS=<list of object files>
app: $(OBJS)

$(F90) $(LDFLAGS) $(OBJS) -o app
.f90.o:

$(F90) $(FFLAGS) -c $< -o $@

First the user inserts the TAU stub Makefile and defines the Makefile variables.

For e.g.

include /usr/local/packages/tau-2.13/rs6000/lib/Make-
file.tau-papiwallclock-multiplecounters-papivirtual-
mpi-papi-pdt

F90= $(TAU_F90)
PDTF90PARSE= $(PDTDIR)/$(PDTARCHDIR)/bin/f95parse
TAUINSTR= $(TAUROOTDIR)/$(CONFIG_ARCH)/bin/
tau_instrumentor
FFLAGS= $(TAU_F90_SUFFIX) $(TAU_MPI_INCLUDE)
LIBS = $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_FORTRANLIBS)
LINKER= $(TAU_LINKER)

TAU Portable Profiling and Tracing Toolkit User’s Guide 33

Using TAU with PDT f or an F90 MPI application

Next, the compilation rule is changed to first parse the original file using PDT’s
parser, then instrument the source code and compile the instrumented source code.
The PDT script f95parser invokes the new Cleanscape Software International’s
Flint based F95 parser whereas f90parse invokes the older Mutek Solution’s F90
parser. Please refer to PDT’s README file for a listing of f90parse and f95parse
commandline options.

In case there are any errors in parsing the source code, a fall-back rule is introduced
to keep the original compilation rule in place.

COMP_RULE=-$(PDTPARSE $< $(FFLAGS) -Mpdt_modules; \
$(TAUINSTR) $*.pdb $< -o $*.inst.f90 -f select.dat; \
$(F90) $(FFLAGS) -c $*.inst.f90 -o $@; \
if [! -f $@] ; then \
echo “Error in compiling $*.f90: trying without PDT”;

\
$(F90) $(FFLAGS) -c $< -o $@; \
fi ; \
rm -f $*.pdb;

The - before $(PDTPARSE) allows make to proceed when there is an error from
any command in the rule. The -Mpdt_modules option reads and writes the .mod
module files in a directory called pdt_modules (which should be created prior to
invoking make) if you’re using f90parse. It is not required for f95parse. f95parse
can also parse multiple F90 files together when these are specified on the command
line. The -o<file.pdb> option should be used for specifying the merged PDB file
name if more than one file is parsed at a time. Once a PDB file is generated, it is
processed by the next stage in the instrumentation process using tau_instrumentor.
The -f select.dat specifies a selective instrumentation list where the user can specify
which routines and/or files should be excluded from instrumentation. An optional -
g <groupname> argument to tau_instrumentor puts all routines in a given file in a
named profile group. Groups can be used to enable or disable the performance
instrumentation for a group of logically related routines. The user introduces the
compilation rule as below:

app: $(OBJS)
$(LINKER) $(LDFLAGS) $(OBJS) Do app

.f90.o:
$(COMP_RULE)

Instrumentation

34 TAU Portable Profiling and Tracing Toolkit User’s Guide

Using TAU with PDT and Opari

The following example shows the use of PDT and Opari for OpenMP instrumenta-
tion in a Makefile.

TAUROOTDIR= /usr/local/tau-2.x
include $(TAUROOTDIR)/include/Makefile
CXX= $(TAU_CXX)
CC= $(TAU_CC)
F90= $(TAU_F90)
PDTCPARSE = $(PDTDIR)/$(PDTARCHDIR)/bin/cparse
PDTF90PARSE = $(PDTDIR)/$(PDTARCHDIR)/bin/f90parse
TAUINSTR = $(TAUROOTDIR)/$(CONFIG_ARCH)/bin/
tau_instrumentor
OPARI_TOOL= $(OPARIDIR)/tool/opari
CFLAGS = $(TAU_INCLUDE) $(TAU_DEFS)
FFLAGS =
LIBS = $(TAU_LIBS) $(TAU_FORTRANLIBS)
$(LEXTRA1)
#LIBS = $(TAU_DISABLE) $(TAU_FORTRANLIBS)

LDFLAGS = $(USER_OPT)
MAKEFILE = Makefile
TARGET = mandel
##

install: $(TARGET)
$(TARGET): ppm.o $(TARGET).o mytimer.o opari.tab.o
@echo “**”
@echo “LINKING: “
$(TAU_LINKER) $(LDFLAGS) $(TARGET).o ppm.o mytimer.o
opari.tab.o -o $@ $(LIBS)

$(TARGET).o : $(TARGET).f90 ppm.o
@echo “***”
@echo “Creating $(TARGET).o:”
$(RM) opari.rc
$(OPARI_TOOL) -nosrc -table opari.tab.c $*.f90
$*.pomp.f90

TAU Portable Profiling and Tracing Toolkit User’s Guide 35

Selective Instrumentation

$(PDTF90PARSE) $*.pomp.f90 -MPDT_MODULES
$(TAUINSTR) $*.pomp.pdb $*.pomp.f90 -o $*.inst.f90
$(F90) $(FFLAGS) -c $*.inst.f90 -o $@

ppm.o : ppm.f90
@echo “***”
@echo “Creating ppm.o: “
$(PDTF90PARSE) $<
if [-d PDT_MODULES] ; then true; \
 else mkdir PDT_MODULES ; fi
if [! -f PPM.mod] ; then true ; \
 else mv PPM.mod PDT_MODULES ; fi

$(TAUINSTR) $*.pdb $< -o $*.inst.f90
$(F90) $(FFLAGS) -c $*.inst.f90 -o $@

opari.tab.o: $(TARGET).o
@echo “**”
@echo “Creating opari.tab.o:”
$(CC) $(CFLAGS) -c opari.tab.c

mytimer.o : mytimer.c
@echo “*************************************”
@echo “Creating mytimer.o:”
$(PDTCPARSE) $<
$(TAUINSTR) $*.pdb $< -o $*.inst.c
$(CC) $(CFLAGS) -c $*.inst.c -o $@

Selective Instrumentation

When all routines in a source file are instrumented, frequently executing light-
weight routines may cause an instrumentation overhead that distorts the perfor-
mance data. To reduce the instrumentation overhead, the user can select routines
that should not be instrumented and specify this in the selective instrumentation file
that can be specified as a commandline argument to tau_instrumentor (-f <file>).
The format of this file is shown below:

Instrumentation

36 TAU Portable Profiling and Tracing Toolkit User’s Guide

BEGIN_INCLUDE_LIST
main
foo
f12
END_INCLUDE_LIST

instruments main, foo and f12 routines only.

BEGIN_EXCLUDE_LIST
domain
f1
f2
f4
END_EXCLUDE_LIST

excludes routines domain, f1, f2 and f4 from instrumentation.

BEGIN_FILE_INCLUDE_LIST
Main.f90
Foo?.f
END_FILE_INCLUDE_LIST

specifies that main.f90 and foo?.f files (foo3.f, foo9.f) are instrumented.

BEGIN_FILE_EXCLUDE_LIST
*.cpp
bar.f90
END_FILE_EXCLUDE_LIST

excludes all files with that end in a .cpp suffix, and bar.f90 from instrumentation.
The user should specify either an exclude list or an include list, but not both. Some-
times, it is difficult to build this selective instrumentation file manually. The tool
tau_reduce may be used to construct this file automatically.

TAU Portable Profiling and Tracing Toolkit User’s Guide 37

TAU_REDUCE: A tool f or reducing instrumentation o verhead

TAU_REDUCE: A tool for reducing
instrumentation overhead

When all routines in a source file are instrumented, frequently executing light-
weight routines may cause an instrumentation overhead that distorts the perfor-
mance data. To reduce the instrumentation overhead, the user can select routines
that should not be instrumented and specify this in a selective instrumentation file
that can be specified as a commandline argument to tau_instrumentor or tau_run.
However, creating lists of routines manually can be tedious. To aid the user in iden-
tifying which routines should be removed, tau_reduce may be used.

tau_reduce is an application that will apply a set of user-defined rules to a pprof
dump file in order to create a select file that will include an exclude list for selective
implementation for TAU. The user must specify the name of the pprof dump file
that this application will use. This is done with the -f filename flag. If no rule file is
specified, then a single default rule will be applied to the file. This rule is:

numcalls > 1000000 & usecs/call < 2,

which will exclude all routines that are called at least 1,000,000 times and average
less then two microseconds per call. If a rule file is specified, then this rule is not
applied. If no output file is specified, then the results will be printed out to the
screen.

OPTIONS:

tau_reduce has the following options available at the command line:

 -f <filename> : specifyFilename of pprof dump file (default: temp.out)

 -p :Print out all routines with their attributes (for debugging)

 -o <filename> : specify filename for select fileOutput (default: print to screen)

 -r <filename> : specify filename forRule file

 -v :Verbose mode (for each rule, print out rule and all routines that it excludes)

Instrumentation

38 TAU Portable Profiling and Tracing Toolkit User’s Guide

RULES:

Users can specify a set of rules for tau_reduce to apply. The rules should be speci-
fied in a separate file, one rule per line, and the file name should be specified with
the appropriate option on the command line. The grammar for a rule is:

[GROUPNAME:]FIELD OPERATOR NUMBER.

The GROUPNAME followed by the colon (:) is optional. If included, the rule will
only be applied to routines that are a member of the group specified. Only one
group name can be applied to each rule, and a rule must follow a groupname. If
only a groupname is given, then an unrecognized field error will be returned. If the
desired effect is to exclude all routines that belong to a certain group, then a trivial
rule, such as GROUP:numcalls > -1 may be applied. If a groupname is given, but
the data does not contain any groupname data, then an error message will be given,
but the rule will still be applied to the date ignoring the groupname specification.

A FIELD is any of the routine attributes listed in the following table:

Some FIELDS are only available for certain files. If hardware counters are used,
then usec, cumusec, usecs/per call are not applicable and a error is reported. The
opposite is true if timing data is used rather than hardware counters. Also, stddev is
only available for certain files that contain that data (when TAU is configured with -
PROFILESTATS). An OPERATOR is any of the following: < (less than), > (greater

TABLE 1. Fields used in specifying rules in tau_reduce

ATTRIB UTE NAME MEANING

numcalls Number of times this routine is called

numsubrs Number of subroutines that this routine contains

percent Percent of total implementation time

cumusec Inclusive routine running time, in microseconds

 count Exclusive hardware count

totalcount Inclusive hardware count

stddev Standard deviation

 usecs/call Microseconds per call

counts/call Hardware counts per call

TAU Portable Profiling and Tracing Toolkit User’s Guide 39

C++ Measurement API

than), or = (equals). A NUMBER is any number. A compound rule may be formed
by using the & (and) symbol in between two simple rules. There is no “OR”
because there is an implied or between two separate simple rules, each on a sepa-
rate line. (i.e. the compound rule usec < 1000 OR numcalls = 1 is the same as the
two simple rules “usec < 1000” and “numcalls = 1”).

EXAMPLES:

#exclude all routines that are members of TAU_USER and
have less than
#1000 microseconds
TAU_USER:usec < 1000

#exclude all routines that have less than 1000 microsec-
onds and are
#called only once.
usec < 1000 & numcalls = 1

#exclude all routines that have less than 1000 usecs per
call OR have a percent
#less than 5
usecs/call < 1000
percent < 5

NOTE: Any line in the rule file that begins with a # is a comment line. For

clarity, blank lines may be inserted in between rules and will also be ignored.

C++ Measurement API

The API is a set of macros that can be inserted in the C++ source code. An exten-
sion of the same API is available to instrument C and Fortran sources. This is dis-
cussed later.

At the beginning of each instrumented source file, include the following header

#include <Profile/Profiler.h>

Instrumentation

40 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_PROFILE(function_name, type, group);

Arguments:
char *function_name or string& function_name
char *type_name or string& type
TauGroup_t group

With TAU_PROFILE, the functionfunction_name is profiled.
TAU_PROFILE identifies the function uniquely by the combination of its name
and type parameters. Each function is also associated with the group specified. This
information can selectively enable or disable instrumentation in a set of profile
groups. A function that belongs to theTAU_DEFAULT group is always profiled.
Other user defined groups areTAU_USER, TAU_USER1, TAU_USER2,
TAU_USER3, TAU_USER4. The top level function in any thread must be profiled
using the TAU_DEFAULT group. For details on using selective instrumentation,
please refer to the section “Running the application” in Chapter 4.

Example:

int main(int argc, char **argv)
{
TAU_PROFILE(“main()”,“int (int, char **)”,TAU_DEFAULT);

string& CT(v ariable);

Arguments:
<type> variable

TheCT macro returns the runtime type information string of a variable. This is use-
ful in constructing the type parameter of theTAU_PROFILE macro. For templates,
the type information can be constructed using the type of the return and the type of
each of the arguments (parameters) of the template. The example in the following
macro will clarify this.

TAU Portable Profiling and Tracing Toolkit User’s Guide 41

C++ Measurement API

TAU_TYPE_STRING(variable, type_string);

Arguments:
string & variable;
string & type_string;

This macro assigns the string constructed in type_string to the variable. The+ oper-
ator and theCT macro can be used to construct the type string of an object. This is
useful in identifying templates uniquely, as shown below.

Example:

template<class PLayout>
ostream& operator<<(ostream& out, const Particle-
Base<PLayout>& P) {
 TAU_TYPE_STRING(taustr, “ostream (ostream, “ + CT(P) +

“)”);
 TAU_PROFILE(“operator<<()”, taustr, TAU_PARTICLE |

TAU_IO);
...
}

When PLayout is instantiated with “UniformCartesian<3U, double> ”,
this generates the unique template name:

“operator<<() ostream const ParticleBase<UniformCarte-
sian<3U, double> >)”

The following example illustrates the usage of theCT macro to extract the name of
the class associated with the given object usingCT(*this);

template<class PLayout>
unsigned ParticleBase<PLayout>::GetMessage(Message&

msg, int node) {
 TAU_TYPE_STRING(taustr, CT(*this) + “ unsigned (Mes-

sage, int)”);
 TAU_PROFILE(“ParticleBase::GetMessage()”, taustr,

TAU_PARTICLE);
...
}

Instrumentation

42 TAU Portable Profiling and Tracing Toolkit User’s Guide

When PLayout is instantiated with “UniformCartesian<3U, double> ”,
this generates the unique template name:

“ParticleBase::GetMessage() ParticleBase<UniformCarte-
sian<3U, double> > unsigned (Message, int)”

TAU_PROFILE_TIMER(timer , name, type, group);

Arguments:
Profiler timer;
char *name or string& name;
char *type or string& type;
TauGroup_t group;

With TAU_PROFILE_TIMER, a group of one or more statements is profiled. This
macro has a timer variable as its first argument, and then strings for name and type,
as described earlier. It associates the timer to the profile group specified in the last
parameter.

Example:
template< class T, unsigned Dim >
void BareField<T,Dim>::fillGuardCells(bool reallyFill)
{
 // profiling macros
 TAU_TYPE_STRING(taustr, CT(*this) + “ void (bool)”);
 TAU_PROFILE(“BareField::fillGuardCells()”, taustr,

TAU_FIELD);

 TAU_PROFILE_TIMER(sendtimer, “fillGuardCells-send”,
 taustr, TAU_FIELD);
 TAU_PROFILE_TIMER(localstimer, “fillGuardCells-

locals”, taustr, TAU_FIELD);

TAU Portable Profiling and Tracing Toolkit User’s Guide 43

C++ Measurement API

TAU_PROFILE_START(timer);

Arguments:
Profiler timer;

The macroTAU_PROFILE_START starts the timer associated with the set of
statements that are to be profiled.

TAU_PROFILE_STOP(timer);

Arguments:
Profiler timer;

The macroTAU_PROFILE_STOP stops the timer.

It is important to note that timers can be nested, but not overlapping. TAU detects
programming errors that lead to such overlaps at runtime, and prints a warning mes-
sage.

Example:

template< class T, unsigned Dim >
void BareField<T,Dim>::fillGuardCells(bool reallyFill)
{
 // profiling macros
 TAU_TYPE_STRING(taustr, CT(*this) + “ void (bool)”);
 TAU_PROFILE(“BareField::fillGuardCells()”, taustr,

TAU_FIELD);

 TAU_PROFILE_TIMER(sendtimer, “fillGuardCells-send”,
 taustr, TAU_FIELD);
 TAU_PROFILE_TIMER(localstimer, “fillGuardCells-

locals”, taustr, TAU_FIELD);
// ...

TAU_PROFILE_START(sendtimer);
 // set up messages to be sent
 Message** mess = new Message*[nprocs];

Instrumentation

44 TAU Portable Profiling and Tracing Toolkit User’s Guide

 int iproc;
 for (iproc=0; iproc<nprocs; ++iproc) {
 mess[iproc] = NULL;
 recvmsg[iproc] = false; }//... other code

TAU_PROFILE_STOP(sendtimer);
 ...
}

TAU_GLOBAL_TIMER(timer , name, type, group);

Arguments:
Profiler timer;
string name, type;
TauGroup_t group;

As TAU_PROFILE_TIMER is used within the scope of a block (typically a rou-
tine), TAU_GLOBAL_TIMER can be used across different routines in the same
file.

TAU_GLOBAL_TIMER_ST ART(timer);

Arguments:
Profiler timer;

TAU_GLOBAL_TIMER_STARTstarts the timer. The timer in this case is declared
in the file scope.

TAU_GLOBAL_TIMER_ST OP(timer);

Arguments:
Profiler timer;

TAU_GLOBAL_TIMER_STOPstops the timer which is declared in the file scope.

TAU Portable Profiling and Tracing Toolkit User’s Guide 45

C++ Measurement API

Example:

TAU_GLOBAL_TIMER(looptimer, “Loops in foo.cpp”, “ “,
TAU_USER);

void foo()
{

TAU_GLOBAL_TIMER_START(looptimer);
for (i=0; i<N; i++) { /* do something */ }
TAU_GLOBAL_TIMER_STOP(looptimer);

}
void bar()
{

TAU_GLOBAL_TIMER_START(looptimer);
for(j=0; j<N; j++) { /* do something */ }
TAU_GLOBAL_TIMER_STOP(looptimer);

}

TAU_PROFILE_SET_GROUP_NAME(gr oupname);

Arguments:
char *groupname;

TAU_PROFILE_SET_GROUP_NAME macro allows the user to change the group
name associated with the instrumented routine. This macro must be called within
the instrumented routine.

void foo()
{
 TAU_PROFILE(“foo()”, “void ()”, TAU_USER);
 TAU_PROFILE_SET_GROUP_NAME(“Particle”);
 /* gives a more meaningful group name */
}

Instrumentation

46 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_PROFILE_TIMER_SET_GR OUP_NAME(timer ,
 groupname);

Arguments:
Profiler timer;
char *groupname;

TAU_PROFILE_TIMER_SET_GROUP_NAME changes the group name associ-
ated with a given timer.

Example:

void foo()
{

TAU_PROFILE_TIMER(looptimer, “foo: loop1”, “ “,
TAU_USER);

TAU_PROFILE_START(looptimer);
for (int i = 0; i < N; i++) { /* do something */ }
TAU_PROFILE_STOP(looptimer);
TAU_PROFILE_TIMER_SET_GROUP_NAME(“Field”);

}

TAU_PROFILE_STMT(statement);

Arguments:
statement;

TAU_PROFILE_STMT declares a variable that is used only during profiling or for
execution of a statement that takes place only when the instrumentation is active.
When instrumentation is inactive (i.e., when profiling and tracing are turned off as
described in Chapter 2), all macros are defined as null.

Example:

TAU_PROFILE_STMT(T obj;); // T is a template parameter)
TAU_TYPE_STRING(str, “void () ” + CT(obj));

TAU Portable Profiling and Tracing Toolkit User’s Guide 47

C++ Measurement API

 TAU_PROFILE_INIT(ar gc, argv);

Arguments:
int argc;
char **argv;

TAU_PROFILE_INIT parses the command-line arguments for the names of pro-
file groups that are to be selectively enabled for instrumentation. By default, if this
macro is not used, functions belonging to all profile groups are enabled.

Example:

int main(int argc, char **argv){
 TAU_PROFILE(“main()”, “int (int, char **)”,

TAU_DEFAULT);
TAU_PROFILE_INIT(argc, argv);

...
}

TAU_PROFILE_SET_NODE(myNode);

Arguments:
int myNode;

The TAU_PROFILE_SET_NODE macro sets the node identifier of the executing
task for profiling and tracing. Tasks are identified using node, context and thread
ids. The profile data files generated will accordingly be named
profile.<node>.<context>.<thread> .

TAU_PROFILE_SET_CONTEXT(myContext);

Argument:

Instrumentation

48 TAU Portable Profiling and Tracing Toolkit User’s Guide

int myContext;

TAU_PROFILE_SET_CONTEXT sets the context parameter of the executing task
for profiling and tracing purposes. This is similar to setting the node parameter with
TAU_PROFILE_SET_NODE.

TAU_REGISTER_THREAD();

To register a thread with the profiling system, invoke the
TAU_REGISTER_THREAD macro in the run method of the thread prior to execut-
ing any other TAU macro. This sets up thread identifiers that are later used by the
instrumentation system.

TAU_REGISTER_FORK(nodeid, option);

Arguments:
int nodeid;
enum TauFork_t option;
/* TAU_INCLUDE_PARENT_DATA or TAU_EXCLUDE_PARENT_DATA*/

To register a child process obtained from the fork() syscall, invoke the
TAU_REGISTER_FORK macro. It takes two parameters, the first is the node id of
the child process (typically the process id returned by the fork call or any 0..N-1
range integer). The second parameter specifies whether the performance data for
the child process should be derived from the parent at the time of fork
(TAU_INCLUDE_PARENT_DATA) or should be independent of its parent at the
time of fork (TAU_EXCLUDE_PARENT_DATA). If the process id is used as the
node id, before any analysis is done, all profile files should be converted to contigu-
ous node numbers (from 0..N-1). It is highly recommended to use flat contiguous
node numbers in this call for profiling and tracing.

Example:

 pID = fork();
 if (pID == 0) {
 printf(“Parent : pid returned %d\n”, pID)

TAU Portable Profiling and Tracing Toolkit User’s Guide 49

C++ Measurement API

 } else {
// If we’d used the TAU_INCLUDE_PARENT_DATA, we’d get
// the performance data from the parent in this process
// as well.

 TAU_REGISTER_FORK(pID, TAU_EXCLUDE_PARENT_DATA);
printf(“Child : pid = %d”, pID);

 }

 TAU_PROFILE_EXIT(message);

Argument:
const char * message;

TAU_PROFILE_EXIT should be called prior to an error exit from the program so
that any profiles or event traces can be dumped to disk before quitting.

Example:

if ((ret = open(...)) < 0) {
 TAU_PROFILE_EXIT(“ERROR in opening a file”);
 perror(“open() failed”);
 exit(1);
}

TAU_PROFILE_TIMER_SET_N AME(t, newname)

Arguments:
Profiler timer;
string newname;

TAU_PROFILE_TIMER_SET_NAME macro changes the name associated with a
timer to the newname argument.

Example:

void foo()
{

Instrumentation

50 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_PROFILE_TIMER(timer1, “foo:loop1”, “ “, TAU_USER);
...
TAU_PROFILE_TIMER_SET_NAME(timer1, “foo:lines 21-34”);

}

TAU_PROFILE_TIMER_SET_TYPE(t, newtype)

Arguments:
Profiler t;
string newtype;

This macro changes the type string associated with the timer. Similar to
TAU_PROFILE_TIMER_SET_NAME.

TAU_PROFILE_TIMER_SET_GR OUP(t, group)

Arguments:
Profiler t;
TauGroup_t group;

TAU_PROFILE_TIMER_SET_GROUP changes the group associated with a timer.

Example:

void foo()
{
 TAU_PROFILE_TIMER(t, “foo loop timer”, “ “, TAU_USER1);
...
 TAU_PROFILE_TIMER_SET_GROUP(t, TAU_USER3);
}

TAU Portable Profiling and Tracing Toolkit User’s Guide 51

C++ Measurement API

TAU_DISABLE_INSTRUMENTATION();

TAU_DISABLE_INSTRUMENTATION macro disables all entry/exit instrumenta-
tion within all threads of a context. This allows the user to selectively enable and
disable instrumentation in parts of his/her code. It is important to re-enable the
instrumentation within the same basic block and scope.

TAU_ENABLE_INSTRUMENTATION();

TAU_ENABLE_INSTRUMENTATION macro re-enables all TAU instrumentation.
All instances of functions and statements that occur between the disable/enable sec-
tion are ignored by TAU. This allows a user to limit the trace size, if the macros are
used to disable recording of a set of iterations that have the same characteristics as,
for example, the first recorded instance.

Example:

main() {
 foo();

TAU_DISABLE_INSTRUMENTATION();
 for (int i =0; i < N; i++) {
 bar(); // not recorded
 }

TAU_ENABLE_INSTRUMENTATION();
 bar(); // recorded
}

TAU_ENABLE_GROUP(group);

Arguments:
TauGroup_t group;

Instrumentation

52 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_ENABLE_GROUPmacro turns on instrumentation in all routines associated
with the profile group.

Example:

void foo()
{
 TAU_PROFILE(“foo()”, “ “, TAU_USER);

 ...
 TAU_ENABLE_GROUP(TAU_USER);
}

TAU_DISABLE_GROUP(group);

Arguments:
TauGroup_t group;

TAU_DISABLE_GROUP macro turns off instrumentation in all routines associated
with the profile group.

Example:

void foo()
{
 TAU_PROFILE(“foo()”, “ “, TAU_USER);

 ...
 TAU_DISABLE_GROUP(TAU_USER);
}

TAU Portable Profiling and Tracing Toolkit User’s Guide 53

C++ Measurement API

TAU_GET_PROFILE_GROUP(groupname);

Arguments:
string groupname;

TAU_GET_PROFILE_GROUP allows the user to dynamically create groups based
on strings, rather than use predefined, statically assigned groups such as
TAU_USER1, TAU_USER2 etc. This allows names to be associated in creating
unique groups that are more meaningful, using names of files or directories for
instance.

Example:

#define PARTICLES TAU_GET_GROUP(“PARTICLES”)
void foo()
{
 TAU_PROFILE(“foo()”, “ “, PARTICLES);
}
void bar()
{
 TAU_PROFILE(“bar()”, “ “, PARTICLES);
}

TAU_ENABLE_GROUP_NAME(gr oupname);

Arguments:
string groupname;

TAU_ENABLE_GROUP_NAME macro can turn on the instrumentation associated
with routines based on a dynamic group assigned to them. It is important to note
that this and theTAU_DISABLE_GROUP_NAMEmacros apply to groups created
dynamically usingTAU_GET_PROFILE_GROUP.

Instrumentation

54 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_DISABLE_GROUP_NAME(gr oupname);

Arguments:
string groupname;

Similar toTAU_ENABLE_GROUP_NAME, this macro turns off the instrumentation
in all routines associated with the dynamic group created using
TAU_GET_PROFILE_GROUP.

Example:

#define PARTICLES TAU_GET_PROFILE_GROUP(“PARTICLES”);
void foo()
{
 TAU_DISABLE_GROUP_NAME(“PARTICLES”);
 /* after some work */
 TAU_ENABLE_GROUP_NAME(“PARTICLES”);
}

TAU_ENABLE_ALL_GR OUPS();

This macro turns on instrumentation in all groups

TAU_DISABLE_ALL_GR OUPS();

This macro turns off instrumentation in all groups.

Example:

void foo()
{
 TAU_DISABLE_ALL_GROUPS();
 TAU_ENABLE_GROUP_NAME(“PARTICLES”);

TAU Portable Profiling and Tracing Toolkit User’s Guide 55

C++ Measurement API

}

TAU_REGISTER_EVENT(variable, event_name);

Arguments:
TauUserEvent & variable;
char * event_name;

TAU can profile user-defined events usingTAU_REGISTER_EVENT. The meaning
of the event is determined by the user.

TAU_EVENT(variable, value);

Arguments: TauUserEvent & variable;
double value;

TAU_EVENT associates a value with some user-defined event. When the event is
triggered and this macro is executed, TAU maintains statistics, such as maximum,
minimum values, standard deviation, number of samples, etc. for tracking this
event.

Example:

int ArraySend(int arrayid)
{
 TAU_REGISTER_EVENT(taumsgsize, “Size of message asso-

ciated with Arrays”);
 int size = GetArraySize(arrayid);
 TAU_EVENT(size);
// ...
}

Instrumentation

56 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_REPORT_STATISTICS();

TAU_REPORT_STATISTICS prints the aggregate statistics of user events across
all threads in each node. Typically, this should be called just before the main thread
exits.

TAU_REPORT_THREAD_STATISTICS();

TAU_REPORT_THREAD_STATISTICS prints the aggregate, as well as per
thread user event statistics. Typically, this should be called just before the main
thread exits.

TAU_TRACE_SENDMSG(tag, destination, length);

Arguments:
int tag;
int destination;
int length;

TAU_TRACE_SENDMSG traces an inter-process message communication when a
tagged message is sent to a destination process.

TAU_TRACE_RECVMSG(tag, source, length);

Arguments:
int tag;
int source;
int length;

TAU Portable Profiling and Tracing Toolkit User’s Guide 57

C++ Measurement API

TAU_TRACE_RECVMSG traces a receive operation where tag represents the type
of the message received from the source process.

Example:

if (pid == 0){
 TAU_TRACE_SENDMSG(currCol, sender, ncols * sizeof(T));
 MPI_Send(vctr2, ncols * sizeof(T), MPI_BYTE, sender,

currCol, MPI_COMM_WORLD);
} else {
 MPI_Recv(&ans, sizeof(T), MPI_BYTE, MPI_ANY_SOURCE,

MPI_ANY_TAG,MPI_COMM_WORLD, &stat);
 MPI_Get_count(&stat, MPI_BYTE, &recvcount);
 TAU_TRACE_RECVMSG(stat.MPI_TAG, stat.MPI_SOURCE,

recvcount);
}

NOTE: When TAU is configured to use MPI (-mpiinc=<dir> -mpilib=<dir>), the
TAU_TRACE_RECVMSG and TAU_TRACE_SENDMSG macros are not
required. The wrapper interposition library in $(TAU_MPI_LIBS) uses these mac-
ros internally for logging messages.

TAU_DB_DUMP();

TAU_DB_DUMP macro dumps all profile data to disk and records a checkpoint or
a snapshot of the profile statistics at that instant. The dump files are named
dump.<node>.<context>.<thread>.

TAU_DB_DUMP_PREFIX(prefix);

Arguments:
char *prefix;

Instrumentation

58 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_DB_DUMP_PREFIX macro dumps all profile data to disk and records a
checkpoint or a snapshot of the profile statistics at that instant. The dump files are
named <prefix>.<node>.<context>.<thread>. If prefix is “profile”, the files are
named profile.0.0.0, etc. and may be read by paraprof/pprof tools as the application
executes.

TAU_DB_DUMP_INCR();

This is similar to the TAU_DB_DUMP macro but it produces dump files that have a
timestamp in their names. This allows the user to record timestamped incremental
dumps as the application executes.

TAU_GET_FUNC_NAMES(functionList, numFuncs);

Arguments:
char **functionList;
int numFuncs;

This macro fills the funcList argument with the list of timer and routine names. It
also records the number of routines active in the numFuncs argument.

TAU_DUMP_FUNC_NAMES();

This macro writes the names of active functions to a file named
dump_functionnames_<node>.<context>.

TAU_GET_COUNTER_NAMES(counterList,
numCounters);

Arguments:

TAU Portable Profiling and Tracing Toolkit User’s Guide 59

C++ Measurement API

char **counterList;
int numCounters;

TAU_GET_COUNTER_NAMES returns the list of counter names and the number of
counters used for measurement. When wallclock time is used, the counter name of
“default” is returned.

TAU_GET_FUNC_VALS(inFuncs, numRoutines,
counterExclusiveValues, counterInclusiveValues,
numCalls, numSubrs, counterNames,
numOfCounters);

It gets detailed performance data for the list of routines. The user specifies inFuncs
and the number of routines; TAU then returns the other arguments with the perfor-
mance data. counterExclusiveValues and counterInclusiveValues are two dimen-
sional arrays: the first dimension is the routine id and the second is counter id. The
value is indexed by these two dimensions. numCalls and numSubrs (or child rou-
tines) are one dimensional arrays.

Example:

 const char **inFuncs;
 /* The first dimension is functions, and the second

dimension is counters */
 double **counterExclusiveValues;
 double **counterInclusiveValues;
 int *numOfCalls;
 int *numOfSubRoutines;
 const char **counterNames;
 int numOfCouns;

 TAU_GET_FUNC_NAMES(functionList, numOfFunctions);

 /* We are only interested in the first two routines
that are executing in

 this context. So, we allocate space for two routine
names and get the

Instrumentation

60 TAU Portable Profiling and Tracing Toolkit User’s Guide

 performance data for these two routines at runtime.
*/

 if(numOfFunctions >=2){
 inFuncs = (const char **) malloc(sizeof(const char

*) * 2);

 inFuncs[0] = functionList[0];
 inFuncs[1] = functionList[1];

 //Just to show consistency.
 TAU_DB_DUMP();

 TAU_GET_FUNC_VALS(inFuncs, 2,
 counterExclusiveValues,
 counterInclusiveValues,
 numOfCalls,
 numOfSubRoutines,
 counterNames,
 numOfCouns);

 TAU_DUMP_FUNC_VALS_INCR(inFuncs, 2);

 cout << “@@@@@@@@@@@@@@@” << endl;
 cout << “The number of counters is: “ << numOfCouns <<

endl;
 cout << “The first counter is: “ << counterNames[0] <<

endl;

 cout << “The Exclusive value of: “ << inFuncs[0]
 << “ is: “ << counterExclusiveValues[0][0] <<

endl;
 cout << “The numOfSubRoutines of: “ << inFuncs[0]
 << “ is: “ << numOfSubRoutines[0]
 << endl;

 cout << “The Inclusive value of: “ << inFuncs[1]
 << “ is: “ << counterInclusiveValues[1][0]
 << endl;
 cout << “The numOfCalls of: “ << inFuncs[1]

TAU Portable Profiling and Tracing Toolkit User’s Guide 61

C++ Measurement API

 << “ is: “ << numOfCalls[1]
 << endl;

 cout << “@@@@@@@@@@@@@@@” << endl;
 }

 TAU_DB_DUMP_INCR();

TAU_DUMP_FUNC_VALS(inFuncs, numFuncs);

Arguments:
char **inFuncs;
int numFuncs;

TAU_DUMP_FUNC_VALS writes the data associated with the routines listed in
inFuncs to disk. The number of routines is specified by the user in numFuncs.

TAU_DUMP_FUNC_VALS_INCR(inFuncs,
numFuncs);

Arguments:
char **inFuncs;
int numFuncs;

Similar to TAU_DUMP_FUNC_VALS. This macro creates an incremental selective
dump and dumps the results with a date stamp to the filename such as
sel_dump__Thu-Mar-28-16:30:48-2002__.0.0.0. In this manner the previous
TAU_DUMP_FUNC_VALS_INCR(...) are not overwritten (unless they occur
within a second).

Instrumentation

62 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU Mapping API

TAU allows the user to map performance data of entities from one layer to another
in multi-layered software. Mapping is used in profiling (and tracing) both synchro-
nous and asynchronous models of computation. For mapping, the following macros
are used. First locate and identify the higher-level statement using the
TAU_MAPPING macro. Then, associate a function identifier with it using the
TAU_MAPPING_OBJECT. Associate the high level statement to a FunctionInfo
object that will be visible to lower level code, usingTAU_MAPPING_LINK, and
then profile entire blocks usingTAU_MAPPING_PROFILE. Independent sets of
statements can be profiled usingTAU_MAPPING_PROFILE_TIMER,
TAU_MAPPING_PROFILE_START, andTAU_MAPPING_PROFILE_STOP
macros using the FunctionInfo object. The TAU examples/mapping directory
has two examples (embedded andexternal) that illustrate the use of this map-
ping API for generating object-oriented profiles.

TAU_MAPPING(statement, key);

Arguments:
statement ; // any C++ statement
TauGroup_t key; // TAU group/unique key associated

TAU_MAPPING is used to encapsulate the C++ statement that we want to map to
some other layer. The other layer can execute synchronously or asynchronously
with respect to this statement. The key corresponds to a number that the lower layer
will use to refer to this statement. For example,

int main()
{
 Array <2> A(N, N), B(N, N), C(N,N), D(N, N);
 //Original statement:
 A = B + C + D;
 //Instrumented statement:

TAU_MAPPING(A = B + C + D; , TAU_USER);
...
}

TAU Portable Profiling and Tracing Toolkit User’s Guide 63

TAU Mapping API

TAU_MAPPING_CREATE(name, type, key,
groupname, tid);

Arguments:
char *name, type, groupname;
TauGroup_t key; // TAU group/unique key associated
int tid; // Thread id

TAU_MAPPING_CREATE is similar toTAU_MAPPING but it requires the name,
type and group name parameters (as character strings) to be specified. It creates a
mapping and associates it with the key that is specified. Later, this key may be spec-
ified to retrieve the FunctionInfo object associated with this key for timing pur-
poses. The thread identifier is specified in thetid parameter.

Example:

TAU_MAPPING_CREATE(“foo()”, “void ()”,
function_id,”USER”, tid);

TAU_MAPPING_OBJECT(FuncIdVar);

Arguments: FunctionInfo *FuncIdVar;

To create storage for an identifier associated with a higher level statement that is
mapped usingTAU_MAPPING, we use theTAU_MAPPING_OBJECT macro. For
example, in theTAU_MAPPING example, the array expressions are created into
objects of a class ExpressionKernel, and each statement is an object that is an
instance of this class. To embed the identity of the statement we store the mapping
object in a data field in this class. This is shown below:

 template<class LHS,class Op,class RHS,class EvalTag>
class ExpressionKernel : public Pooma::Iterate_t
{
public:

 typedef ExpressionKernel<LHS,Op,RHS,EvalTag> This_t;
 //
 // Construct from an Expr.

Instrumentation

64 TAU Portable Profiling and Tracing Toolkit User’s Guide

 // Build the kernel that will evaluate the expression
on the given domain.
 // Acquire locks on the data referred to by the
expression.
 //
 ExpressionKernel(const LHS&,const Op&,const
RHS&,Pooma::Scheduler_t&);

 virtual ~ExpressionKernel();

 //
 // Do the loop.
 //
 virtual void run();

private:

 // The expression we will evaluate.
 LHS lhs_m;
 Op op_m;
 RHS rhs_m;

 TAU_MAPPING_OBJECT(TauMapFI)
};

TAU_MAPPING_LINK(FuncIdV ar, Key);

Arguments: FunctionInfo *FuncIdVar;
TauGroup_t Key;

TAU_MAPPING_LINK creates a link between the object defined in
TAU_MAPPING_OBJECT (that identifies a statement) and the actual higher-level
statement that is mapped withTAU_MAPPING. The Key argument represents a
profile group to which the statement belongs, as specified in theTAU_MAPPING
macro argument. For the example of array statements, this link should be created in
the constructor of the class that represents the expression.TAU_MAPPING_LINK
should be executed before any measurement takes place. It assigns the identifier of
the statement to the object to which FuncIdVar refers. For example

TAU Portable Profiling and Tracing Toolkit User’s Guide 65

TAU Mapping API

//
// Constructor
// Input an expression and record it for later use.
//
template<class LHS,class Op,class RHS,class EvalTag>
ExpressionKernel<LHS,Op,RHS,EvalTag>::
ExpressionKernel(const LHS& lhs,const Op& op,const

RHS& rhs, Pooma::Scheduler_t& scheduler) :
Pooma::Iterate_t(scheduler, forEachTag(Make-
Expression<LHS>::make(lhs), DataBlockTag<Count-
Blocks>(),SumCombineTag()) +
forEachTag(MakeExpression<RHS>::make(rhs), Dat-
aBlockTag<CountBlocks>(),SumCombineTag()), -1),

 lhs_m(lhs), op_m(op), rhs_m(rhs)
{

 TAU_MAPPING_LINK(TauMapFI, TAU_USER)
// .. rest of the constructor
}

TAU_MAPPING_PROFILE (FuncIdV ar);

Arguments; FunctionInfo *FuncIdVar;

TheTAU_MAPPING_PROFILE macro measures the time and attributes it to the
statement mapped inTAU_MAPPING macro. It takes as its argument the identifier
of the higher level statement that is stored usingTAU_MAPPING_OBJECT and
linked to the statement usingTAU_MAPPING_LINK macros.
TAU_MAPPING_PROFILE measures the time spent in the entire block in which it
is invoked. For example, if the time spent in the run method of the class does work
that must be associated with the higher-level array expression, then, we can instru-
ment it as follows:

//
// Evaluate the kernel
// Just tell an InlineEvaluator to do it.
//

template<class LHS,class Op,class RHS,class EvalTag>
void

Instrumentation

66 TAU Portable Profiling and Tracing Toolkit User’s Guide

ExpressionKernel<LHS,Op,RHS,EvalTag>::run()
{

 TAU_MAPPING_PROFILE(TauMapFI)

 // Just evaluate the expression.
 KernelEvaluator<EvalTag>().evalate(lhs_m,op_m,rhs_m);
 // we could release the locks here or in dtor
}

TAU_MAPPING_PROFILE_TIMER(timer ,
FuncIdVar);

Arguments: Profiler timer;
FunctionInfo * FuncIdVar;

TAU_MAPPING_PROFILE_TIMER enables timing of individual statements,
instead of complete blocks. It will attribute the time to a higher-level statement. The
second argument is the identifier of the statement that is obtained after
TAU_MAPPING_OBJECT andTAU_MAPPING_LINK have executed. The timer
argument in this macro is any variable that is used subsequently to start and stop the
timer.

TAU_MAPPING_PROFILE_START(timer, tid);

Argument:
Profiler timer;
int tid;

TAU_MAPPING_PROFILE_START starts the timer that is created using
TAU_MAPPING_PROFILE_TIMER. This will measure the elapsed time in groups
of statements, instead of the entire block. A corresponding stop statement stops the
timer as described next. The thread identifier is specified in the tid parameter.

TAU Portable Profiling and Tracing Toolkit User’s Guide 67

C Measurement API

TAU_MAPPING_PROFILE_STOP(tid);

Arguments:
int tid;

TAU_MAPPING_PROFILE_STOP stops the timer associated with the mapped
lower-level statements. This is used in conjunction with
TAU_MAPPING_PROFILE_TIMER andTAU_MAPPING_PROFILE_START
macros. Example:

template<class LHS,class Op,class RHS,class EvalTag>
void
ExpressionKernel<LHS,Op,RHS,EvalTag>::run()
{

TAU_MAPPING_PROFILE_TIMER(timer, TauMapFI);
 printf(“ExpressionKernel::run() this = %x\n”, this);
 // Just evaluate the expression.

TAU_MAPPING_PROFILE_START(timer);
 KernelEvaluator<EvalTag>().evaluate(lhs_m, op_m,

rhs_m);
TAU_MAPPING_PROFILE_STOP();

 // we could release the locks here instead of in the
dtor.
}

This concludes our Mapping section.

C Measurement API

The API for instrumenting C source code is similar to the C++ API. The difference
is that the TAU_PROFILE() macro is not available for identifying an entire
block of code or function. Instead, routine transitions are explicitly specified using
TAU_PROFILE_TIMER() macro with TAU_PROFILE_START() and
TAU_PROFILE_STOP() macros to indicate the entry and exit from a routine.

Instrumentation

68 TAU Portable Profiling and Tracing Toolkit User’s Guide

Note that,TAU_TYPE_STRING() andCT() macros are not applicable for C. It is
important to declare theTAU_PROFILE_TIMER() macro after all the variables
have been declared in the function and before the execution of the first C statement.

Example:

int main (int argc, char **argv)
{
 int ret;
 pthread_attr_t attr;
 pthread_t tid;

TAU_PROFILE_TIMER(tautimer,”main()”, “int (int, char
**)”, TAU_DEFAULT);

 TAU_PROFILE_START(tautimer);
 TAU_PROFILE_INIT(argc, argv);
 TAU_PROFILE_SET_NODE(0);

 pthread_attr_init(&attr);
 printf(“Started Main...\n”);
 // other statements
 TAU_PROFILE_STOP(tautimer);
 return 0;
}

Fortran90 Measurement API

The Fortran90 TAU API allows source code written in Fortran to be instrumented
for TAU. This API is comprised of Fortran routines. As explained in Chapter 2, the
instrumentation can be disabled in the program by using the TAU stub makefile
variable TAU_DISABLE on the link command line. This points to a library that
contains empty TAU instrumentation routines.

TAU_PROFILE_INIT()

TAU_PROFILE_INIT routine must be called before any other TAU instrumentation
routines. It is called once, in the top level routine (program). It initializes the TAU
library.

TAU Portable Profiling and Tracing Toolkit User’s Guide 69

For tran90 Measurement API

Example:

 PROGRAM SUM_OF_CUBES
 integer profiler(2)
 save profiler

 call TAU_PROFILE_INIT()

TAU_PROFILE_TIMER(pr ofiler, name)

Arguments:
integer profiler(2)
character name(size)

To profile a block of Fortran code, such as a function, subroutine, loop etc., the user
must first declare a profiler, which is an integer array of two elements (pointer) with
the save attribute, and pass it as the first parameter to theTAU_PROFILE_TIMER
subroutine. The second parameter must contain the name of the routine, which is
enclosed in a single quote.TAU_PROFILE_TIMER declares the profiler that must
be used to profile a block of code. The profiler is used to profile the statements
usingTAU_PROFILE_START andTAU_PROFILE_STOP as explained later.
Example:

subroutine bcast_inputs
implicit none
integer profiler(2)
save profiler

include ‘mpinpb.h’
include ‘applu.incl’

integer IERR

call TAU_PROFILE_TIMER(profiler, ‘bcast_inputs’)

TAU_PROFILE_START(pr ofiler)

Arguments:

Instrumentation

70 TAU Portable Profiling and Tracing Toolkit User’s Guide

integer profiler(2)

TAU_PROFILE_START starts the timer for profiling a set of statements. The timer
(or the profiler) must be declared usingTAU_PROFILE_TIMER routine, prior to
usingTAU_PROFILE_START.

TAU_PROFILE_STOP(profiler)

Arguments:
integer profiler(2)

TAU_PROFILE_STOP stops the timer used to profile a set of statements. It is used
in conjunction withTAU_PROFILE_TIMER andTAU_PROFILE_STARTsub-
routines.

Example:

subroutine setbv
implicit none

include ‘applu.incl’
c--
c local variables
c--
integer profiler(2)
save profiler
integer i, j, k
integer iglob, jglob

call TAU_PROFILE_TIMER(profiler, ‘setbv’)
call TAU_PROFILE_START(profiler)

c set the dependent variable values along the top and
c bottom faces
 do j = 1, ny
 jglob = jpt + j
 do i = 1, nx
 iglob = ipt + i

TAU Portable Profiling and Tracing Toolkit User’s Guide 71

For tran90 Measurement API

 call exact(iglob, jglob, 1, u(1, i, j, 1))
call exact(iglob, jglob, nz, u(1, i, j, nz))
 end do
 end do

call TAU_PROFILE_STOP(profiler)
 return
 end

TAU_PROFILE_SET_NODE(myNode)

Arguments:
integer myNode

The TAU_PROFILE_SET_NODE macro sets the node identifier of the executing
task for profiling and tracing. Tasks are identified using node, context and thread
ids. The profile data files generated will accordingly be named
profile.<node>.<context>.<thread> .

TAU_PROFILE_SET_CONTEXT(myContext)

Argument:
integer myContext

TAU_PROFILE_SET_CONTEXT sets the context parameter of the executing task
for profiling and tracing purposes. This is similar to setting the node parameter with
TAU_PROFILE_SET_NODE.

TAU_PROFILE_REGISTER_THREAD()

To register a thread with the profiling system, invoke the
TAU_PROFILE_REGISTER_THREAD routine in the run method of the thread
prior to executing any other TAU routine. This sets up thread identifiers that are
later used by the instrumentation system.

Instrumentation

72 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_DISABLE_INSTRUMENTATION()

TAU_DISABLE_INSTRUMENTATION macro disables all entry/exit instrumenta-
tion within all threads of a context. This allows the user to selectively enable and
disable instrumentation in parts of his/her code. It is important to re-enable the
instrumentation within the same basic block.

TAU_ENABLE_INSTRUMENTATION()

TAU_ENABLE_INSTRUMENTATION macro re-enables all TAU instrumentation.
All instances of functions and statements that occur between the disable/enable sec-
tion are ignored by TAU. This allows a user to limit the trace size, if the macros are
used to disable recording of a set of iterations that have the same characteristics as,
for example, the first recorded instance.

Example:

call TAU_DISABLE_INSTRUMENTATION()
...
call TAU_ENABLE_INSTRUMENTATION()

 TAU_PROFILE_EXIT(message)

Argument:
character message(size)

TAU_PROFILE_EXIT should be called prior to an error exit from the program so
that any profiles or event traces can be dumped to disk before quitting.

Example:

call TAU_PROFILE_EXIT(‘abort called’)

TAU Portable Profiling and Tracing Toolkit User’s Guide 73

For tran90 Measurement API

TAU_REGISTER_EVENT(variable, event_name)

Arguments:
int variable(2)
character event_name(size)

TAU can profile user-defined events usingTAU_REGISTER_EVENT. The meaning
of the event is determined by the user. The first argument to
TAU_REGISTER_EVENT is the pointer to an integer array. This array is declared
with a save attribute as shown below.

Example:

integer eventid(2)
save eventid
call TAU_REGISTER_EVENT(eventid, ‘Error in Iteration’)

TAU_EVENT(variable, value)

Arguments:
integer variable(2)
real value

TAU_EVENT associates a value with some user-defined event. When the event is
triggered and this macro is executed, TAU maintains statistics, such as maximum,
minimum values, standard deviation, number of samples, etc. for tracking this
event.

Example:

 call TAU_REGISTER_EVENT(taumsgsize, ‘Message size’)
 call TAU_EVENT(size)

Instrumentation

74 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_REPORT_STATISTICS()

TAU_REPORT_STATISTICS prints the aggregate statistics of user events across
all threads in each node. Typically, this should be called just before the main thread
exits.

TAU_REPORT_THREAD_STATISTICS()

TAU_REPORT_THREAD_STATISTICS prints the aggregate, as well as per
thread user event statistics. Typically, this should be called just before the main
thread exits.

TAU_TRACE_SENDMSG(tag, destination, length)

Arguments:
integer tag
integer destination
integer length

TAU_TRACE_SENDMSG traces an inter-process message communication when a
tagged message is sent to a destination process.

TAU_TRACE_RECVMSG(tag, source, length)

Arguments:
integer tag
integer source
integer length

TAU_TRACE_RECVMSG traces a receive operation where tag represents the type
of the message received from the source process.

TAU Portable Profiling and Tracing Toolkit User’s Guide 75

Summar y

Summary

In C++, a single macroTAU_PROFILE, is sufficient to profile a block of state-
ments. In C and Fortran, the user must use statement level timers to achieve this,
usingTAU_PROFILE_TIMER, TAU_PROFILE_START and
TAU_PROFILE_STOP. Instrumentation of C++ source code can be done manually
or by using tau_instrumentor, a tool that can automatically insert TAU annotations
in the source code. Implementation of a Fortran 90 instrumentor is in progress.

Instrumentation

76 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU Portable Profiling and Tracing Toolkit User’s Guide 77

Summar y

CHAPTER 4 Profiling

This chapter describes running an instrumented application and the generation and
subsequent analysis of profile data. Profiling shows the summary statistics of per-
formance metrics that characterize application performance behavior. Examples of
performance metrics are the CPU time associated with a routine, the count of the
secondary data cache misses associated with a group of statements, the number of
times a routine executes, etc.

Profiling

78 TAU Portable Profiling and Tracing Toolkit User’s Guide

Running the application

After instrumentation and compilation are completed, the profiled application is run
to generate the profile data files. These files can be stored in a directory specified by
the environment variable PROFILEDIR as explained in Chapter 2. By default, all
instrumented routines and statements are measured. To selectively measure groups
of routines and statements, we can use the command-line parameter--profile
to specify the statements to be profiled. Example:

% setenv PROFILEDIR /home/sameer/profiledata/
experiment55
% mpirun -np 4 matrix

This profiles all routines

% mpirun -np 4 matrix --profile io+field+2

The above profiles routines belonging toTAU_IO, TAU_FIELD andTAU_USER2
profile groups. For a detailed list of groups, please refer to
[TAU-PGROUPS-URL]

Running an application using DynInstAPI

Install DynInstAPI package and refer to the installed directory while configuring
TAU. Usetau_run, a tool that instruments the application at runtime.

The commandline options accepted by tau_run are:

Usage: tau_run [-Xrun<Taulibrary>][-v][-o outfile] [-f
<instrumentation file>] <application> [args]

By default, libTAU.so is loaded by tau_run. However, the user can override this and
specify another file using the -Xrun<Taulibrary>. In this case lib<Taulibrary>.so
will be loaded using LD_LIBRARY_PATH. The -f <instrumentation file> option
can be used to specify an exclude/include list of routines and/or files for instrumen-
tation. The list of routines to be excluded from instrumentation is specified, one per
line, enclosed by BEGIN_EXCLUDE_LIST and END_EXCLUDE_LIST. Instead
of specifying which routines should be excluded, the user can specify the list of
routines that are to be instrumented using the include list, one routine name per
line, enclosed by BEGIN_INCLUDE_LIST and END_INCLUDE_LIST. Files are

TAU Portable Profiling and Tracing Toolkit User’s Guide 79

Using Har dware Performance Counter s

specified using the BEGIN_FILE_INCLUDE_LIST/END_FILE_INCLUDE_LIST
and BEGIN_FILE_EXCLUDE_LIST/END_FILE_EXCLUDE_LIST tags. Wild-
cards * and ? may be used while specifying file names.

Example:

BEGIN_EXCLUDE_LIST
void quicksort(int *, int, int)
void sort_5elements(int *)
void interchange(int *, int *)
END_EXCLUDE_LIST

BEGIN_FILE_EXCLUDE_LIST
*.so
END_FILE_EXCLUDE_LIST

To use tau_run, TAU is configured with DyninstAPI as shown below:

% configure -dyninst=/usr/local/packages/dyninstAPI
% make install
% cd tau/examples/dyninst
% make install
% tau_run klargest 2500 23
% pprof; paraprof

Support for new platforms and compilers is being added and this DyninstAPI
option is experimental for now.

Using Hardware Performance Counters

Performance counters exist on modern microprocessors. These count hardware per-
formance events such as cache misses, floating point operations, etc. while the pro-
gram executes on the processor. The Performance Data Standard and API (PAPI,
[PAPI-URL]) and Performance Counter Library (PCL, [PCL-URL]) packages pro-
vide a uniform interface to access these performance counters. TAU can use either
PAPI or PCL to access these hardware performance counters. To do so, download
and install PAPI or PCL. Then, configure TAU using the -pcl=<dir> or -papi=<dir>
configuration command-line option to specify the location of PCL or PAPI. Build
TAU and applications as you normally would (as described in Chapters 2 and 3).

Profiling

80 TAU Portable Profiling and Tracing Toolkit User’s Guide

While running the application, set the environment variablePCL_EVENT or
PAPI_EVENT respectively, to specify which hardware performance counter TAU
should use while profiling the application. For example to measure the floating
point operations in routines using PCL,

% ./configure -pcl=/usr/local/packages/pcl-1.2
% setenv PCL_EVENT PCL_FP_INSTR
% mpirun -np 8 application

TABLE 2. Events measured by setting the envir onment variable
PCL_EVENT in TAU

PCL_EVENT Event Measured

PCL_L1CACHE_READ L1 (Level one) cache reads

PCL_L1CACHE_WRITE L1 cache writes

PCL_L1CACHE_READWRITE L1 cache reads and writes

PCL_L1CACHE_HIT L1 cache hits

PCL_L1CACHE_MISS L1 cache misses

PCL_L1DCACHE_READ L1 data cache reads

PCL_L1DCACHE_WRITE L1 data cache writes

PCL_L1DCACHE_READWRITE L1 data cache reads and writes

PCL_L1DCACHE_HIT L1 data cache hits

PCL_L1DCACHE_MISS L1 data cache misses

PCL_L1ICACHE_READ L1 instruction cache reads

PCL_L1ICACHE_WRITE L1 instruction cache writes

PCL_L1ICACHE_READWRITE L1 instruction cache reads and writes

PCL_L1ICACHE_HIT L1 instruction cache hits

PCL_L1ICACHE_MISS L1 instruction cache misses

PCL_L2CACHE_READ L2 (Level two) cache reads

PCL_L2CACHE_WRITE L2 cache writes

PCL_L2CACHE_READWRITE L2 cache reads and writes

PCL_L2CACHE_HIT L2 cache hits

PCL_L2CACHE_MISS L2 cache misses

PCL_L2DCACHE_READ L2 data cache reads

PCL_L2DCACHE_WRITE L2 data cache writes

PCL_L2DCACHE_READWRITE L2 data cache reads and writes

TAU Portable Profiling and Tracing Toolkit User’s Guide 81

Using Har dware Performance Counter s

PCL_L2DCACHE_HIT L2 data cache hits

PCL_L2DCACHE_MISS L2 data cache misses

PCL_L2ICACHE_READ L2 instruction cache reads

PCL_L2ICACHE_WRITE L2 instruction cache writes

PCL_L2ICACHE_READWRITE L2 instruction cache reads and writes

PCL_L2ICACHE_HIT L2 instruction cache hits

PCL_L2ICACHE_MISS L2 instruction cache misses

PCL_TLB_HIT TLB (Translation Lookaside Buffer) hits

PCL_TLB_MISS TLB misses

PCL_ITLB_HIT Instruction TLB hits

PCL_ITLB_MISS Instruction TLB misses

PCL_DTLB_HIT Data TLB hits

PCL_DTLB_MISS Data TLB misses

PCL_CYCLES Cycles

PCL_ELAPSED_CYCLES Cycles elapsed

PCL_INTEGER_INSTR Integer instructions executed

PCL_FP_INSTR Floating point (FP) instructions executed

PCL_LOAD_INSTR Load instructions executed

PCL_STORE_INSTR Store instructions executed

PCL_LOADSTORE_INSTR Loads and stores executed

PCL_INSTR Instructions executed

PCL_JUMP_SUCCESS Successful jumps executed

PCL_JUMP_UNSUCCESS Unsuccessful jumps executed

PCL_JUMP Jumps executed

PCL_ATOMIC_SUCCESS Successful atomic instructions executed

PCL_ATOMIC_UNSUCCESS Unsuccessful atomic instructions executed

PCL_ATOMIC Atomic instructions executed

PCL_STALL_INTEGER Integer stalls

PCL_STALL_FP Floating point stalls

TABLE 2. Events measured by setting the envir onment variable
PCL_EVENT in TAU

PCL_EVENT Event Measured

Profiling

82 TAU Portable Profiling and Tracing Toolkit User’s Guide

To select floating point instructions for profiling using PAPI, you would:

% configure -papi=/usr/local/packages/papi-2.3
% make clean install
% cd examples/papi
% setenv PAPI_EVENT PAPI_FP_INS
% a.out

PCL_STALL_JUMP Jump stalls

PCL_STALL_LOAD Load stalls

PCL_STALL_STORE Store Stalls

PCL_STALL Stalls

PCL_MFLOPS Millions of floating point operations/second

PCL_IPC Instructions executed per cycle

PCL_L1DCACHE_MISSRATE Level 1 data cache miss rate

PCL_L2DCACHE_MISSRATE Level 2 data cache miss rate

PCL_MEM_FP_RATIO Ratio of memory accesses to FP operations

TABLE 3. Events measured by setting the envir onment variable
PAPI_EVENT in TAU

PAPI_EVENT Event Measured

PAPI_L1_DCM Level 1 data cache misses

PAPI_L1_ICM Level 1 instruction cache misses

PAPI_L2_DCM Level 2 data cache misses

PAPI_L2_ICM Level 2 instruction cache misses

PAPI_L3_DCM Level 3 data cache misses

PAPI_L3_ICM Level 3 instruction cache misses

PAPI_L1_TCM Level 1 total cache misses

TABLE 2. Events measured by setting the envir onment variable
PCL_EVENT in TAU

PCL_EVENT Event Measured

TAU Portable Profiling and Tracing Toolkit User’s Guide 83

Using Har dware Performance Counter s

PAPI_L2_TCM Level 2 total cache misses

PAPI_L3_TCM Level 3 total cache misses

PAPI_CA_SNP Snoops

PAPI_CA_SHR Request for access to shared cache line (SMP)

PAPI_CA_CLN Request for access to clean cache line (SMP)

PAPI_CA_INV Cache Line Invalidation (SMP)

PAPI_CA_ITV Cache Line Intervention (SMP)

PAPI_L3_LDM Level 3 load misses

PAPI_L3_STM Level 3 store misses

PAPI_BRU_IDL Cycles branch units are idle

PAPI_FXU_IDL Cycles integer units are idle

PAPI_FPU_IDL Cycles floating point units are idle

PAPI_LSU_IDL Cycles load/store units are idle

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_TLB_IM Instruction translation lookaside buffer misses

PAPI_TLB_TL Total translation lookaside buffer misses

PAPI_L1_LDM Level 1 load misses

PAPI_L1_STM Level 1 store misses

PAPI_L2_LDM Level 2 load misses

PAPI_L2_STM Level 2 store misses

PAPI_BTAC_M BTAC miss

PAPI_PRF_DM Prefetch data instruction caused a miss

PAPI_L3_DCH Level 3 Data Cache Hit

PAPI_TLB_SD Translation lookaside buffer shootdowns (SMP)

PAPI_CSR_FAL Failed store conditional instructions

PAPI_CSR_SUC Successful store conditional instructions

PAPI_CSR_TOT Total store conditional instructions

PAPI_MEM_SCY Cycles Stalled Waiting for Memory Access

PAPI_MEM_RCY Cycles Stalled Waiting for Memory Read

TABLE 3. Events measured by setting the envir onment variable
PAPI_EVENT in TAU

PAPI_EVENT Event Measured

Profiling

84 TAU Portable Profiling and Tracing Toolkit User’s Guide

PAPI_MEM_WCY Cycles Stalled Waiting for Memory Write

PAPI_STL_ICY Cycles with No Instruction Issue

PAPI_FUL_ICY Cycles with Maximum Instruction Issue

PAPI_STL_CCY Cycles with No Instruction Completion

PAPI_FUL_CCY Cycles with Maximum Instruction Completion

PAPI_HW_INT Hardware interrupts

PAPI_BR_UCN Unconditional branch instructions executed

PAPI_BR_CN Conditional branch instructions executed

PAPI_BR_TKN Conditional branch instructions taken

PAPI_BR_NTK Conditional branch instructions not taken

PAPI_BR_MSP Conditional branch instructions mispredicted

PAPI_BR_PRC Conditional branch instructions correctly predicted

PAPI_FMA_INS FMA instructions completed

PAPI_TOT_IIS Total instructions issued

PAPI_TOT_INS Total instructions executed

PAPI_INT_INS Integer instructions executed

PAPI_FP_INS Floating point instructions executed

PAPI_LD_INS Load instructions executed

PAPI_SR_INS Store instructions executed

PAPI_BR_INS Total branch instructions executed

PAPI_VEC_INS Vector/SIMD instructions executed

PAPI_FLOPS Floating Point Instructions executed per second

PAPI_RES_STL Cycles processor is stalled on resource

PAPI_FP_STAL FP units are stalled

PAPI_TOT_CYC Total cycles

PAPI_IPS Instructions executed per second

PAPI_LST_INS Total load/store instructions executed

PAPI_SYC_INS Synchronization instructions executed

PAPI_L1_DCH L1 D Cache Hit

TABLE 3. Events measured by setting the envir onment variable
PAPI_EVENT in TAU

PAPI_EVENT Event Measured

TAU Portable Profiling and Tracing Toolkit User’s Guide 85

Using Har dware Performance Counter s

PAPI_L2_DCH L2 D Cache Hit

PAPI_L1_DCA L1 D Cache Access

PAPI_L2_DCA L2 D Cache Access

PAPI_L3_DCA L3 D Cache Access

PAPI_L1_DCR L1 D Cache Read

PAPI_L2_DCR L2 D Cache Read

PAPI_L3_DCR L3 D Cache Read

PAPI_L1_DCW L1 D Cache Write

PAPI_L2_DCW L2 D Cache Write

PAPI_L3_DCW L3 D Cache Write

PAPI_L1_ICH L1 instruction cache hits

PAPI_L2_ICH L2 instruction cache hits

PAPI_L3_ICH L3 instruction cache hits

PAPI_L1_ICA L1 instruction cache accesses

PAPI_L2_ICA L2 instruction cache accesses

PAPI_L3_ICA L3 instruction cache accesses

PAPI_L1_ICR L1 instruction cache reads

PAPI_L2_ICR L2 instruction cache reads

PAPI_L3_ICR L3 instruction cache reads

PAPI_L1_ICW L1 instruction cache writes

PAPI_L2_ICW L2 instruction cache writes

PAPI_L3_ICW L3 instruction cache writes

PAPI_L1_TCH L1 total cache hits

PAPI_L2_TCH L2 total cache hits

PAPI_L3_TCH L3 total cache hits

PAPI_L1_TCA L1 total cache accesses

PAPI_L2_TCA L2 total cache accesses

PAPI_L3_TCA L3 total cache accesses

PAPI_L1_TCR L1 total cache reads

TABLE 3. Events measured by setting the envir onment variable
PAPI_EVENT in TAU

PAPI_EVENT Event Measured

Profiling

86 TAU Portable Profiling and Tracing Toolkit User’s Guide

Using Multiple Hardware Counters for
Measurement

TAU can be configured to record more than one hardware performance counter,
along with time for each timer and routine. To use this feature, TAU is configured
with the -MULTIPLECOUNTERS option. Example:

%./configure -MULTIPLECOUNTERS -LINUXTIMERS -CPUTIME -
papi=/tools/papi-2.3

LIST OF COUNTERS:

Set the following values for the COUNTER<1-25> environment variables.

GET_TIME_OF_DAY --- For the default profiling option using gettimeofday()

SGI_TIMERS --- For -SGITIMERS configuration option under IRIX

CRAY_TIMERS --- For -CRAYTIMERS configuration option under Cray X1.

LINUX_TIMERS --- For -LINUXTIMERS configuration option under Linux

PAPI_L2_TCR L2 total cache reads

PAPI_L3_TCR L3 total cache reads

PAPI_L1_TCW L1 total cache writes

PAPI_L2_TCW L2 total cache writes

PAPI_L3_TCW L3 total cache writes

PAPI_FML_INS FM ins

PAPI_FAD_INS FA ins

PAPI_FDV_INS FD ins

PAPI_FSQ_INS FSq ins

PAPI_FNV_INS Finv ins

TABLE 3. Events measured by setting the envir onment variable
PAPI_EVENT in TAU

PAPI_EVENT Event Measured

TAU Portable Profiling and Tracing Toolkit User’s Guide 87

Running a J AVA application with T AU

CPU_TIME --- For user+system time from getrusage() call with -CPUTIME

P_WALL_CLOCK_TIME --- For PAPI’s WALLCLOCK time using -PAPI-
WALLCLOCK

P_VIRTUAL_TIME --- For PAPI’s process virtual time using -PAPIVIRTUAL

TAU_MUSE --- For reading counts of Linux OS kernel level events when MAG-
NET/MUSE is installed and -muse configuration option is enabled. [MUSE-URL].
TAU_MUSE_PACKAGE environment variable has to be set to package name
(busy_time, count, etc.)

TAU_MPI_MESSAGE_SIZE --- For tracking message sizes sent by a node for
each routine.

and PAPI/PCL options that can be found in Tables 2 & 3. Example:

PCL_FP_INSTR --- For floating point operations using PCL (-pcl=<dir>)

PAPI_FP_INS --- For floating point operations using PAPI (-papi=<dir>)

NOTE: When -MULTIPLECOUNTERS is used with -TRACE option, the tracing
library uses the wallclock time from the function specified in the COUNTER1 vari-
able. This should typically point to wallclock time routines (such as
GET_TIME_OF_DAY or SGI_TIMERS or LINUX_TIMERS).

Example:

% setenv COUNTER1 P_WALL_CLOCK_TIME
% setenv COUNTER2 PAPI_L1_DCM
% setenv COUNTER3 PAPI_FP_INS

will produce profile files in directories called MULT_P_WALL_CLOCK_TIME,
MULTI__PAPI_L1_DCM, and MULTI_PAPI_FP_INS.

Running a JAVA application with TAU

Java applications are profiled/traced using the-XrunTAU command-line parame-
ter as shown below:

Profiling

88 TAU Portable Profiling and Tracing Toolkit User’s Guide

% cd tau/examples/java/pi
% setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/home/tau/
solaris2/lib
% java -XrunTAU Pi

Running the application generates profile files with names having the form pro-
file.<node>.<context>.<thread>. These files can be analyzed usingpprof or para-
prof (see below).

Running a Python application with TAU

TAU can automatically instrument all Python routines when thetau python pack-
age is imported. To execute the program, tau.run routine is invoked with the name
of the top level Python code. For e.g.,

#!/usr/bin/env python

import tau
from time import sleep

def f2():
 print “Inside f2: sleeping for 2 secs...”
 sleep(2)
def f1():
 print “Inside f1, calling f2...”
 f2()

def OurMain():
 f1()

tau.run(‘OurMain()’)

instruments routines OurMain(), f1() and f2() although there are no instrumentation
calls in the routines. To use this feature, TAU must be configured with the -
pythoninc=<dir> option (and -pythonlib=<dir> if running under IBM). Before run-
ning the application, the environment variable PYTHONPATH should be set to

TAU Portable Profiling and Tracing Toolkit User’s Guide 89

ppr of

include the TAU library directory (where tau.py is stored). Manual instrumentation
of Python sources is also possible using the Python API and thepytau package. For
e.g.,

#!/usr/bin/env python

import pytau
from time import sleep

x = pytau.profileTimer(“A Sleep for excl 5 secs”)
y = pytau.profileTimer(“B Sleep for excl 2 secs”)
pytau.start(x)
print “Sleeping for 5 secs ...”
sleep(5)
pytau.start(y)
print “Sleeping for 2 secs ...”
sleep(2)
pytau.stop(y)
pytau.dbDump()
pytau.stop(x)

shows how two timers x and y are created and used. Note, multiple timers can be
nested, but not overlapping. Overlapping timers are detected by TAU at runtime and
flagged with a warning (as exclusive time is not defined when timers overlap).

pprof

pprof sorts and displays profile data generated by TAU. To view the profile, merely
execute pprof in the directory where profile files are located (or set thePRO-
FILEDIR environment variable).

% pprof

Its usage is explained below:

usage: pprof [-c|-b|-m|-t|-e|-i] [-r] [-s] [-n num] [-f
filename] [-l] [node numbers]
 -c : Sort by number of Calls
 -b : Sort by number of su Broutines called by a func-

tion

Profiling

90 TAU Portable Profiling and Tracing Toolkit User’s Guide

 -m : Sort by Milliseconds (exclusive time total)
 -t : Sort by Total milliseconds (inclusive time total)

(DEFAULT)
 -e : Sort by Exclusive time per call (msec/call)
 -i : Sort by I nclusive time per call (total msec/call)
 -v : Sort by standard de Viation (excl usec)
 -r : Reverse sorting order
 -s : print only Summary profile information
 -n num : print only first num functions
 -f filename : specify full path and Filename without

node ids
 -l : List all functions and exit
 node numbers : prints information about all contexts/

threads for specified nodes

FIGURE 2. pprof in an xemacs window

TAU Portable Profiling and Tracing Toolkit User’s Guide 91

parapr of

paraprof

paraprof is the graphical interface to pprof. It shows the profile data in terms of
histograms and text displays. paraprof requires that Java version1.2+ be installed
and in the user’s path. Invoke paraprof in the directory that contains the profile
files.

% paraprof

Profiling

92 TAU Portable Profiling and Tracing Toolkit User’s Guide

This shows the relative time spent in each function as a horizontal bargraph. Each
node, context, thread is represented as a horizontal bar with each function assigned
a color. In this main paraprof window, click middle mouse button over sayn,c,t
32,0,0to see the textual profile of node 32, context 0, thread 0 by selectingShow
Total Statistics Window.

FIGURE 3. paraprof main window

TAU Portable Profiling and Tracing Toolkit User’s Guide 93

parapr of

We see the display sorted by exclusive time. The text window shows the inclusive
percentage (where main takes 100% inclusive time), themsec column shows the
exclusive time in milliseconds, thetotal mseccolumn shows the time taken in
inclusive milliseconds (inclusive of all child routines called by a given routine). The
#call column shows the number of calls for the given routine and#subrsshows the
number of instrumented child subroutines called by a given routine. Theusec/call
column lists the inclusive time per call in microseconds. Finally, thenamecolumn
shows the routine or timer for which the data is presented. This display is similar to
the pprof display and the user can sort the performance metrics in a variety of ways.
By choosing theOptions menu item, the user can select theSort Order (Ascend-
ing or Descending), Select Metric(Inclusive, Exclusive, Number of Calls, Num-
ber of Subroutines) or Adjust the paraprof colors. By selecting Inclusive as the
metric, the routines are sorted by inclusive time as shown in the next figure.

FIGURE 4. Text view of the detailed profile on n,c,t 32,0,0 sorted
by exclusive time.

Profiling

94 TAU Portable Profiling and Tracing Toolkit User’s Guide

To see the relative function profile on one node, click the first mouse button on a
node in the racy main window.

FIGURE 5. Performance data sorted by inclusive time

FIGURE 6. Node profile of node 32 sorted by exclusive time

TAU Portable Profiling and Tracing Toolkit User’s Guide 95

parapr of

Click, using the first or the third mouse button, on the name of a function, in the
main paraprof window, to bring up the function window that shows the profile of
the function over all nodes, contexts and threads.

By default exclusive percentages are displayed in this window. To see the actual
time taken by the routine, selectOptions menu and chooseSelect Value or Per-

FIGURE 7. The function window shows the profile of the function over all
nodes, contexts and threads.

Profiling

96 TAU Portable Profiling and Tracing Toolkit User’s Guide

cent followed byValue. Then chooseSelect Units to Seconds to see the display in
seconds. Other options include Select Metric (Exclusive, Inclusive, Number of
Calls, Number of Subroutines). We see the window for MPI_Bcast() routine in the
figure below.

FIGURE 8. Exclusive time spent in seconds in MPI_Bcast over all nodes

TAU Portable Profiling and Tracing Toolkit User’s Guide 97

parapr of

By clicking the third mouse button over the colored bars, you can chooseChange
Function Color. The paraprof color selection window allows you to set the color of
a function as by choosing the HSB, swatches or RGB tabs as shown in the figures
below.

FIGURE 9. Setting function color in paraprof using HSB values

FIGURE 10. Color selection in paraprof

Profiling

98 TAU Portable Profiling and Tracing Toolkit User’s Guide

paraprof also provides selection of routines based on profile groups. By selecting
Windows in the menu in any paraprof window and choosingShow Group Ledger,
we see the groups as shown in the figure below.

By clicking on a group name, all members of that group are highlighted. Clicking
the second or the third mouse button on a group name allows the user to select from
Show This Group Only, Show All Gr oups Except This One, and Show All
Groups. The choice applies to all displays. By partitioning the performance data
into meaningful groups at the instrumentation phases, we can perform analysis over
groups and see the cumulative effect of a group of routines. In the node 32, context
0, thread 0, we can choose to see all elements of the MPI group as shown in the next
figure. This is done by selecting the MPI group in the group ledger.

FIGURE 11. paraprof group ledger window

TAU Portable Profiling and Tracing Toolkit User’s Guide 99

parapr of

FIGURE 12. Exclusive time spent in all MPI routines

Profiling

100 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU Portable Profiling and Tracing Toolkit User’s Guide 101

parapr of

CHAPTER 5 Tracing

Typically, profiling shows the distribution of execution time across routines. It can
show the code locations associated with specific bottlenecks, but it does not show
the temporal aspect of performance variations. Tracing the execution of a parallel
program shows when and where an event occurred, in terms of the process that exe-
cuted it and the location in the source code. This chapter discusses how TAU can be
used to generate event traces.

Tracing

102 TAU Portable Profiling and Tracing Toolkit User’s Guide

Generating Event Traces

TAU must be configured with the -TRACE option to generate event traces. This can
be used in conjunction with -PROFILE to generate both profiles and traces. The
traces are stored in a directory specified by the environment variableTRACEDIR,
or the current directory, by default. Example:

% ./configure -SGITIMERS -arch=sgi64 -TRACE -c++=KCC
% make clean; make install
% setenv TRACEDIR /users/sameer/tracedata/experiment56
% mpirun -np 4 matrix

This generates files named

tautrace.<node>.<context>.<thread>.trc and
events.<node>.edf

Using the utilitytau_merge , these traces are then merged as shown below:

% tau_merge
usage: tau_merge [-a] [-r] inputtraces* (outputtrace|-)
Note: tau_merge assumes edf files are named
events.<nodeid>.edf, and generates a merged edf file
tau.edf
% tau_merge tautrace*.trc matrix.trc

This generates matrix.trc as the merged trace file and tau.edf as the merged event
description file.

To convert merged or per-thread traces to another trace format, the utility
tau_convert is used as shown below:

% tau_convert
usage: tau_convert [-alog | -SDDF | -dump | -paraver [-
t] | -pv | -vampir [-longsymbolbugfix] [-compact] [-
user|-class|-all] [-nocomm]] inputtrc edffile [output-
trc]
 Note: -vampir option assumes multiple threads/node
 Note: -t option used in conjunction with -paraver
option assumes multiple threads/node

TAU Portable Profiling and Tracing Toolkit User’s Guide 103

Vampir: Visualizing T AU traces

To view the dump of the trace in text form, use

% tau_convert -dump matrix.trc tau.edf

tau_convert can also be used to convert traces to the Vampir trace format [VAM-
PIR-URL]. For single-threaded applications (such as the MPI application above),
the-pv option is used to generate Vampir traces as follows:

% tau_convert -pv matrix.trc tau.edf matrix.pv
% vampir matrix.pv &

To convert TAU traces to SDDF or ALOG trace formats,-SDDF and-alog
options may be used. When multiple threads are used on a node (as with-jdk , -
pthread or -tulipthread options duringconfigure), the-vampir
option is used to convert the traces to the vampir trace format, as shown below:

% tau_convert -vampir smartsapp.trc tau.edf smartsapp.pv
% vampir smartsapp.pv &

To convert to the Paraver trace format, use the-paraver option for single
threaded programs and -paraver -t option for multi-threaded programs.

NOTE: To ensure that inter-process communication events are recorded in the
traces, in addition to the routine transitions, it is necessary to insert
TAU_TRACE_SENDMSG and TAU_TRACE_RECVMSG macro calls in the
source code during instrumentation. This is not needed when the TAU MPI Wrap-
per library is used.

Vampir: Visualizing TAU traces

Vampir is a robust parallel trace visualization tool sold by Pallas GmbH [PALLAS-
URL]. It provides a convenient way to graphically analyze the performance charac-
teristics of a parallel application. A variety of graphical displays present important
aspects of the application runtime behavior:

• detailed timeline views of events and communication

• statistical analysis of program execution

• statistical analysis of communication operations

• system snapshot and animation

Tracing

104 TAU Portable Profiling and Tracing Toolkit User’s Guide

• dynamic calling tree

When interprocess communication is recorded, it shows up as directed line-seg-
ments connecting the sending and receiving processes. The details of a message can
be obtained by clicking on it.

FIGURE 13. Vampir displays space-time diagrams and pie-charts

TAU Portable Profiling and Tracing Toolkit User’s Guide 105

Vampir: Visualizing T AU traces

In Figure15, “Scheduling work packets in SMARTS,” on page105, we show how
Vampir can be used to display scheduling of work packets or iterates in the Shared
Memory Asynchronous Runtime System (SMARTS) [SMARTS-URL]

FIGURE 14. Vampir Space-time diagram shows inter-process
communication

Tracing

106 TAU Portable Profiling and Tracing Toolkit User’s Guide

In the next figure, we see the symbol legend and the dynamic call tree views pro-
vided by Vampir.

FIGURE 15. Scheduling work packets in SMARTS

TAU Portable Profiling and Tracing Toolkit User’s Guide 107

Vampir: Visualizing T AU traces

FIGURE 16. Vampir symbol legend and calltree display

Tracing

108 TAU Portable Profiling and Tracing Toolkit User’s Guide

Vampir has been used to compare the scheduling policies of the SMARTS package.

The following figures illustrate the use of Vampir with Java applications. After con-
verting the traces and invoking Vampir, choose appropriate colors for groups of
methods usingPreferences->Colors->Activities menu in Vampir.

FIGURE 17. Comparing scheduling policies in SMARTS

TAU Portable Profiling and Tracing Toolkit User’s Guide 109

Vampir: Visualizing T AU traces

Clicking on a process(thread) selects it. Then the user can see the dynamic call tree
of the process by choosing theProcess Displays->Call Tree menu item as shown
below.

FIGURE 18. Timeline display in Vampir shows the activity (method) that
each thread is in wrt time.

Tracing

110 TAU Portable Profiling and Tracing Toolkit User’s Guide

Vampir has a rich set of global displays. By choosing theGlobal Displays ->Paral-
lelism View the user can see how many threads participate in an activity belonging
to a group at any point in time. All timeline displays support a zoom option where
the user can zoom into or out of a section of the trace.

FIGURE 19. Call tr ee display of a thread shows the dynamic
call tree annotated with performance metrics.

TAU Portable Profiling and Tracing Toolkit User’s Guide 111

Vampir: Visualizing T AU traces

By choosing other global displays such asSummary chart or Activity chart , the
user can see a global summary of the time spent in different groups of methods as
shown in the following figure.

FIGURE 20. Parallelism view

Tracing

112 TAU Portable Profiling and Tracing Toolkit User’s Guide

Hybrid execution models can be traced in TAU by enabling support for the appro-
priate message passing model and thread package. One example of such a mixed

FIGURE 21. Summaric chart and activity chart global displays highlight
the groups that take the most time using pie charts and histograms
respectively.

TAU Portable Profiling and Tracing Toolkit User’s Guide 113

Vampir: Visualizing T AU traces

model program is shown in the following figure. It shows a trace of an
OpenMP+MPI (OpenMPI) program that uses OpenMP threads for loop-level paral-
lelism and MPI for inter-context message communication. The figure shows a time-
line display.

Another example of mixed model programming is shown below. It shows an mpi-
Java [MPIJAVA-URL] program that uses the message passing interface (MPI) for
inter-node communication and uses Java threads within each node for computation.

FIGURE 22. Tracing an OpenMPI application with TAU

Tracing

114 TAU Portable Profiling and Tracing Toolkit User’s Guide

FIGURE 23. Tracing hybrid (mixed-model) execution models with MPI
and Java.

TAU Portable Profiling and Tracing Toolkit User’s Guide 115

Vampir: Visualizing T AU traces

CHAPTER 6 Performance
Database

PerfDB is a performance database tool related to the TAU framework. The PerfDB
database is designed to store and provide access to TAU profile data. A number of
utility programs have been written in Java to load the data into PerfDB and to query
the data. With PerfDB, users can perform performance analyses such as regression
analysis, scalability analysis across multiple trials, and so on. An unlimited number
of comparative analyses are available through the PerfDB toolkit. Work is being
done to provide the user with standard analysis tools, and an API has been devel-
oped to access the data with standard Java classes.

Performance Database

116 TAU Portable Profiling and Tracing Toolkit User’s Guide

Prerequisites

1. PostgreSQL 7.0 (or an equivalent DBMS)
PerfDB requires a DataBase Management System (DBMS). It has been tested
with both PostgreSQL and MySQL databases. The default database is Postgr-
eSQL (http://www.postgresql.org).

2. Java 1.4
The PerfDB utilities and API are written in Java.

Installation

PerfDB is installed as part of the standard TAU release. Shell scripts are installed in
the TAU bin directory to run the configuration and loading utilities. It is assumed
that the user has installed TAU and run TAU’s configure and ‘make install’.

Create a database

Once a DBMS is installed, a database needs to be created. This database can be
called anything the user likes - perfdb is the default. If the DBMS is PostgreSQL,
the command from the shell prompt is:

% createdb perfdb

If the user is in psql, the command is:

psql=# create database perfdb

Other DBMS are similar.

Build PerfDB

Change directory to the $TAUROOT/tools/src/perfdb directory, and issue the com-
mand:

% make

TAU Portable Profiling and Tracing Toolkit User’s Guide 117

Installation

Configuration

PerfDB needs to be configured for the first time use. To configure PerfDB, run the
command (assuming $TAUROOT/$arch/bin is in your path):

% perfdb_configure

The configure program will prompt the user for several values. The default values
in all cases will work for 99.9% of users. Unless you need to specify something
other than the default values (for example, if you are using MySQL instead of Post-
greSQL, you need to specify a different JDBC .jar file, driver name, and database
vendor). The only value for which there is no default is the database username.
Enter the name of a database user which has administrative access. Because the
utilities use the ‘COPY’ command with PostgreSQL, the user requires administra-
tive access. Once the configuration program collects the information, it prompts for
the user’s database password, and connects to the database to test the configuration.
If the configuration is valid, the database schema is loaded into the database.

Loading database schema

If the configuration ended successfully, then the database schema was loaded at the
end of the configuration process. If problems occurred, then it may be necessary to
load the database schema later. If that is the case, then the program to load the
schema is:

% perfdb_loadschema

Loading application data

To load application data, simply run the perfdb_loadapp program which takes a
parameter <-x | --xmlfile> filename : the name of the application data file.

The xmlfile passed in is the application data file. A sample application data file is
$TAUROOT/tools/src/perfdb/data/App_Info.xml. For e.g.,

% perfdb_loadapp -x App_Info.xml

The application loader will load the application, and return the ID of the application
in the database.

Performance Database

118 TAU Portable Profiling and Tracing Toolkit User’s Guide

Loading experiment data

To load experiment data, simply run the perfdb_loadexp program. It takes two
parameters:

<-x | --xmlfile> filename: the name of the experiment data file.

<-a | --applicationid> value: the value of the application ID

The xmlfile passed in is the experiment data file. A sample experiment data file is
$TAUROOT/tools/src/perfdb/data/Exp_Info.xml. For e.g.,

% perfdb_loadexp -x Exp_Info.xml - a 1

The experiment loader will load the experiment, and return the ID of the experi-
ment in the database.

Translating TAU profiles

TAU data needs to be translated to XML in order to be loaded into the database.
This is a simple operation, performed with the perfdb_translate program. There are
several parameters for perfdb_translate:

<-s | --sourcefile> filename: the name of the TAU pprof dump format data file (cre-
ated by pprof -d)

<-d | --destinationfile> filename: the name of the XML output file

<-a | --applicationid> value: the value of the application ID

<-e | --experimentid> value: the value of the experiment ID

For e.g.,

% pprof -d > pprof.dat
% perfdb_translate -s pprof.dat -d pprof.xml -a 1 -e 1

TAU Portable Profiling and Tracing Toolkit User’s Guide 119

Installation

Loading translated trial data

Once the data has been translated, it can be loaded into the database. The data is
loaded by running the perfdb_loadtrial command. It takes the following parameters:

<-x | --xmlfile> filename: the name of the translated trial data file

< -t | --trialid> value: the value of an existing trial ID

<-p | --problemfile> filename: the name of a problem definition file

perfdb_loadtrial can be run two ways. When creating a new trial, the user calls
perfdb_loadtrial with an optional problem definition file. The problem definition
file is a user-defined XML file that describes the trial data. An example problem
definition file is in the data directory. For e.g.,

% perfdb_loadtrial -x pprof.xml -p sample_problem.xml

If the user is adding trial data to an existing trial (due to multiple metrics recorded
during the run with TAU), then the problem file is omitted, and the trial ID is passed
in:

% perfdb_loadtrial -t 1

Once the data has been loaded into the database, analysis can be performed. See the
${TAUROOT}/tools/src/dms/README file for more details.

Performance Database

120 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU Portable Profiling and Tracing Toolkit User’s Guide 121

Installation

CHAPTER 7 Summary

The TAU performance framework and toolkit is an ongoing research and develop-
ment project. The TAU Portable Profiling and Tracing Toolkit described in this doc-
ument represents functionality present in the current software release. All available
software should be considered research software available to the community under
the BSD style license.

Summar y

122 TAU Portable Profiling and Tracing Toolkit User’s Guide

Software Availability

TAU Portable Profiling and Tracing Toolkit may be downloaded as freeware from
the following website [TAU-URL]:

http://www.cs.uoregon.edu/research/paracomp/tau

For more information, please refer to the documentation section at the above URL.
Bug reports and comments may be sent to:

tau-bugs@cs.uoregon.edu

Technical papers about TAU can be downloaded from the TAU Publications home-
page at [TAU-PUBS-URL]

Acknowledgments

The TAU development team wishes to thank the U.S. Government, Department of
Energy for their support of the TAU project under the DOE-2000, DOE MICS
office contract, University of Utah ASCI subcontract, and ASCI Level 3 grants.

Los Alamos
NATIONAL LABORA TORY

University of Oregon

Forschungszentrum
Jülich GmbH

TAU Portable Profiling and Tracing Toolkit User’s Guide 123

Ackno wledgments

CHAPTER 8 Appendix:
Configuration Issues

Appendix: Configuration Issues

124 TAU Portable Profiling and Tracing Toolkit User’s Guide

Instructions for Installing TAU under Windows

Supported Systems: Windows9x/NT.

Compiler: Microsoft Visual C++ Version 5.0 - Service Pack 3, or above.

 NOTE: Service Pack 3 MUST be installed... it contains required bug fixes.

Section1.

The following steps detail how to build TAU libraries on Windows9x/NT.

For illustrative purposes, we assume that the TAU root directory is: “C:\TAU-
SOURCE-DIR”.

1. Download TAU. TAU is distributed as source and prebuilt libraries forWindows.
If you wish to use the prebuilt libraries, skip to steps 25 and 26.

2. Open Microsoft Visual C++ ... henceforth referred to as VC++.

3. i) If you wish to create a dynamic library proceed to step 4.
ii) If you wish to create a static library proceed to step 12.

4. Creating a dynamic library allows you to profile Java code using Sun’s
JDK1.2+.

5. From the “File” menu in VC++, select “New”.

6. Click on the “Projects” tab.

7. Select “Win32 Dynamic-Linked Library”.

8. Type in a name for your new library.

9. Make sure that the radio button on the right of the new project window is set to
“Create a new workspace”.

10. Click “OK”

11. Please skip to step 18 below.

12. From the “File” menu in VC++, select “New”.

13. Click on the “Projects” tab.

14. Select “Win32 Static Library”.

15. Type in a name for your new library.

16. Make sure that the radio button on the right of the new project window is set to
“Create a new workspace”.

17. Click “OK”

TAU Portable Profiling and Tracing Toolkit User’s Guide 125

Instructions f or Installing T AU under Windo ws

18. Open Windows Explorer, and, from the TAU source you downloaded, copy
the C:\TAU-SOURCE-DIR\include\Profile and C:\TAU-SOURCE-DIR\src\Pro-
file directories to your new project directory. For example, if you new
project was located in “C:\Program Files\DevStudio\MyProjects\New-
TauLib”, you would now have two new subdirectories of “C:\Program
Files\DevStudio\MyProject\NewTauLib” named, “include\Profile” and
“src\Profile”.

19. Now, back in VC++, from the “Project” menu, select “Add To Project” and click
on “Files”. Move to your new “src\Profile” directory and select the following
list of files: (holding down the control key whilst clicking so that you can
select more than one file)
FunctionInfo.cpp
Profiler.cpp
RtsLayer.cpp
RtsThread.cpp
TauJava.cpp
TauMapping.cpp
UserEvent.cpp
WindowsThreadLayer.cpp

Now click OK.

20. From the “Project” again, select “Settings” and then click on the “C/C++” tab.

21. Make sure that the Category in “General” and in the “Preprocessor definitions:”
box, add the following defines: (separated by commas)
TAU_WINDOWS TAU_DOT_H_LESS_HEADERSPROFILING_ON

If you want to profile a Java application, also add:
JAVA

Click “OK”

22. From the “Tools” menu, select “Options”. Click on the “Directories” tab. Make
sure that the “Show directories for:” field has “Include files” selected. Now add
a new include directory named
“C:\YOUR_PROJECT_DIRECTORY\include”. Thus, our above example
would be: “C:\Program Files\DevStudio\MyProjects \NewTauLib\include”.
Also add the include directories for jvmpi.h and jni_md.h. These are typi-
cally in “C:\JAVA_ROOT_DIR\include” and
“C:\JAVA_ROOT_DIR\include\win32”. Thus, when done, you should have
three new include directories listed. Now click “OK”.

23. Now, from the “Build” menu, select “Build PROJECT_NAME.dll (or .lib)”

Appendix: Configuration Issues

126 TAU Portable Profiling and Tracing Toolkit User’s Guide

24. Ignoring warnings, you should now have a library file in your project debug
directory.

25. If you created a dll for use with Java, you only need to make sure that the dll is
in a location that can be found by Java when it is running. The command to pro-
file your Java application is: java -XrunTAU “Java Application Name”
“Application parameters”. The default TAU.dll for use with a Java app. is
provided in: “C:\TAU-SOURCE-DIR\windows\lib”. If, when building your
dll from the source, you named it something other than TAU.dll, you can
either rename it, or replace “TAU” in “java -XrunTAU” with your dll name.

26. If you created a static library, you will need to include a reference to it in when
you build your application. You can do this by adding the library file to you
list of libraries in “Project -> Settings -> Link” inside VC++. You must then
make sure that the library is in a location known to VC++. You can do this in
your “Tools ->Options->Directories->Library files” section of VC++

Section 2.

The Windows port ships with a prebuilt version of pprof which can be used to view
your profiling data (See the TAU documentation for more details). Make sure that
pprof.exe is in your current path. It can be found in C:\TAU-SOURCE-DIR\win-
dows\bin. Currently, there is no version of Racy for Windows, however, we are re-
writing Racy in Java and will soon have it running on the Windows platform.

For information on how to profile your C/C++ and Java code, please see the TAU
documentation.

For more information on the Windows port of TAU please send mail to
tau-bugs@cs.uoregon.edu .

TAU Portable Profiling and Tracing Toolkit User’s Guide 127

URLs

CHAPTER 9 References

URLs

[TAU-URL] http://www .cs.uoregon.edu/resear ch/
paracomp/tau

[TAU-PUBS-URL] http://www .cs.uoregon.edu/resear ch/
paracomp/tau/paper s.html

[TAU-PGROUPS-URL] http://www .acl.lanl.go v/tau/docs/selec-
tive .html

[KAI-URL] http://www .kai.com

[GNU-URL] http://www .gnu.or g

[PGI-URL] http://www .pgr oup.com

[FUJITSU-URL] http://www .tools.fujitsu.com/lin ux/
inde x.shtml

[TCLTK-URL] http://www .scriptics.com

[NPB-URL] http://www .nas.nasa.go v/Software/
NPB/

References

128 TAU Portable Profiling and Tracing Toolkit User’s Guide

[DYNINST-URL] http://www .cs.umd.edu/pr ojects/d ynin-
stAPI/

[PARADYN-URL] http://www .cs.wisc.edu/~parad yn/

[PAPI-URL] http://ic l.cs.utk.edu/pr ojects/papi/

[PCL-URL] http://www .fz-juelic h.de/zam/PCL/

[PARP-URL] http://www .csi.uoregon.edu/pr ojects/
parp/

[VAMPIR-URL] http://www .pallas.de/pa ges/vampir .htm

[PALLAS-URL] http://www .pallas.de

[POOMA-URL] http://www .acl.lanl.go v/pooma

[SMARTS-URL] http://www .acl.lanl.go v/smar ts

[TULIP-URL] http://www .acl.lanl.go v/tulip

[ACL-SW-URL] http://www .acl.lanl.go v/software/

[OPENMP-URL] http://www .openmp.or g

[MUSE-URL] http://pub lic.lanl.go v/radiant/

[OPARI-URL] http://www .fz-juelic h.de/zam/k ojak/opari

[EPILOG-URL] http://www .fz-juelic h.de/zam/k ojak

[PDT-URL] http://www .acl.lanl.go v/pdtoolkit

[MPI-URL] http://www-unix.mcs.anl.go v/mpi/

[MPIJAVA-URL] http://www .npac.syr .edu/pr ojects/pcr c/
HPJava/mpiJa va.html

