TAU User's Guide

TAU User's Guide
Version 2.14

Copyright © 1997-2005 Department of Computer and Information Science, University of Oregon Ad-
vanced Computing Laboratory, LANL, NM Research Centre Julich, ZAM, Germany

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in al copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the name
of University of Oregon (UO) Research Centre Julich, (ZAM) and Los Alamos National Laboratory
(LANL) not be used in advertising or publicity pertaining to distribution of the software without specif-
ic, written prior permission. The University of Oregon, ZAM and LANL make no representations about
the suitability of this software for any purpose. It is provided "as is" without express or implied war-
ranty.

UO, ZAM AND LANL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL THE UNIVERSITY OF OREGON, ZAM OR LANL BE LIABLE FOR ANY SPE-
CIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RES-
ULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CON-
TRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNEC-
TION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

TAU can be found on the web at: http://www.cs.uoregon.edu/research/tau

http://www.cs.uoregon.edu/research/tau

Table of Contents

L= = o 1Y R N o - 1
TAU TULOMTAl ettt e e e et e e et e e eaanas 3
1. Gather iINfOrmMatioNcouuniiii e e 3

2. INSEAIING PDT ..o e e 3

B INSAlING TAU oo 4

4. Automatic instrumentation using TAU Compilercccovvviiiviiiiviinicciieccieeenn 4

I 7 A 1o 11 = 6

B. ParaProOf ... 7

I. Generating PerformanCe Daacccuuiiuniiii i 9
L INSEAHEIION ...t e 11
L1 INSEAING TAU Lo e e e 11
1.1.1. Available configuration OptionScccvvviiiiiiiii e 11

L12 88U SEIUP covt ettt 18
1.2.3.iNStAlltaL SCIPL .. eeeeeee et 18

N T 10110 =PRI 19

1.2. Platforms SUPPOMEAoieiiiiei e e 20

1.3, SOftware REQUIFEMENESvvei i e e e e e e e e e eaes 21

228 @0 2 11 71 11 oo 22
2.1 TAU SUD MEKEFI@ ..eeveieie e e 22

2.2. Enabling and Disabling the Instrumentationccevivieiinneiiiineeeenen, 24
2.3.UsiNg TAU WIth MPL ... 24

24 Environment Variablesooouiiiiiii e 25

2.5. APPlICAION SCENAIMTOS .vuiviieieieii e e e e e e e aaas 26

G -0 oo 1 = 30
1300 I 11 oo 1 o ' o 30

3.2. Installing TAU COmMPILErniiiiiieeeee e 30

3.3. Instrumenting with TAU COMPIEruiiiiiiiiiiiie e 30

4. Using tau COMPIlEr.Sh ...veiei e 31

3.5. TAU scripted COMPIlationc.ccuuiiiiiiiiiieec e 33

G 1 0 O 1= o 33

A PrOFIlING e e 35
4.1. Running the appliCationcooieeueiiiiii e 35

4.2. Selectivly Profiling an Applicationcccouiiiiiiiiii e 35

4.3. Running an application using DynINStAPIccooiiiiiiii e, 35

4.4. Using Hardware Performance COUNEr'Scoovvvveiiiiiiiieiiieeeeeeiieeeies 36

4.5. Using Multiple Hardware Counters for Measurementc.cccovvvvvneeennnnns 42

4.6. Running a Python application With TAU ..., 43

A7 PPFOF et 44

4.8. Running a JAVA application With TAU ..o 44

5. EClIPSE TaU JAVA SYSLEIM ...uiiiiiiei e e e e e ees 45
oI I 1 01 1 = o PR 45

5.2, INSIIUMENTALIONeeevieee et eaans 45

5.3, UNINSLUMENEELIONeeeiiiii e e e e e e e e e e e e eannes 46

5.4. RUNNING JAVaWIth TAU ...oouiiiiiiiiiiiii e 47

D5, OPHIONS .ttt e e aa s 48

RN I = o o N 49
6.1. Generating EVENt TraCESuivviieii e e e e 49

6.2. TAU Trace Format Reader Libraryccoovviiiiiiiiiiiii e 52
6.2.1. TaAU REAEr USAJE ... iiieiii it 52

6.2.2. CallbaCk APl ... 53

6.2.3. TAUREAUEr APl ...t 56

7 TOO0IS e e 58
(V48724 o)1 = 59

TAU User's Guide

BBV L. 60
1220122 o 61
FBLIZ2SIO02 ..o 62

122 022 & PP 63

(62 T 101 (o[TP 64

L€ I &)1V 1 PP 66

1= 0 =0 L1 o R 68

T == 1 o PRSP 70
LS 11 oo 1o o) o 72
8.1. Using ParaProf from the command [inecccooiiiiiiiiiiiiiii e, 72

8.2. SUPPOIEd FOIMELScevnieii e e e 72

8.3. Command [iNE OPLIONScuuniiiiiiiii e 73

9. Profile DataManagemMeNtcouuiiiiieiii e e 74
9.1. ParaProf Manager WIinGOWco.uviiiiiiiiiiii e e e 74

9.2. Loading Profil@Sccuuiieiiii e 74

0.3. Datahase INtEraCtionooeeuieiiiiiii e 75

9.4. Creating Derived MELIICScouuiiiiiiiii e 75

9.5. MaiN DAataWIiNAOWiiiiiiiieiii e 75

10. 3-D ViISUBIIZALION ...ttt e et e e et e e e et e eees 77
10.1. Triangle MESh PIOt ...ovee e e 77

0 I = T . o 77

10.3. 3-D SCALEr PlOt ...ciiiiiieeeiii e 78

11. Thread Baset DiSPlaySccuuiiieeiei ettt et e e e e e 80
11.1. Thread Bar Graphooeeiii e 80

11.2. Thread StatisticsS TEXt WINCOWveviiviieiiiiieeeciii e 80

11.3. Thread StatisticS TAhIE ..oovvvvieiiiii e 81

11.4. Call Grapn WINAOWccouuniiiiiiiiieiiii e 81

11.5. Thread Call Path Relations Windowcccoivviiiiiiiiiiiiiecieiceeeee 82

11.6. User Event StatisticS WINAOWooiviiiiiiiiiiieci e 83

11.7. User Event Thread Bar Chartccoviiiiiiiiiii e 83

12. FUNCLioN Based DiSPlayS ...ccvuevueeiiiieiii e 85
2 I o o) g == = o o 85

12.2. FUNCLION HISEOGraM ...t 85

13. Phase Based DiSPlayScceerenieiiiiiiee ettt ettt e 87
13.1. Using Phase Based Displaysccuueieiiiiiiiiiiieei e 87

14. ComMpParative ANBIYSIS ...ceueiieii et 89
14.1. Using Comparitive ANAYSISuuiveinieiieeiiiie e e e e e e e e e e e e 89

15. MisCEllan€oUS DiSPIaYScvveeeiiieie e e e e e e e 91
15.1. User Event Bar Graphoooiiiiiiiii e 91

15,2, LBOOEIS vttt 1
15.2.2. FUNCEION LEAGET ...niitieei et 91

15.2.2. Group LEAGES .. .euniiieii e 92

15.2.3. User EVENt LEAGE .ovnniiiiee e e e e 92

16, PrefErENCES ... 9
16.1. PreferenCeS WINCOWcoouniiii i 9

16.2. DEfAUIt COIOIS .nniiiiieiiiiee e eees 95

T O] [0 gl Y/ ="« H PPN 95

I PEITDME .t e et e e et e e et e e e et a e e et 97
A | oo (B 1o o R PRSP 99
R o = =0 1 1] =S 99

R 1 = = o) o 99

18. USING PETDIME .oeii e e e e s 101
18.1. perfdmf _Creat@appc.u eeee et 101

18.2. perfdmf_Creat@appeiee i 101

18.3. perfdmf_loadtrialocvvuiiiiii 101

Y = 0 T o0 = 103
S R 1o To o ' 105
20. Installation and CONfiQUIaLIONccceuuuieieiriieeiiiiee e e e 106

TAU User's Guide

20.1. Available configuration OPtioNSccevvieiiieiii e 106

P2 I U o H o = g o o] o 107
22, ClUSEES ANBIYSIS .. ittt e et e 108
22.1. DiIMension REAUCTIONiiuiiiiiiiei e 108

22.2. Max NUMDEr Of CIUSLEN'S ... coviiiiiieei e 108

22.3. Performing ClUSter ANAlYSIS ...ovviiieiiiiiieee e 109

P T O 0 o £ TSP 115
23.1. SEtting Parametersovvvniiii i 115
23.1.1. Group Of INEEIESEeeeeii e 115

23.1.2. Metric Of INtEreStuiieeiiei e 115

23.1.3. Event Of INLEIESE ..vvuieiiiiiieeiiie e 115

23.1.4. Total Number of TIMESIEPS ...vvvniiiiieii e 116

23.2. Standard Chart TYPES ..uvvve i ieiii e e e e e e e e e e e e e eees 116
23.2.1. TimeStePsS Per SECONuvvvnieeii i e 116

23.2.2. RAatiVe EffiCIENCY . .oovvveieiiiii e 117

23.2.3. Relative Efficiency by Eventccoooveiiiiiiiiie 117

23.2.4. Relative Efficiency for One Eventcccovviiiiiiiiiiiiiiiineeenn, 118

23.2.5. RAAIVE SPEEAUD ..vveiiiiiieeiiii e 119

23.2.6. Relative Speedup by Eventocoiviiiiiiiii e, 119

23.2.7. Relative Speedup for OneEVeNtcocovviviiiiiiiiiciie e, 120

23.2.8. Group % of Total RUNGIMEoeiiiiiiiiiiiiieeei e 120

23.2.9. Runtime BreakdOoWnooiuiiiiiiieiee e 121

23.3. Phase Chart TYPES ..vvuieiiiiiiieeiii e ee e e e e e e e et e e e eaaanaeeees 121
23.3.1. Relative Efficiency per Phaseccoceuiviiiiiiiiiiiiicceceeee 122

23.3.2. Relative Speedup per Phaseoovvvveiiiicii e, 122

23.3.3. Phase Fraction of Total RUNIMEcoovvviiiiiiiiiieiiiiecciieee 123

SUMIMIBIY ettt et et e et e et r et e e e e e e e e e enes 124
1. Software AVailabilitycoouuiiiiii e 124
2. ACKNOWIEAGMENES ...ceeiii et e e aeas 124
VL ADPENAICES ...ttt 125
I. TAU INStrumentation APuiiiiiiie e 128
TAU_PROFILE ..ot 131
TAU_PROFILE_TIMER ... 132

TAU _PROFILE START ittt et aaans 134
TAU_PROFILE _STOP ...ttt e et eanans 135
TAU_PROFILE_TIMER _DYNAMIC ...t 136
TAU_PROFILE_DECLARE_TIMERcuuiiiiiiiiiiiiii e 138
TAU_PROFILE_CREATE_TIMERcoiiiiiiiiiii e 139
TAU_GLOBAL_TIMER ... 140
TAU_GLOBAL_TIMER EXTERNAL ..oouiiiiiiiiiiiie e 141
TAU_GLOBAL_TIMER _START ..ottt 142
TAU_GLOBAL_TIMER _STOP ...ttt 143

TAU _PHASE L. e 144
TAU_PHASE_CREATE_DYNAMIC ..ottt 145
TAU_PHASE CREATE _STATIC ..o, 147

TAU _PHASE START oottt e aaans 149
TAU_PHASE STOP ..ot eaaans 150
TAU_GLOBAL_PHASE ...t 151
TAU_GLOBAL_PHASE EXTERNAL ...ouiiiiiiiiiiiiie e 152
TAU_GLOBAL_PHASE _START .ottt 153
TAU_GLOBAL_PHASE _STOPcuviiiiieeeeeeeeeee e, 154
TAU_PROFILE EXIT oottt e et eeaaans 155
TAU_REGISTER _THREAD ...uiiiiiiiieii et 156
TAU_PROFILE_SET NODEcccotiiiiiiiii e 157
TAU_PROFILE_SET_CONTEXT .tuiiiiiiiiiieiiii et eeii et eeeens 159
TAU_REGISTER_FORKootiiiiiiiiiieeii ettt 161
TAU_REGISTER _EVENT ...t 162

TAU _EVENT i e e e e anans 163

Vi

TAU User's Guide

TAU_REGISTER_CONTEXT_EVENT ..oiiiiiiiiiie e 164
TAU_CONTEXT_EVENT oot e s 166
TAU_ENABLE_CONTEXT_EVENT ..o 168
TAU_DISABLE CONTEXT_EVENT ..ooiiiiiiiiiiiiiie e 169
TAU_EVENT_SET NAME ..o 170
TAU_EVENT_DISABLE MAX i 171
TAU_EVENT_DISABLE _MEAN ...ootiiiiiiie e 172
TAU_EVENT_DISABLE _MIN ..o 173
TAU_EVENT DISABLE _STDDEVcoviiiiiieeeeee e, 174
TAU_REPORT_STATISTICS ...ttt e et 175
TAU_REPORT_THREAD _STATISTICScoiiiiiiiei e, 176
TAU_ENABLE_INSTRUMENTATION ...ooiiiiiiiiiii e 177
TAU_DISABLE_INSTRUMENTATIONcoiiiiiiiiiiiieeeeeeeeeiii e e e 178
TAU_ENABLE_GROUP ...ttt 179
TAU DISABLE GROUPoviiiiiieeeeee e, 180
TAU_PROFILE_TIMER _SET _GROUPcoctviiiiiiiii i 181
TAU_PROFILE_TIMER_SET_GROUP_NAMEccooooiiiiiiiiiee e, 182
TAU_PROFILE_TIMER_SET NAME ..ot 183
TAU_PROFILE_TIMER_SET _TYPE ...ttt 184
TAU_PROFILE_SET_GROUP_NAMEcoiiiiiiiiiiee e 185
AU NI T e et et enas 186
TAU_PROFILE INIT oottt e e et e e e e e anans 187
TAU_GET _PROFILE GROUPcovttiiiiiieciieeeie e 188
TAU_ENABLE_GROUP_NAMEootiiiiiiiiiiieeie e 189
TAU_DISABLE_GROUP _NAMEouttiiiiiiiiiiiiiie et e e 190
TAU_ENABLE_ALL_GROUPSootiiiiiiieiiieeie e 191
TAU _DISABLE_ALL_GROUPScooeiieeeeeeeeee e, 192
TAU_GET_EVENT _NAMES ...ttt 193
TAU_GET _EVENT _VALS ..o 194
TAU_GET_COUNTER_NAMESoottiiiii e 196
TAU_GET_FUNC _NAMEScoiiiiiiie et e e 197
TAU_GET _FUNC _VALS ..ot 198
TAU_ENABLE_TRACKING_MEMORY ...t 200
TAU_DISABLE_TRACKING_MEMORYccvviiiiiiiiiieiiiin e 201
TAU_TRACK_MEMORY ...t 202
TAU_TRACK_MEMORY _HEREouiiiiiiiiiiiiie e 203
TAU_ENABLE_TRACKING_MEMORY_HEADROOMcccooeveeevviniinnnnnn. 204
TAU_DISABLE_TRACKING_MEMORY_HEADROOMccccoovveevvrriinnnnnn. 205
TAU_TRACK_MEMORY_HEADROOMccocvivieaeeieeeeeeeee e, 206
TAU_TRACK_MEMORY_HEADROOM _HEREcccvviiiiviiiiieeviiee e, 207
TAU_SET_INTERRUPT _INTERVAL ...ccoooeiiiiiiie e, 208
L SRR 209
TAU_TYPE_STRING ..ooiiiiiiiii it e e e ee s e e e e e eeannennns 210
TAU DB _DUMP ...ttt e e e e e e e e e e 212
TAU DB DUMP_INCR ...ttt 213
TAU_DB DUMP_PREFIX ...itiiiiiiiiiiii e a et 214
TAU DB PURGEooiiiiiiiii i 215
TAU_DUMP_FUNC _NAMES ...t 216
TAU_DUMP_FUNC VALS ...t 217
TAU_DUMP_FUNC _VALS INCR ..ottt 218
TAU_PROFILE_STMT .o, 219
TAU_PROFILE _CALLSTACK ittt v e 220
TAU_TRACE _RECVMSGcooiiiiiiiie et 221
TAU_TRACE_SENDMSGuiiiiiiiiiiiie et e et e e e 223
. TAU Mapping APl ..o e e e e e e e e eaes 225
TAU_MAPPING ..o e e e et e e e e e e e e anaenn s 226
TAU_MAPPING _CREATE ...ttt 227
TAU_MAPPING _LINK ..ot aeaaans 229

Vii

TAU User's Guide

TAU_MAPPING _OBJECT ..ooviiiiiiiiiiecie et e e e e e e e e e e e aans 231
TAU_MAPPING PROFILEucviiieii e 232
TAU_MAPPING _PROFILE_START ..ot 233
TAU_MAPPING PROFILE STOP ...couiiiiiieieee e 234
TAU_MAPPING PROFILE TIMER ...ccovniiiiicieeeeeeee e, 235
A Bnvironment Variables ..o 236

viii

List of Figures

1. A graph of the number of calls by function before TAU_THROTTLEcccivvviievinennnnn. 7
2. A graph of the number of calls by function after TAU_THROTTLEccocvviviviiiiviiieennns 7
5.1 TAUJAVA OPLIONS SCIEENuiiiiitiie ettt ettt e e e et e e e b e eeaans 45
5.2. TAUJava Project INSIrUMENEELIONuieieiiiieiiii e e e 45
5.3 TAUJAVA RUNNING ...uietiieii ettt e e e e et e e et e e e e eannas 47
6.1. Performance DatalO Chart ..o 49
9.1. ParaProf Manager WINGOWcouuiiiiieii e e e e e e e e e e e e 74
9.2. L0oading Profil@ Dalalcvve e 74
9.3. Creating DeriVed MEITICSuiiiiiiieeeiet et eeans 75
9.4. MaiN DAAWINAOWcuniiiieeiii et e e e e e e e e e annas 76
0.5, UNSLACKE BAIS ...ttt et et e e et e e e e aaas 76
10.1. Triangle MESh PIOLoe e e 77
L0 D B 1= o I = o PSPPI 77
10.3. 3-D SCALEr PLOL ...t e 78
11.1. Thread Bar Graphoiiiiiiee e e 80
11.2. Thread StatisticS TEXE WINGOWc..uiieeieiiii e e e e 80
11.3. Thread StatistiCS TAhIE ..ovvvviieiii e e et eees 81
11.4. Cal Graph WINAOWcouiiii e e e e e ees 82
11.5. Thread Call Path RelationS WINCOWooivvuiiiiiiiiii e 82
11.6. User Event StatiStiCS WINAOWuuiiiiiiieiiiii et 83
11.7. User Event Thread Bar Chart Windowc.veiiiiiiiiei e 84
12.1. FUNCLION B GIaph ... ettt e e e et 85
12.2. FUNCLION HISLOGIEIM ...ceeniee ettt e et e e e et e e e e e ean e aeees 85
13.1. Initial Phase DiSPlay ..cc..cvvniei i 87
T . 0TS o = 87
13.3. FUNCLION DAt OVES PRESES ... o cieeiii ettt et e e e e e eees 88
14.1. Comparison Window (INItial)veeeeeeieiii e 89
14.2. Comparison Window (2 TralS)veeeereieiiiiiee et 89
14.3. Comparison Window (3threads)ocoeuiiiiiiiiiii e 0
15.1. User Event Bar Graphooeiinii e 91
T2 g Tox o) o o = S 91
TG T €1 o TH o 3 = (o1 92
15,4, USEr EVENE LEAGET ..ooieiiiiiii et et e et e e e eeaae e e 92
16.1. ParaProf PreferenCeSWINCOWoouuiiiiiiie e 9
16.2. Edit DEfAUIt COIOIS .. .ceuiiiieei ettt e e e eees 95
TG T ! o g Y/ = 95
22.1. Selecting adimension reduction methodccoeeviiiiiiiiciii e 108
22.2. Entering aminimum threshold for exclusive percentageccovevvveveiiieineennenn, 108
22.3. Entering a maximum number Of CIUSEEISooiiiiiiii e 109
22.4. Selecting aMEtriC 0 CIUSIENuuueiiiiii et 109
22.5. Confirm ClIUSLEriNG OPLIONSeeeiit ettt e e e e e e e ea e eees 109
22.6. ClUSLEN RESUILS ...iiitieee ittt e et e e e et e e e e et e e e eete e e e eatenaeaees 110
22.7. Cluster Membership HiStOgramocuuoeiiiiiiiieeie e e e e 110
22.8. Cluster Membership SCatterplotcuuvveeiiiii e 111
22.9. Cluster Virtual TOPOIOGYceeeuuneeiitiieeiiiie e ettt e ettt e et e e et eeeati e e eetiaeeees 112
22.10. Cluster Average BEhaViorooiiiiiiiiiii e 113
23.1. Setting Group Of INEEIESEceeeiieee et e e e e e eees 115
23.2. Setting MEtriC Of INTErEStcviiei e 115
23.3. Setting EVENt Of INTErESt ...uviiie e e 115
234, SEttiNG TIMESIEPS ..ueetiiiit i eee et e e e e e e e e e e e e et e e e e e e e et e e e e eeanaeeees 116
23.5. TIMESIEPS PEF SECONM .. ettt ettt e e e e et eeees 116
23.6. REIAIVE EFfICIENCYiiiiiiieiiii e 117
23.7. Relative Efficiency DY EVENLoooou i 118

TAU User's Guide

23.8. Relative EffiCienCy ONE EVENTcccvuiiii i e e ea e e 118
23.9. REIAIVE SPEEAUD ... eetieei et 119
23.10. Relative Speedup by EVENLn e 119
23.11. Relative SPeedup ONE EVENTciiiiiieieiie e 120
23.12. Group % of Total RUNLIMEcoeuiiiieei e 121
23.13. RUNLIME BreakOOWNuieieiii e 121
23.14. Relative Efficiency Per Phaseoovviiii e 122
23.15. Relative Speedup Per PhaSeccccuiiiiiiii e 122
23.16. Phase Fraction of Total RUNLIMEooeuiiiiei e 123

List of Tables

4.1. Events measured by setting the environment variable PAPI_EVENT in TAU 37
4.2. Events measured by setting the environment variable PCL_EVENT in TAU 40
7.1, SAECtion AttHBULESovnie e 68
AL TAU Environment Variablesoooiiiiiiiii e 236

Xi

Part Preface. TAU Tutorial

Table of Contents

TAU TULOMTA ©.einiiiii e e e e e e e e e e e et e et e e e e ees
1. Gather informationco.ioiiii
2. INStAlING PDT Lot
B INStAIING TAU oo
4. Automatic instrumentation using TAU Compilercccoovviviviiiiiiinicieecceee,
B TAU TNIOLIE e
B. ParaProf ...ooeiiii

TAU Tutorial

1. Gather information

Before we began installing PDT and TAU you will find it helpful to gather information about your com-
puting environment. TAU and PDT require both a C and C++ compiler. Furthermore this tutorial uses
MPICH. Find out the following information about your computing environment before we began:

* The path of your C compiler

e The path of your C++ compiler

For the remaining of this tutorial we will assume that your C compiler isxlc, your C++ compiler isxIC.

2. Installing PDT

To take advantage of TAU's automatic instrumentation features, you will need to install the Program
Database Toolkit (PDT). Download the latest version from the PDT pages and put the tar.gz package in
the location that you want to install PDT. For this installation, we will assume that you are using IBM's
Fortran and C/C++ compilers, with an mpich installation.

Start by uncompressing the PDT package and moving into the PDT directory.

% tar -xvzf pdtoolkit-3.4.tar.gz
% cd pdtoolkit-3.4

Y ou can get a sense for what options you can configure PDT with by entering:

% ./configure

Program Dat abase Tool kit (PDT) Configuration

Looks like a Linux machine ..

Looki ng for C++ conpilers done

Usage: ./configure [-KAI|-KCC -G\ -CC -c++| -cxx|-xI ¢ -pgCC -i cpc| - ecpc]
-arch=i bnb4| i bnb4l | nux| | RI XO82| | RI XN32| | RI X64] [- hel

- conpdi r =<conpdi r >>]

- enabl e- ol d- header s]

- user opt =<opt i ons>>]|

-prefix=<dir>]

- exec- prefix=<dir>>]

p]

We will configure PDT for use the the Fortran xIF, xlc, and xIC compilers. To configure PDT, type

% ./configure -xIC
Pr ogr am Dat abase Tool kit (PDT) Configuration

Looks like a Linux machine ...

Looki ng for C++ conpilers done

==> Using /opt/ibncnp/vacpp/ 6.0/ bin/xlC
Unpacki ng ppc64/bin ...

TAU Tutorial

==> ARCH i s PPCLI NUX

==> PLATFORM i s ppc64

==> Default conpiler options are -2
==> Makefil es were configured

==> cparse was configured

==> cxxparse was configured

==> f90parse was confi gured

==> f 95parse was confi gured
Configuration is conpletel

Run "make" and "make install"
Add "/ hone/ user s/ hoge/ pdt ool ki t-3.4/ppc64//bin" to your path

Add the specified directory to your path. In bash, for example you could enter

% export PATH=$PATH: / hone/ user s/ hoge/ pdt ool ki t - 3. 4/ ppc64/ bi n

Now, build and install PDT. Unless you specify a different location to install PDT, it will be placed in
the current working directory.

% make

% rmake install

Now you're ready to proceed with the TAU installation.

3. Installing TAU

Download the latest version of TAU from the TAU home. Place the distribution In the directory that you
want to install TAU. Type

% tar -xvzf tau_latest.tar.gz
% cd tau-2.14.6

We will beinstalling TAU once again assuming that we are using the IBM compilers (xIf, xIc and xIC),
and an MPICH installation. Note where your MPICH installation resides, and configure TAU by enter-
ing (replacing the MPICH specifics with those in your local system.

% ./configure -c++=xI C -cc=xlc -fortran=i bm\
-npi i nc=/ opt/ osshpc/ nmpi ch-1. 2. 5/ 32/ ch_shmem i ncl ude \
-npi | i b=/ opt/osshpc/ npich-1.2.5/32/ch_shmrenflib \
- pdt =/ hone/ user s/ hoge/ pdtool kit-3. 4
Add the TAU directory to your path and install.
% export PATH=$PATH: / hone/ user s/ hoge/tau- 2. 14. 6/ ppc64/ bi n
% make install

TAU isinstalled, and you're ready to start profiling your code.

4. Automatic instrumentation using TAU Com-
piler

TAU Tutorial

For this section of the tutorial we will be using the files found in the examples/taututoria directory of
the tau distribution. To start, there are two files of note: computePi.cpp and Makefile. computePi.cpp is
a C++ program that uses an MPI client-server model to estimate the value of Pi. The server accepts re-
quests for random numbers from the clients, and returns an array of random numbers to the clients. The
clients use these values to estimate Pi using a dart-throwing method. When the clients have converged to
a satisfactory tolerance, they signal their completion to the server and the program exits.

Build computePi.cpp as you would any c++ mpi application. Test the program in your MPI environ-
ment. For mpich, the command might be

% npirun -np 5 ./ comput ePi
Pi is 3.14226

to run the program on 5 nodes. Note that this program requires at least two nodes to be running! Once
you've confirmed that the program ran successfully, try timing it to get a sense of how long it takes to
run.

% time npirun -np 5 ./conput ePi
Pi is 3.14226

real OnR. 012s

user Omt. 570s

Sys On0. 330s

Now let us rebuild computePi to be instrumented with tau. First set the environment variable
TAU_MAKEFILE to the location of the tau makefile, for example:

% export TAU MAKEFI LE=/ home/ user s/ hoge/ t au2/i a64/1i b/ Makefil e. tau- npi - pdt
% nmake

Assuming that all goes well, the computePi program will have been automatically built with TAU in-
strumentation. Run the program as you would any MPI program, i.e.

% npirun -np 5 ./conputePi

Pi is 3.14226

TAU generates a profile file for every node the program is run on. You can see these files by doing a
directory listing.

% |s profile
profile.0.0.0 profile.1.0.0 profile.2.0.0
profile.3.0.0 profile.4.0.0

Now you're ready to view the output of TAU. If you've added the TAU binary directory to your path you
can launch the TAU profile viewer, Paraprof.

% par apr of

Enjoy exploring the performance data displayed by Paraprof. A complete description of how to use
Paraprof is outside the scope of this document. Please see the Paraprof Manua
[http://www.cs.uoregon.edu/research/tau/docs/paraprof/index.html] for more information.

http://www.cs.uoregon.edu/research/tau/docs/paraprof/index.html

TAU Tutorial

When you ran the instrumented version of computePi you might have noticed that it took significantly
longer to run than the non-instrumented version. Let's verify this behavior.

% time npirun -np 5 ./conputePi

real OnB7. 750s
user onB7. 370s
sys OnD. 320s

On my system, thisis an order of magnitude overhead. For multi-processor MPI programs, thisis an un-
acceptable amount of overhead. However, TAU offers a method for dealing with this added overhead,
which we'll explore that in the next section.

5. TAU throttle

Tau THROTTLE is designed to reduce the computational overhead associated with instrumenting a
program with TAU. This usually takes the form of selectively instrumented some functions but not oth-
ers. This can be done manually, but TAU_THROTTLE with do this automatically by helping you devel-
op acriterion to decide which function to instrument.

First gather the profilesinto asingle profilefile,

% pprof -d > pprof.dat

To see the combined profile data type:

% pprof -c

Looking at the #call column we see that the function computeRandom() is called about 20,000,000
times. It is functions like these that contribute greatly to the overhead associated with instrumenting a
program. You see, when a function is entered and exited a small amount of tauinstrument code is ex-
ecuted. When a function is called millions of times even that small amount of code can cause a slow
down in execute time.

Let us tell tau not to instrument functions like computeRandom(), this will remove the computational

overhead of instrumenting a function that is called 20 millions times. To do this, set these environment
variables:

% export TAU THROTTLE=1
% export TAU THROTTLE NUMCALLS=400000
% export TAU THROTTLE_PERCALL=3000

This will tell tau not to profile any functions which are called more than 400000 times and their inclus-
ive time per call islessthan 3 seconds.

Let us now see how much time it takes to run computePi,

% tinme npirun -np 5 ./conputePi
3.

Pi is 14226

r eal OonR. 123s
user Oml. 760s
Sys OnD. 270s

On my machine computePi runs at about 10% overhead this is from 2000% overhead before using
TAU_THROTTLE. Not only does TAU_THROTTLE help reduce the overall runtime overhead of in-

6

TAU Tutorial

strumenting a program, it also, as we will see in the next section, increases the accuracy of the resulting
profile data.

6. ParaProf

Paraprof is a tool that shows you a graphical representation of the profiles generated by tau_compiler.
Documentation on setting up and using paraprof is outside the scope of this tutorial, see the ParaProf
Manual [http://www.cs.uoregon.edu/research/tau/docs/paraprof/index.html]

Here is the results of using TAU_THROTTLE are displayed in paraprof. Notice that before
TAU_THROTTLE that the number of calls made to functions other than computeRandom() is obscured.
But after TAU_THROTTLE they can be seen clearly.

Figure 1. A graph of the number of calls by function before TAU_ THROTTLE

Figure 2. A graph of the number of callsby function after TAU_THROTTLE

http://www.cs.uoregon.edu/research/tau/docs/paraprof/index.html
http://www.cs.uoregon.edu/research/tau/docs/paraprof/index.html

TAU Tutorial

Congratulations, you have successfully instrumented a C++ program with tau compiler. Furthermore the
you know the basics of TAU_THROTTLE and how it can help reduce the overhead of instrumenting a

program. For more information on tau features see the

Tau Documentation.
[http://www.cs.uoregon.edu/research/tau/docs.php]

http://www.cs.uoregon.edu/research/tau/docs.php

Part |. Generating Performance
Data

Table of Contents

O 7= = oo 11
S 11 = 1 o 1 PPN 11

1.1.1. Available configuration OptioNSccuiviiiiiiiiiieiiiec e 11

L2, B8 SBLUD v 18

O R A 1 = 1 = U o T o 18

O O 0 o =S 19

1.2, Platforms SUPPOIEAceeeeiieiiiiiie e 20

1.3. Software REQUITEMENLSuuiiiiiiiieiiiii et et 21

A O] 19] o] [T oo PP 22
2.1 TAU StUD MEKEFIIE ...unieiiiii e 22

2.2. Enabling and Disabling the Instrumentationcccooevviiiiiieiie e, 24

2.3.UsiNg TAU WIth MPL ... 24

2.4 Environment VariableSooeeiiiiee e 25

2.5. ApPlICAION SCENAIMTOSceevviiiiiiiie ettt 26

3. TAU COMPIIEY ... et 30
G300 N 1 110 o [0 1o o R PP 30

3.2. Instaling TAU COMPILEr ..oouniiiieii e e e e 30

3.3. Instrumenting With TAU COMPIErccouiviiiiiiicie e 30

3.4.Using tau_ComPIlEr.Sh ...cooeeie e 31

3.5. TAU scripted compilationoeeveeiiiiiieiiee e 33

LT I 1= o = TP 33

o o 35
4.1, RUNNING the appliCationvvvuiiiiii e e e e e 35

4.2. Selectivly Profiling an Applicationcocvuiiiiiiiiii e 35

4.3. Running an application using DYNINStAPLc..oiiiiiiiii e, 35

4.4. Using Hardware Performance COUNLErScc.uuveviriiiieiiiiiieeeeiineeeeiinnnen 36

4.5. Using Multiple Hardware Counters for Measurementcccoevvevneeennnnes 42

4.6. Running a Python application With TAUcoooiiiiiiii e, 43

R o (o R 44

4.8. Running a JAVA application With TAU ... 44

5. ECliPSe Tal JAVA SYSIEIM ...ttt ettt e e e e e eaans 45
oI 1 = = o o PP 45

5.2 INSIFUMENTALTION ...t e e e e 45

5.3, UNINSLUMENEBLIONietiiitie et e e e e 46

5.4. Running JavaWith TAU ..o e 47

B 5. OPLIONS ..niieieiiti et et 48

L I = ol o PP TOPPRT 49
6.1. Generating EVENE TraCESuuiiiiiiieeeii et 49

6.2. TAU Trace Format Reader Libraryccoooiiiiiiiiiii e, 52

6.2.1. TAU REAAEr USAQEovniiiiiiii e 52

6.2.2. CallDaCk APl ... 53

6.2.3. TAUREAHE!r APl ... 56

7250 e o 58
VEF2DIOFII oo 59

122 0122 1 PSP 60

162 11 2 o 61

1220122 [0 2 62

FBLI20ME .. 63

162 I 0101 (o PP 64

(€= 0 I @001/ 1 S PP PTPRP 66

162 10 [(=0 [0 o S 68

10

Chapter 1. Installation

TAU (Tuning and Analysis Utilities) is a portable profiling and tracing toolkit for performance analysis
of parallel programs written in Fortran, C++, C, Java and Python. The model that TAU uses to profile
parallel, multi-threaded programs maintains performance data for each thread, context, and node in use
by an application. The profiling instrumentation needed to implement the model captures data for func-
tions, methods, basic blocks, and statement execution at these levels. All C++ language features are sup-
ported in the TAU profiling instrumentation including templates and namespaces, which is available
through an API at the library or application level. The API also provides selection of profiling groups for
organizing and controlling instrumentation. The instrumentation can be inserted in the source code using
an automatic instrumentor tool based on the Program Database Toolkit (PDT), dynamically using Dyn-
instAPI, at runtime in the Java virtual machine, or manually using the instrumentation API. TAU's pro-
file visualization tool, paraprof, provides graphical displays of al the performance analysis results, in
aggregate and single node/context/thread forms. The user can quickly identify sources of performance
bottlenecks in the application using the graphical interface. In addition, TAU can generate event traces
that can be displayed with the Vampir or Paraver trace visualization tools. This chapter discussesinstall-
ation of the TAU portable profiling package.

1.1. Installing TAU

After uncompressing and untarring TAU, the user needs to configure, compile and install the package.
Thisis done by invoking:

% ./ configure
% make install

TAU is configured by running the configure script with appropriate options that select the profiling and
tracing components that are used to build the TAU library. The “configure' shell script attempts to guess
correct values for various system-dependent variables used during compilation, and creates the Make-
file(s) (onein each subdirectory of the source directory).

The following command-line options are available to configure:

1.1.1. Available configuration options

o -prefix=<directory>

Specifies the destination directory where the header, library and binary files are copied. By defaullt,
these are copied to subdirectories <arch>/bin and <arch>/lib in the TAU root directory.

e -arch=<architecture>

Specifies the architecture. If the user does not specify this option, configure determines the architec-
ture. For IBM BGL, the user should specify bgl as the architecture. For SGI, the user can specify
either of sgi32, sgin32 or sgi64 for 32, n32 or 64 bit compilation modes respectively. The files are
installed in the <architecture>/bin and <architecture>/lib directories.

e -Cct++=<C++ conpiler>
Specifies the name of the C++ compiler. Supported C++ compilers include KCC (from KAl/Intel),

CC (SGl, sun), g++ (from GNU), FCC (from Fujitsu), XIC (from IBM), guidec++ (from KAI/Intel),
cxx (True4) and aCC (from HP), c++ (from Apple), icpc and ecpc (from Intel) and pgCC (from

11

Installation

PGI).
-cc=<C Conpil er>

Specifies the name of the C compiler. Supported C compilers include cc, gcc (from GNU), pgcc
(from PGI), fcc (from Fujitsu), xlc (from IBM), and KCC (from KA/ Intel), icc and ecc (from Intel).

- pdt _c++=<C++ Conpi |l er >

Specifies a different C++ compiler for PDT (tau_instrumentor). This is typically used when the lib-
rary is compiled with a C++ compiler (specified with -c++) and the tau_instrumentor is compiled
with a different <pdt_c++> compiler. For e.g.,

-c++=pgCC - cc=pgcc -pdt_c++=KCC - opennp ...

uses PGl's OpenM P compilers for TAU's library and KCC for tau_instrumentor.

-arch=bgl -pdt=/usr/pdtoolkit-3.4 -pdt_c++=xl C - npi

uses PDT, MPI for IBM BG/L and specifies the use of the front-end xIC compiler for building
tau_instrumentor.

-fortran=<Fortran Conpil er>

Specifies the name of the Fortran90 compiler. Valid options are: gnu, sgi, ibm, ibm64, hp, cray, pdi,
absoft, fujitsu, sun, kai, nec, hitachi, compag, and intel.

-tag=<Uni que Name>
Specifies atag in the name of the stub Makefile and TAU makefiles to uniquely identify the installa-

tion. This is useful when more than one MPI library may be used with different versions of com-
pilers. e.g.,

% configure -c++=icpc -cc=icc -tag=intel 71-vm \
-npi i nc=/vm 2/ npi ch/i ncl ude

- pt hread

Specifies pthread as the thread package to be used. In the default mode, no thread package is used.

- charme<di rect ory>

Specifies charm++ (converse) threads as the thread package to be used.
-tulipthread=<directory> -snarts

Specifies SMARTS (Shared Memory Asynchronous Runtime System) as the threads package to be

used. <directory> gives the location of the SMARTS root directory. Smarts
[http://www.cs.uoregon.edu/research/tau/users/smarts.php]

- opennp
Specifies OpenMP as the threads package to be used. Open MPI [http://www.open-mpi.org/]

12

http://www.cs.uoregon.edu/research/tau/users/smarts.php
http://www.open-mpi.org/

Installation

-opari =<dir>

Specifies the location of the Opari OpenMP directive rewriting tool. The use of Opari source-
to-source instrumentor in conjunction with TAU exposes OpenMP events for instrumentation. See
examples/opari directory. OPARI [http://www.fz-juelich.de/zam/kojak/opari/] Note: There are two
versions of Opari: standalone - (opari-pomp-1.1.tar.gz) and the newer KOJAK - kojak-<ver>.tar.gz
opari/ directory. Please upgrade to the KOJAK version (especialy if you're using IBM xIf90) and
specify -opari=<kojak-dir>/opari while configuring TAU.

-opari _region

Report performance data for only OpenMP regions and not constructs. By default, both regions and
constructs are profiled with Opari.

-opari _construct

Report performance data for only OpenMP constructs and not Regions. By default, both regions and
constructs are profiled with Opari.

- pdt =<di rect ory>

Specifies the location of the installed PDT (Program Database Toolkit) root directory. PDT is used
to build tau_instrumentor, a C++, C and F90 instrumentation program that automatically inserts
TAU annotations in the source code PDT [http://www.cs.uoregon.edu/research/pdt]. If PDT is con-
figured with a subdirectory option (-compdir=<opt>) then TAU can be configured with the same op-
tion by specifying

- pdt =<di r > - pdt conpdi r =<opt >.

- pcl =<di rect ory>

Specifies the location of the installed PCL (Performance Counter Library) root directory. PCL
provides a common interface to access hardware performance counters on modern microprocessors.
The library supports Sun UltraSparc I/Il, PowerPC 604e under AlX, MIPS R10000/12000 under
IRIX, Compaq Alpha 21164, 21264 under Tru64Unix and Cray Unicos (T3E) and the Intel Pentium
family of microprocessors under Linux. This option specifies the use of hardware performance coun-
ters for profiling (instead of time). To measure floating point instructions, set the environment vari-
able PCL_EVENT to PCL_FP_INSTR (for example). See the section "Using Hardware Performance
Counters' in Chapter 4 for details regarding its usage.

NOTE: If you want to profile multiple PCL counters set the "-MULTIPLECOUNTERS" options as
well. And insteed of using the PCL environment variable use COUNTER1, COUNTER?2, ...
COUNTER25 environment variables to specify the type of counter to profile. PCL
[http://Aww.fz-juelich.de/zam/PCL/]

- papi =<di rect ory>

Specifies the location of the installed PAPI (Performance Data Standard and API) root directory.
PCL provides a common interface to access hardware performance counters and timers on modern
microprocessors. Most modern CPUs provide on-chip hardware performance counters that can re-
cord several events such as the number of instructions issued, floating point operations performed,
the number of primary and secondary data and instruction cache misses, etc. To measure floating
point instructions, set the environment variable PAPI_EVENT to PAPI_FP_INS (for example). This
option (by default) specifies the use of hardware performance counters for profiling (instead of
time). When used in conjunction with -PAPIWALLCLOCK or -PAPIVIRTUAL, it specifies the use
of wallclock or virtual process timers respectively. See the section "Using Hardware Performance
Counters' in Chapter 4 for details regarding its usage.

13

http://www.fz-juelich.de/zam/kojak/opari/
http://www.cs.uoregon.edu/research/pdt
http://www.fz-juelich.de/zam/PCL/

Installation

NOTE: If you want to profile multiple PAPI counters set the "-MULTIPLECOUNTERS" options as
well. And insteed of using the PAPI_EVENT environment variable use COUNTER1, COUNTERZ,
.... COUNTER25 environment variables to specify the type of counter to profile. PAPI
[http://icl.cs.utk.edu/papi/]

- PAPI WVALLCLOCK

When used in conjunction with the -papi=<dir> option, this option allows TAU to use high resolu-
tion, low overhead CPU timers for wallclock time based measurements. This can reduce the TAU
overhead for accessing wallclock time for profile and trace measurements. (See NOTE below.)

- PAPI VI RTUAL

When used in conjunction with the -papi=<dir> option, this option allows TAU to use the process
virtual time (time spent in the "user" mode) for profile measurements, instead of the default
wallclock time. (See NOTE below.)

- CPUTI ME

Specifies the use of user+ system time (collectively CPU time) for profile measurements, instead of
the default wallclock time. This may be used with multi-threaded programs only under the LINUX
operating system which provides bound threads. On other platforms, this option may be used for
profiling single-threaded programs only.

- MULTI PLECOUNTERS

Allows TAU to track more than one quantity (multiple hardware counters, CPU- time, wallclock
time, etc.) Configure with other options such as -papi=<dir>, -pcl=<dir>, -LINUXTIMERS, -
SGITIMERS, -CPUTIME, -PAPIVIRTUAL, etc. See Section "Using Multiple Hardware Counters"
in Chapter 4 for detailed instructions on setting the environment variables COUNTER<1-25> for
this option. If -MULTIPLECOUNTERS is used with the -TRACE option, tracing employs the
COUNTER1 environment variable for wallclock time.

NOTE: The default measurement option in TAU is to use the wallclock time, which is the total time
a program takes to execute, including the time when it is waiting for resources. It is the time meas-
ured from a real-time clock. The process virtual time (-PAPIVIRTUAL) is the time spent when the
process is actually running. It does not include the time spent when the process is swapped out wait-
ing for CPU or other resources and it does not include the time spent on behalf of the operating sys-
tem (for executing a system call, for instance). It is the time spent in the "user" mode. The CPU-
TIME on the other hand, includes both the time the process is running (process virtual time) and the
time the system is providing services for it (such as executing a system call). It is the sum of the pro-
cess virtual (user) time and the system time (See man getrusage()).

NOTE: If "-TRACE" and "-MULTIPLECOUNTERS" options are both set the environment variable
"COUNTER1" must be set to "GET_TIME_OF _DAY".

-j dk=<di rect ory>

Specifies the location of the installed Java 2 Development Kit (JDK1.2+) root directory. TAU can
profile or trace Java applications without any modifications to the source code, byte-code or the Java
virtual machine. See README.JAVA on instructions on using TAU with Java 2 applications. This
option should only be used for configuring TAU to use VMPI for profiling and tracing of Java ap-
plications. It should not be used for configuring paraprof, which uses java from the user's path.

-dyni nst =<di r >

Specifies the directory where the Dynlnst dynamic instrumentation package is installed. Using Dyn-
Inst, auser can invoke tau_run to instrument an executable program at runtime or prior to execution

14

http://icl.cs.utk.edu/papi/

Installation

by rewriting it. DyninstAPI [http://www.dyninst.org/]PARA-DY N [http://www.paradyn.org/].
-vtf=<directory>

Specifies the location of the VTF3 trace generation package. TAU's binary traces can be converted
to the VTF3 format using tau2vtf, a tool that links with the VTF3 library. The VTF3 format is read
by Intel trace analyzer, formerly known as vampir, a commercial trace visualization tool developed
by TU. Dresden, Germany.

-sl og2=<di rectory>

Specifies the location of the SLOG2 SDK trace generation package. TAU's binary traces can be con-
verted to the SLOG2 format using tau2slog2, a tool that uses the SLOG2 SDK. The SLOG2 format
is read by the Jumpshot4 trace visualization software, a freely available trace visualizer from Ar-
gonne National Laboratories. [Ref: ht-
tp://www-unix.mcs.anl.gov/perfvis/downl oad/index.htm#sl og2sdk]

-sl og2

Specifies the use of the SLOG2 trace generation package and the Jumpshot trace visualizer that is
bundled with TAU. Jumpshot v4 and SLOG2 v1.2.5delta are included in the TAU distribution.
When the -dog2 flag is specified, tau2slog2 and jumpshot tools are copied to the
<tau>/<arch>/<bin> directory. It isimportant to have a working javac and java (preferably v1.4+) in
your path. On linux systems, where /usr/bin/java may be a place holder, you'll need to modify your
path accordingly.

-npiinc=<dir>

Specifies the directory where MPI header files reside (such as mpi.h and mpif.h). This option also
generates the TAU MPI wrapper library that instruments MPI routines using the MPI Profiling Inter-
face. See the examples/NPB2.3/config/make.def file for its usage with Fortran and MPI programs.
MPI [http://www-unix.mcs.anl.gov/mpi/]

-npi | i b=<dir>

Specifies the directory where MPI library files reside. This option should be used in conjunction
with the -mpiinc=<dir> option to generate the TAU MPI wrapper library.

-npilibrary=<lib>

Specifies the use of a different MPI library. By default, TAU uses -Impi or -Impich as the MPI lib-
rary. This option allows the user to specify another library. e.g., -mpilibrary=-Impi_r for specifying a
thread-safe MPI library.

- shmeni nc=<di r >

Specifies the directory where shmem.h resides. Specifies the use of the TAU SHMEM interface.
-shment i b=<dir>

Specifies the directory where libsma.a resides. Specifies the use of the TAU SHMEM interface.

-shrmen i brary=<Ii b>

By default, TAU uses -Isma as the shmem/pshmem library. This option alows the user to specify a
different shmem library.

-nocomm

15

http://www.dyninst.org/
http://www.paradyn.org/
http://www-unix.mcs.anl.gov/mpi/

Installation

Allows the user to turn off tracking of messages (synchronous/asynchronous) in TAU's MPI wrapper
interposition library. Entry and exit events for MPI routines are still tracked. Affects both profiling
and tracing.

- epi | og=<dir>

Specifies the directory where the EPILOG tracing package EPILOG
[http:/iwww.fz-juelich.de/zam/kojak/epilog/] is installed. This option should be used in conjunction
with the -TRACE option to generate binary EPILOG traces (instead of binary TAU traces). EPILOG
traces can then be used with other tools such as EXPERT. EPILOG comes with its own implementa-
tion of the MPI wrapper library and the POMP library used with Opari. Using option overrides
TAU'slibrariesfor MPI, and OpenMP.

- MPI TRACE

Specifies the tracing option and generates event traces for MPI calls and routines that are ancestors
of MPI callsin the callstack. This option is useful for generating traces that are converted to the EPI-
LOG trace format. KOJAK's Expert automatic diagnosis tool needs traces with events that call MPI
routines. Do not use this option with the -TRACE option.

- pyt honi nc=<di r>

Specifies the location of the Python include directory. This is the directory where Python.h header
fileislocated. This option enables python bindings to be generated. The user should set the environ-
ment variable PY THONPATH to <TAUROOT>/<ARCH>/lib/bindings-<options> to use a specific
version of the TAU Python bindings. By importing package pytau, a user can manually instrument
the source code and use the TAU API. On the other hand, by importing tau and using
tau.run("<func>"), TAU can automatically generate instrumentation. See examples/python directory
for further information.

- pyt honl i b=<di r>

Specifies the location of the Python lib directory. This is the directory where *.py and *.pyc files
(and config directory) are located. This option is mandatory for IBM when Python bindings are used.
For other systems, this option may not be specified (but -pythoninc=<dir> needs to be specified).

- PROFI LE

This is the default option; it specifies summary profile files to be generated at the end of execution.
Profiling generates aggregate statistics (such as the total time spent in routines and statements), and
can be used in conjunction with the profile browser racy to analyze the performance. Wallclock time
isused for profiling program entities.

- PROFI LECALLPATH

This option generates call path profiles which shows the time spent in aroutine when it is called by
another routine in the calling path. "a => b" stands for the time spent in routine "b" when it is in-
voked by routine"a". This option is an extension of -PROFILE, the default profiling option. Specify-
ing TAU_CALLPATH_DEPTH environment variable, the user can vary the depth of the callpath.
See examples/calltree for further information.

- PROFI LEPHASE

This option generates phase based profiles. It requires specia instrumentation to mark phasesin an
application (1/0, computation, etc.). Phases can be static or dynamic (different phases for each loop
iteration, for instance). See examples/phase/README for further information.

- PROFI LESTATS

16

http://www.fz-juelich.de/zam/kojak/epilog/

Installation

Specifies the calculation of additional statistics, such as the standard deviation of the exclusive time/
counts spent in each profiled block. This option is an extension of -PROFILE, the default profiling
option.

-DEPTHLIM T

Allows users to enable instrumentation at runtime based on the depth of a calling routine on a call-
stack. The depth is specified using the environment variable TAU_DEPTH_LIMIT. When its value
is 1, instrumentation in the top-level routine such as main (in C/C++) or program (in F90) is activ-
ated. When it is 2, only routine invoked directly by main and main are recorded. When a routine ap-
pears at a depth of 2 and at 10 and we set the limit at 5, then the routine is recorded when its depth is
2, and ignored when its depth is 10 on the calling stack. This can be used with -
PROFILECALLPATH to generate a tree of height <h> from the main routine by setting
TAU_CALLPATH_DEPTH and TAU_DEPTH_LIMIT variablesto <h>.

- PROFI LEMEMORY

Specifies tracking heap memory utilization for each instrumented function. When any function entry
takes place, a sample of the heap memory used is taken. This data is stored as user-defined event
datain profiles/traces.

- PROFI LEHEADROOM

Specifies tracking memory available in the heap (as opposed to memory utilization tracking in -
PROFILEMEMORY). When any function entry takes place, a sample of the memory available
(headroom to grow) is taken. This data is stored as user-defined event data in profiles/traces. Please
refer to the examples’headroom/README file for a full explanation of these headroom options and
the C++/C/F90 API for evaluating the headroom.

- COVPENSATE

Specifies online compensation of performance perturbation. When this option is used, TAU com-
putes its overhead and subtracts it from the profiles. It can be only used when profiling is chosen.
This option works with MULTIPLECOUNTERS as well, but while it is relevant for removing per-
turbation with wallclock time, it cannot accurately account for perturbation with hardware perform-
ance counts (e.g., L1 Data cache misses). See TAU Publication [Europar04] for further information
on this option.

- PROFI LECOUNTERS

Specifies use of hardware performance counters for profiling under IRIX using the SGI R10000 per-
fex counter access interface. The use of this option is deprecated in favor of the -pcl=<dir> and -
papi=<dir> options described above.

- SGE Tl MERS

Specifies use of the free running nanosecond resolution on-chip timer on the R10000+. This timer
has a lower overhead than the default timer on SGI, and is recommended for SGIs (similar to the -
papi=<dir> -PAPIWALLCLOCK options).

- CRAYTI MERS

Specifies use of the free running nanosecond resolution on-chip timer on the CRAY X1 cpu
(accessed by the rtc() syscal). This timer has a significantly lower overhead than the default timer
on the X1, and is recommended for profiling. Since this timer is not synchronized across different
cpus, this option should not be used with the -TRACE option for tracing a multi-cpu application,
where a globally synchronized realtime clock is required.

17

1.1.2.

1.1.3.

Installation

- LI NUXTI MERS

Specifies the use of the free running nanosecond resolution time stamp counter (TSC) on Pentium
111+ and Itanium family of processors under Linux. Thistimer has alower overhead than the default
time and is recommended.

- TRACE

Generates event-trace logs, rather than summary profiles. Traces show when and where an event oc-
curred, in terms of the location in the source code and the process that executed it. Traces can be
merged and converted using tau_merge and tau_convert utilities respectively, and visualized using
Vampir, acommercial trace visualization tool. VAMPIR [http://www.vampir-ng.de/]

-muse

Specifies the use of MAGNET/MUSE to extract low-level information from the kernel. To use this
configuration, Linux kernel has to be patched with MAGNET and MUSE has to be install on the ex-
ecuting machine. Also, magnetd has to be running with the appropriate handlers and filters installed.
User can specify pack- age by setting the environment variable TAU_MUSE PACKAGE. MUSE
[http://public.lanl.gov/radiant/]

- noex

Specifies that no exceptions be used while compiling the library. Thisisrelevant for C++.

- useropt =<options-Ilist>

Specifies additional user options such as -g or -1. For multiple options, the options list should be en-
closed in a single quote. For example

% /configure -useropt="-g -l/usr/local/stl'

-hel p

Lists all the available configure options and quits.

tau_setup

tau_setup isa GUI interface to the configure and installtau tools.

installtau script

To install multiple (typical) configurations of TAU at a site, you may use the script “installtau'. It takes
options similar to those described above. It invokes ./configure <opts>; make clean install; to create
multiple libraries that may be requested by the users at a site. The installtau script accepts the following
options:

% installtau -help
TAU Configuration UWility

khkhkkhkhkhhhhhhhhhkhhhhhhhhdhhhdhhhdhhhddhddhdddrdrdrrdrxdk

Usage: installtau [OPTI ONS]

where [OPTIONS] are:

-arch=<arch>

18

http://www.vampir-ng.de/
http://public.lanl.gov/radiant/

1.1.4.

Installation

-fortran=<conpil er>
-cc=<conpi | er>

- c++=<conpil er>

- user opt =<opt i ons>

- pdt =<pdt di r >

- papi =<papi di r >

-npl i nc=<npiincdir>

-npi | i b=<npi |'i bdi r>

-npi library=<npilibrary>
- opari =<oparidir>
khhkkkhhhkkhhhkhkkhhhkkhhhhdhhhhhhddhhhdhdxddhddhdxddhhdhdxddhddhdxddhxdddkx*dkx*x%x*%

These options are similar to the options used by the configure script.

Examples:

(See Appendix for POOMA and Windows installation instructions)
* 3 Install TAU using KCC on SGlI, with trace and profile options:

% / configure -c++=KCC -SA TI MERS - ar ch=sgi 64 - TRACE \
- PROFI LE -prefix=/usr/|ocal/packages/tau

* D) Installing TAU with Java

% / configure -c++=g++ -jdk=/usr/| ocal/packages/jdkl. 4
% make install
% set pat h=($pat h <t audi r>/ <t auar ch>/ bi n)
% setenv LD_LI BRARY_PATH \
$LD LI BRARY_PATH: <t audi r >/ <tauarch>/1ib
% cd exanpl es/j aval pi
% java - XrunTAU Pi 200000
% par apr of

e) Use TAU with KCC, and cc on 64 bit SGI systems and use MPI wrapper libraries with SGI's low
cost timers and use PDT for automated source code instrumentation. Enable both profiling and tra-
cing.

% ./ configure -c++=KCC -cc=cc -arch=sgi 64 \
-npi i nc=/| ocal / apps/ npi ch/i ncl ude \
-npi l i b=/1ocal /apps/ npich/ |ib/lR X64/ch_p4 \
-SA TI MERS - pdt =/ | ocal / apps/ pdt

* d) Use OpenMP+MPI using KAI's Guide compiler suite, Opari for OpenMP instrumentation and use
PAPI for accessing hardware performance counters for profile based measurements.

% ./ configure -c++=gui dec++ -cc=gui dec \
- papi =/ usr/ | ocal / packages/ papi -opennp \
-npi i nc=/usr/ pack- ages/ npi ch/i ncl ude \
-npi | i b=/ usr/ packages/ npich/lib \
-opari=/usr/local /opari

19

Installation

* e) Use CPUTIME measurements for a multi-threaded application using pthreads under LINUX.
% configure -pthread - CPUTI ME
» f) Use multiple hardware performance counters

% configure - MJULTI PLECOUNTERS - papi =/ usr/ | ocal / papi \
- PAPI WALLCLOCK - PAPI VI RTUAL - LI NUXTI MERS \
-npi i nc=/usr/ | ocal / npich/include \
-npi l i b=/usr/local/npich/ 1ib/ \
-pdt =/ usr/1 ocal / pdt ool kit -useropt=-Q2
% set env. COUNTERL LI NUX_TI MERS
% set env. COUNTER2 PAPI _FP_I NS
% set env COUNTER3 PAPI _L1_DCM ...

* @) UseTAU with PDT and MPI on IBM BG/L

% cd pdtool kit-3.x

% configure -XLC -exec-prefix=bgl; nake clean install

% cd tau-2.Xx

% configure -npi -arch=bgl -pdt=/usr/local/pdtoolkit-3.x -pdt_c++=xIC

NOTE: Also see Section "Application Scenarios' in Chapter 2 (Compiling) for an explanation of simple
examples that are included with the TAU distribution.

1.2. Platforms Supported

TAU has been tested on the following platforms:

« 1.5GI

On IRIX 6.x based systems, including Indy, Power Challenge, Onyx, Onyx2 and Origin 200, 2000,
3000 Series, CC 7.2+, KAI [http://www.kai.com] KCC and g++ [http://www.gnu.org] compilers are
supported. On SGI Altix systems, Intel, and GNU compilers are supported.

e 2.LINUX Clusters
On Linux based Intel x86 PC clusters, KAl/Intel's KCC, g++, egcs (GNU), pgCC (PGI)
[http:/iwww.pgroup.com], FCC (Fujitsu) [http://www.fujitsu.com] and icpc/ecpc Intel
[http://lwww.intel .com] compilers have been tested. TAU also runs under 1A-64, Opteron, PowerPC,
Alpha, Apple PowerMac, Sparc and other processors running Linux.

* 3. Sun Solaris
Sun compilers (CC, F90), KAI KCC, KAP/Pro and GNU g++ work with TAU.

* 4.1BM

On IBM SP2 and AIX systems, KAl KCC, KAP/Pro, IBM xIC, xlc, xIf90 and g++ compilers work
with TAU. On IBM BGI/L, IBM XIC, birts xIC, blrts xIf90, bIrts xlc, and gnu compilers work with
TAU. On IBM pSeries Linux, xIC, xlc, xIf90 and gnu compilers work with TAU.

20

http://www.kai.com
http://www.gnu.org
http://www.pgroup.com
http://www.fujitsu.com
http://www.intel.com

Installation

5. HP HP-UX

On HP PA-RISC systems, aCC and g++ can be used.

6. HP Alpha Tru64

On HP Alpha Tru64 machines, cxx and g++, and Guide compilers may be used with TAU.

7. NEC SX series vector machines

On NEC SX-5 systems, NEC c++ may be used with TAU.

8. Cray X1, T3E, SV-1, XT3, RedStorm

On Cray T3E systems, KAl KCC and Cray CC compilers have been tested with TAU. On Cray SV-
1 and X1 systems, Cray CC compilers have been tested with TAU. On Cray XT3, and RedStorm
systems, PGl and GNU compilers have been tested with TAU.

9. Hitachi SR8000 vector machine

On Hitachi machines, Hitachi KCC, g++ and Hitachi cc compilers may be used with TAU

10. Apple OS X

On Apple OS X machines, c++ or g++ may be used to compile TAU. Also, IBM's xIf90, xIf and Ab-
soft Fortran 90 compilers for G4/G5 may be used with TAU.

11. Fujitsu PRIMEPOWER
On Fujitsu Power machines, Sun and Fujitsu compilers may be used with TAU.
11. Microsoft Window

On Windows, Microsoft Visual C++ 6.0 or higher and JDK 1.2+ compilers have been tested with
TAU

NOTE: TAU has been tested with IDK 1.2, 1.3, 1.4.x under Solaris, SGI, IBM, Linux, and MacOS X.

1.3. Software Requirements

1. Javav 1.4

TAU's GUI paraprof requires Java v1.3 or better in your path. We recommend Java version 1.4x
from Sun. An older Tcl/Tk based browser racy is also included with TAU for compatibility. It re-
quires the executable wish to be in your path. racy is also available in this distribution but support
for racy will be gradually phased out. Users are encouraged to use paraprof instead. Paraprof does
not require - jdk=<dir> option to be specified (which is used for configuring TAU for analyzing
Java applications). The java program should be in the user's path.

21

Chapter 2. Compiling

Source-based instrumentation with TAU measurement code requires compilation. At compile time, the
TAU system provides severa options and configuration alternatives. This chapter explains compilation
options to enable profiling or tracing.

2.1. TAU Stub Makefile

TAU configuration generates a Makefile stub as well as alibrary. The Makefile name has the form

Makefil e.tau-<options>.

the library name the form

[i bt au- <opti ons>. a.

For example,

% / configure - TRACE - c++=KCC - ar c=sgi n32

generates

Makefil e.tau-trace-kcc |libtau-trace-kcc. a
in tau-2.x/sgin32/1ib

Using different configuration options, several modular libraries can be built and co-exist even in the
same architecture. To choose a particular version of the library, the corresponding Makefile stub must be
included in the application Makefile. The stub Makefile defines the following variables:

TAU_CXX - for the C++ compiler

* TAU_CC- for the C compiler

* TAU_F90 - for the F90 compiler

e TAU_LI NKER- for the Linker

e TAU I NCLUDE - for the include directories

* TAU_DEFS - for the defines on the command-line
* TAU LI BS-forthe TAU static library

 TAU SHLI BS - for the TAU shared object (dynamic library)

22

Compiling

e TAU_MPI _I NCLUDE - for the directory where MPI header filesreside

e TAU _MPI LI BS- forthe TAU MPI library with the MPI libraries for C/C++
e TAU_MPI _FLI BS - for the TAU MPI library with MPI libraries for Fortran
 TAU_FORTRANLI BS - for additional fortran libraries for linking with C++

* TAU_CXXLI BS - for linking with C++ libraries when native f90 linker is used

* TAU TRACE_I NPUT_LI B - for linking with the TAU trace reader library to process binary TAU
traces (typically used for making a trace converter)

» TAU DI SABLE - for the default TAU stub library for Fortran

e« TAU USER OPT - for any user defined options specified during configuration

In addition to these options, the stub makefile also contains information about other packages configured
with TAU. The stub makefile defines the following variables:

« PDTDI R- for the location of the PDT root directory

» OPARI DI R- for the location of the Opari root directory

e TULI PDI R- for the location of the Tulip root directory

* PCLDI R- for the location of the PCL root directory

* PAPI DI R- for the location of the PAPI root directory

» EPI LOGER- for the location of the EPILOG root directory

« JDKDI R- for the location of the JDK root directory

» DYNI NSTDI R- for thelocation of the DyninstAPI root directory

It should be noted that the TAU library is written in C++. It may be linked with a Fortran or a C object
file in two ways. Either the TAU_LINKER (typically C++ compiler) may be used or the native linker
(C, FO0 compiler) may be used. For Fortran programs that use the C++ linker, the TAU_FORTRANLI BS
macro contains additional Fortran libraries that need to be linked in to create the executable. If the F90
linker is used, TAU_CXXLI BS should be added to the link line which links in the necessary C++ librar-
ies.

A typical makefile that uses these Makefile variables is shown below:

TAURQOTDI R = /usr/local/packages/tau-2.x

i ncl ude $(TAUROOTDI R)/ sgi n32/1i b/ Makefile.tau-trace-kcc

CXX = $(TAU_CXX)

CcC = $(TAU_CO

CFLAGS = $(TAU | NCLUDE) $(TAU _DEFS)
LI BS = $(TAU LIBS) -Im

LDFLAGS = $(USER_OPT)

RM =/binfrm-f

TARGET = matrix

BHHBHBHHBHHBHHBHHBH BB H BB R B R R

23

Compiling

all: $(TARGET)
install: $(TARGET)
$(TARGET) : $(TARGET) . 0

$(CXX) $(LDFLAGS) $(TARGET).0 -0 $@ $(LI BS)
$(TARGET). 0 : $(TARGET).cpp
$(CXX) $(CFLAGS) -c $(TARGET).cpp

cl ean:
$(RM $(TARGET). o $(TARGET)
BHBHBHBHEH R BHBHBHBH BB R R

To use adifferent configuration, simply change the included makefile to some other. For example, for

% ./ configure -pthread -arch=sgi 64

substitute

i ncl ude $(TAUROOTDI R)/ sgi 64/ 11 b/ Makefil e.tau-pthread

in the makefile above. Also,

$(TAUROCOTDI R) / i ncl ude/ Makefil e

points to the most recently configured version of the library.

2.2. Enabling and Disabling the Instrumenta-
tion

Using the TAU stub makefile variable TAU _DEFS while compiling C++ and C source code enables pro-
filing (or tracing) instrumentation and generates the performance data files. To disable the instrumenta-
tion, TAU_DEFS should not be used. In its absence, all the TAU profiling macros defined in the source
code for instrumentation purposes are automatically defined to null (the default behavior). Thus, the in-
strumentation can be retained in the source code, since it has no overhead when it is disabled. For For-
tran however, the instrumentation can be disabled in the program by using the TAU stub makefile vari-
able TAU_DI SABLE on the link command line. This pointsto alibrary that contains empty TAU instru-
mentation routines.

2.3. Using TAU with MPI

TAU MPI wrapper library (libTauMpi.a) uses the MPI Profiling Interface for instrumentation. To use
thelibrary,

1. Configure TAU with -mpiinc=<dir> and -mpilib=<dir> command-line options that specify the loc-
ation of MPI header files and the directory where MPI libraries reside. Example:

% ./configure -npiinc=/usr/local/packages/npi ch/include \

24

Compiling

-npi | i b=/usr/ 1 ocal / packages/ npi ch/ i b/ LI NUX/ ch_pp4 \
- c++=KCC - cc=cc

2. Include the TAU stub Makefile generated in the application makefile.

TAUROOTDI R=/ usr/ | ocal / packages/t au2
i ncl ude $(TAUROOTDI R)/1386_I i nux/ Makefil e.tau-kcc

3. Usethe Makefile variables
$(TAU_MPI _LI BS)
for C/C++ applications and
$(TAU_MPI _FLI BS)
for Fortran 90 applications, to specify the TAU MPI libraries before the
$(TAU_LI BS)
in the link command line. Also, use
$(TAU_MPI _I NCLUDE)

in the compiler command line to specifies the MPI include directory to be used. Example;

CXX = $(TAU_CXX)
CFLAGS = $(TAU_INCLUDE) $(TAU_DEFS) $(TAU_MPI _| NCLUDE)
LIBS = $(TAUMPI _LIBS) $(TAU LI BS)

4. Compile and run the MPI application as usual to generate the performance data.

2.4. Environment Variables

When the program has been compiled, it can be executed as it normally would be (for example, using
mpirun for an MPI task). TAU generates profile data files or trace files in the current working directory.
One file for each context and thread is generated. To better manage different experiments, set the envir-
onment variables

* PROFI LEDI R - to name the directory that should contain the profile data files and
* TRACEDI R - thedirectory where event traces should be stored.
e LD LI BRARY_PATH - (or LIBPATH for IBM) should include the <tauroot>/<tauarch>/lib direct-

ory if TAU is used with JAVA 2 (using the -jdk=<dir> configuration option) or dyninstAPI (using
the -dyninst=<dir> configuration option).

Example:

25

Compiling

% make
% set env TRACEDI R /users/foo/tracedat a/ experinent1
Y% npirun -np 4 matrix

Note: TAU also uses the environment variable PCL_EVENT and PAPI _EVENT to specify the hardware
performance counter to be used when -pcl=<dir> or -papi=<dir> configuration options are used, respect-
ively. See Section 4.4, “Using Hardware Performance Counters’ for further details.

2.5. Application Scenarios

The TAU exanpl es directory contains programs that illustrate the use of TAU instrumentation and
measurement options.

i nstrument - This contains a simple C++ example that shows how TAU API can be used for
manually instrumenting a C++ program.

t hr eads A simple multi-threaded program that shows how the main function of athread is instru-
mented. Performance data is generated for each thread of execution. Uses pthread library and TAU
must be configured with the - pt hr ead option.

ct hr eads Same as threads above, but for a C program. An instrumented C program may be com-
piled with a C compiler, but needsto be linked with a C++ linker.

spr oc SGI sproc threads example. TAU should be configured with the - spr oc option to use this.

pi An MPI program that calculates the value of pi and e. It highlights the use of TAU's MPI wrap-
per library. TAU needs to be configured with -mpiinc=<dir> and -mpilib=<dir> to use this.

nmpi shl i b Demonstrates the use of MPI wrapper library in instrumenting a shared object. The MPI
application isinstrumented is instrumented as well. TAU needs to be configured with -mpiinc=<dir>
and mpilib=<dir> flags.

pyt hon Instrumentation of a python application can be done automatically or manually using the
TAU Python hindings. Two examples, aut 0. py and manual . py demonstrate this respectively.
TAU needs to be con-figured with-pythoninc=<dir that contains Python.h> option and the user needs
to set PYTHONPATH to <taudir>/<arch>/lib to use this feature.

tracei nput - To build atrace converter/trace reader application, we provide the TAU trace input
library. This directory contains two examples (in ¢ and c++ subdirectories) that illustrate how an ap-
plication can use the trace input API to read online or post-mortem TAU binary traces. It shows how
the user can register routines with the callback interface and how TAU invokes these routines when
events take place.

papi - A matrix multiply example that shows how to use TAU statement level timers for comparing
the performance of two algorithms for matrix multiplication. When used with PAPI
[http://icl.cs.utk.edu/papi/] or PCL [http://www.fz-juelich.de/zam/PCL/PCLcontent.html], this can
highlight the cache behaviors of these algorithms. TAU should be configured with -papi=<dir> or -
pcl=<dir> and the user should set PAPI _EVENT - or PCL_EVENT respective environment vari-
ables, to use this.

papi t hr eads - Same as papi, except uses threads to highlight how hardware performance coun-
ters may be used in a multi-threaded application. When it is used with PAPI, TAU should be con-
figured with -papi=<dir> -pthread autoinstrument Shows the use of Program Database Toolkit
(PDT) for automating the insertion of TAU macros in the source code. It requires configuring TAU

26

http://icl.cs.utk.edu/papi/
http://www.fz-juelich.de/zam/PCL/PCLcontent.html

Compiling

with the -pdt=<dir> option. The Makefile is modified to illustrate the use of a source to source trans-
lator (tau_instrumentor).

aut oi nst runment - Shows the use of Program Database Toolkit (PDT) for automating the inser-
tion of TAU macros in the source code. It requires configuring TAU with the -pdt=<dir> option. The
Makefileis modified to illustrate the use of a source to source translator (tau_instrumentor).

anal yze - Showsthe use of tau_analyze, a utility that generates selective instrumentation lists for
use with tau_instrumentor based on the analysis of collected program information and a user defined
instrumentation scenario. The tau_analyze utility expands on the functionality of the tau_reduce util-
ity. TAU must be configured with -pdt=<dir> option.

r educe - Showsthe use of tau_reduce, a utility that can read profiles and a set of rules and determ-
ine which routines should not be instrumented (for frequently called light-weight routines). See
<tau>/util s/ TAU REDUCE. READVE file for further details. It requires configuring TAU with
-pdt=<dir> option.

ci nst rument - Showsthe use of PDT for C. Requires configuring TAU with -pdt=<dir> option.

m xednode - This example illustrates the use of PDT, hand-instrumentation (for threads), MPI lib-
rary instrumentation and TAU system call wrapper library instrumentation. Requires configuring
TAU with -mpiinc=<dir> -mpilib=<dir> -pdt=<dir> -pthread options.

pdt _npi - Thisdirectory contains C, C++ and F90 examples that illustrate how TAU/PDT can be
used with MPI. Requires configuring TAU with -pdt=<dir> -mpiinc=<dir> -mpilib=<dir> options.
You may aso try this with the - TRACE - epi | og=<di r > - options to use the EPI-LOG tracing
package (from FZJ).

cal |l path - Shows the use of calpath profiling. Requires configuring TAU with the -
PROFI LECALLPATH - option. Setting the environment variable TAU_CALLPATH DEPTH -
changes the depth of the callpath recorded by TAU. The default value of thisvariableis 2.

phase - Shows the use of phase based profiling. Requires configuring TAU with the -
PROFILEPHASE option. See the README file in the phase directory for details about the API and
an example.

sel ecti ve - This example illustrates the use of PDT, and selective profiling using profile groups
in the tau_instrumentor. Requires configuring TAU with -pdt=<dir> -fortran=<...> options.

fortran & f90 - Show how to instrument a simple Fortran 90 program. A C++ linker needs to
be used when linking the fortran application.

NPB2. 3 - The NAS Paralle Benchmark 2.3 [http://www.nas.nasa.gov/Software/NPB/] . It shows
how to use TAU's MPI wrapper with a manually instrumented Fortran program. LU and SP are the
two benchmarks. LU is instrumented completely, while only parts of the SP program are instru-
mented to contrast the coverage of routines. In both cases MPI level instrumentation is complete.
TAU needs to be configured with -mpi-inc=<dir> and -mpilib=<dir> to use this.

dyni nst - An example that shows the use of DyninstAPI [http://www.dyninst.org/] to insert TAU
instrumentation. Using Dyninst, no modifications are needed and tau_run, a runtime instrumentor,
inserts TAU calls at routine transitions in the program. [This represents work in progress).

dyni nst t hr eads - The above example with threads.

j aval pi - Shows a java program for calculating the value of pi. It illustrates the use of the TAU
JVMPI layer for instrumenting a Java program without any modifications to its source code, byte-
code or the VM. It requires a Java 2 compliant VM and TAU needs to be configured with the -
jdk=<dir> option to use this.

27

http://www.nas.nasa.gov/Software/NPB/
http://www.dyninst.org/

Compiling

j aval api - The same Pi program as above that illustrates the use of the TAU API. There are sub-
directories for C, C++ and F90 to show the differences in instrumentation and Makefiles. TAU needs
to be configured with the -openmp option to use this.

opennp - Shows how to manually instrument an OpenMP program using the TAU API. There are
subdirectories for C, C++ and F90 to show the differences in instrumentation and Makefiles. TAU
needs to be configured with the -openmp option to use this.

opari - Opari [http://lwww.fz-juelich.de/zam/kojak/opari/] is an OpenMP directive rewriting tool
that works with TAU. Configure TAU with -opari=<dir> option to use this. This provides detailed
instrumentation of OpenMP constructs. There are subdirectories for C++, pdt_f90, and OpenMPI to
demonstrate the use of this tool. The pdt_f90 directory contains an example that shows the use of
PDT with Opari for a Fortran 90 program.

opennpi - lllustrates TAU's support for hybrid execution models in the form of MPI for message
passing and OpenMP threads. TAU needs to be configured with -mpiinc=<dir> -mpilib=<dir> -
openmp options to use this. fork Illustrates how to register a forked process with TAU. TAU
provides two options: TAU_| NCLUDE_PARENT_DATA - and TAU_EXCLUDE_PARENT_DATA -
which allows the child process to inherit or clear the performance data when the fork takes place.

fork - Illustrates how to register a forked process with TAU. TAU provides two options:
TAU_| NCLUDE_PARENT_DATA and TAU_EXCLUDE_PARENT_DATA which allows the child
process to inherit or clear the performance data when the fork takes place.

mappi ng - lllustrates two examples in the embedded and external subdirectories. These correspond
to profiling at the object level, where the time spent in a method is displayed for a specific object.
There are two ways to achieve this using an embedded association. The first method requires an ex-
tension of the class definition with a TAU pointer and the second scheme uses external hash-table
lookup that relies on looking at the object address at each method invocation. Both of these ex-
amplesillustrate the use of the TAU Mapping API.

mul ti count ers - lllustrates the use of multiple measurement options configured simultaneously
in TAU. See README file for instructions on setting the env. variables COUNTERS<1- 25> - for
specifying measurements. Requires configuring TAU with - MULTI PLECOUNTERS.

sel ecti veAccess - lllustrates the use of TAU API for runtime access of TAU performance
data. A program can get information about routines executing in its context. This can be used in con-
junction with multiple counters.

menory - TAU can sample memory utilization on some platforms using the getrusage() system call
and interrupts. This directory illustrates how sampling can be used to track the maximum resident set
size. See the README file in the memory directory for further information.

mal | oc - TAU's malloc and free wrappers can help pinpoint where the memory was allocated/
deallocated in a C/C++ program. It can show the size of memory malloc'ed and free'd along with the
source file name and line number.

tauconpi | er - using $(TAU_COWPI LER) in your Makefile before the compiler name invokes
tau_compiler.sh - a shell script that instruments and compiles the source file and links in the correct
libraries. A Fortran 90 exampleillustrates its use in the f90 subdirectory.

user event - TAU's user defined events can show context information highlighting the callpath
that led to the event. This is supported using the TAU REG STER CONTEXT_EVENT and
TAU_CONTEXT_EVENT calls. It uses the TAU_CALLPATH DEPTH env. variable. This feature
works independently of the callpath or phase profiling options, which apply to bracketed entry and
exit events - not atomic events. Y ou can disable tracking the callpath at runtime.

headr oom- TAU's memory headroom evalution options are discussed at length in the examples/
headroom/README file. The amount of heap memory that can be allocated at any given point in

28

http://www.fz-juelich.de/zam/kojak/opari/

Compiling

the program'’s execution are tracked in this directory (and three subdirectories - track, here, and avail-
able). - PROFI LEHEADROOMconfiguration option may be used with these examples.

npi trace - Kojak's Expert tool needs traces that record events that call MPI routines. We track
this information at runtime when TAU is configured with the - MPI TRACE option. This exampleil-
lustrates its use.

29

Chapter 3. Tau Compiler
3.1. Introduction

The Tuning and Analysis Utilities (TAU) offers two methods for instrumenting C, C++, and Fortran
code for profiling and tracing. The first is to instrument software by hand. While it gives the user com-
plete control over what methods are instrumented, it has severa disadvantages; the primary one being
that process of inserting and removing code can be time consuming and error prone. The second method
isto have TAU automatically instrument your source using the MPI wrapper library and the TAU Com-
piler.

If you are only interested in time spent in MPI functions, you only need to link your software to the
TAU MPI wrapper library. See "Profiling MPI Software using TAU" for more information on this sub-
ject. However, most projects need a comprehensive picture of where time is spent. The TAU Compiler
provides a simple way to automatically instrument an entire project. The TAU Compiler can be used on
C, C++, fixed form Fortran, and free form Fortran.

3.2. Installing TAU Compiler

The TAU compiler comes standard with the TAU distribution, but requires that the Program Database
Toolkit (PDT) be installed. TAU relies on the parsers provided by PDT to automatically insert TAU in-
strumentation into fuctions. Please see "Installing The Program Database Toolkit" for information on
how to install PDT. The rest of this section will provide simple installation instructions for installing
TAU to profile source code. Please see "Installing The Tuning and Analysis Utilities" for more informa-
tion on the specific options available for a TAU installation.

Download and extract TAU from the TAU pages at The University of Oregon. In the extracted TAU dir-
ectory, issue the command:

% ./configure -c++=<conpiler> -cc=<conpiler>\
-fortran=<conpiler> -pdt=<pdtdir> -npi \
-npiinc=<dir> -npilib=<dir> -PROFILE

This configures TAU to instrument MPI programs C++, C and Fortran programs, using PDT for auto-
matic instrumentation. If you would like to see what other options are available, you can issue:

./configure -help

to get a complete listing of the configuration flags.

Configure will give you feedback on its progress. After the configuration is complete, you will want to
add the directory indicated by TAU to your path; that is where the TAU Compiler will be located. Now
you can enter:

% nmake install

toinstal TAU into the local directory.

3.3. Instrumenting with TAU Compiler

30

Tau Compiler

This section describes how the TAU Compiler can be used to instrument Fortran 90, C, and C++
projects. In general, the only necessary step is to replace the compiler used to build your projects with
the TAU compiler command.

The combination of the TAU generated Makefile (found in <arch>/lib) and tau_compiler.sh (found in

<atch>/bin) makes it particularly easy to instrument projects that use make to control the build. Open
your makefile, insert

i nclude <tau_dir>/<arch>/1ib/Mkefile.tau-npi-pdt

in the top of it. This will include al of the header, library, and tool definitions that tau_compiler will
need for your compiler, mpi installation, and pdt instalation. Note that if you configured TAU with
more options than listed in the installation section, the name of the makefile may be dlightly different.
Now, find the line that states which compiler is used for compilation. For example, your Makefile might
contain theline

CXX=g++

Replace that line with

CXX=$(TAU_COWPI LER) g++

Perform this step for every Makefile in your project. Build your project as normal. If everything goes
well, the TAU Compilere will parse your source files, instrument them with profiling code, save the in-
strumented files in temporary files, build and link the temporary files, the finally clean up the files. The
build process will emit extra information, but the resulting object files and binaries will be completely
instrumented. Now, when you run your program, it will write one or more profile files to your working
directory. These profiles can be viewed using pprof or paraprof. For more information, see The Paraprof
User's Guide.

3.4. Using tau_compiler.sh

If you want to instrument a single file, without using a makefile to handle al of the heavy lifting, you
can use tau_compiler.sh by itself to instrument afile. Its syntax is:

% tau_conpil er.sh <tau_conpil er_options> <compiler> \
<conpi |l er _opti ons>

The options available for tau_compiler.sh are:

* -optVerbose

Turn on verbose debugging messages.
e -optPdtDir=<dir>

The PDT architecture directory. Typically $(PDTDI R) / $(PDTARCHDI R) .
e - opt Pdt F950pt s=<opt s>

31

Tau Compiler

Optionsfor Fortran parser in PDT (f95parse).

- opt Pdt F95Reset =<opt s>

Reset options to the Fortran parser to the given list.
- opt Pdt COpt s=<opt s>

Options for C parser in PDT (cparse). Typicaly $(TAU_MPI _I NCLUDE) $(TAU_| NCLUDE)
$(TAU_DEFS) .

- opt Pdt CReset =<opt s>
Reset options to the C parser to the given list
- opt Pdt CxxQpt s=<opt s>

Options for C++ paser in PDT (cxxparse). Typicaly $(TAU_MPI _| NCLUDE)
$(TAU_I NCLUDE) $(TAU_DEFS).

- opt Pdt CReset =<opt s>

Reset options to the C++ parser to the given list

- opt Pdt F90Par ser =<par ser >

Specify adifferent Fortran parser. For e.g., f 90par se instead of f 95par se.
- opt Pdt User =<opt s>

Optional arguments for parsing source code.

- opt Taul nstr =<pat h>

Specify location of tau_instrumentor. Typicaly
$(TAURQOOT) / $(CONFI G_ARCH) / bi n/ tau_i nstrunent or .

-opt TauSel ect Fi |l e=<fil e>

Specify selective instrumentation file for tau_instrumentor
- opt PDBFi | e=<fil e>

Specify PDB file for tau_instrumentor. Skips parsing stage.
- opt Tau=<opt s>

Specify options for tau_instrumentor.

- opt Conpi | e=<opt s>

Options passed to the compiler. Typicaly $(TAU_MPI _I NCLUDE) $(TAU_I NCLUDE)
$(TAU_DEFS)

- opt Reset =<opt s>
Reset options to the compiler to the given list

- opt Li nki ng=<opt s>

32

Tau Compiler

Options passed to the linker. Typicadly $(TAU _MPI _FLI BS) $(TAU_LI BS)
$(TAU_CXXLI BS)

» -optLinkReset =<opt s>
Reset options to the linker to the given list.
e -opt TauCC=<cc>
Specifies the C compiler used by TAU.
o -optOpari Tool =<pat h/ opari >
Specifies the location of the Opari tool.
» -optOpari Di r=<pat h>
Specifies the location of the Opari directory.
e -optOpari Opt s=<opt s>
Specifies optional arguments to the Opari tool.
e -optQpari Reset =<opt s>

Resets options passed to the Opari tool.

e - opt NoMpi
Removes- | * mpi * libraries during linking (default).
* - opt Mpi

Does not remove - | * npi * libraries during linking.
* -optKeepFiles

Does not remove intermediate . pdb and . i nst . * files.

3.5. TAU scripted compilation

If you wish to avoid the modification of your Makefiles, or are not using Makefiles at all, TAU provides
three script that will instrument your code from the command line.

3.5.1. Usage

TAU provides these scripts: tau_f90.sh, tau_cc.sh, and tau_cxx.sh to compile Fortan, C, and C++ pro-
grams respectively. These can the found in the tools/src/ directory so you may wish to add it to your
path. Y ou might use tau_cc.sh to compile a C program by typing:

%tau_cc.sh -tau_nmakefile=[path to nakefile] \
-tau_options=[optionx] sanpl eCprogramc

The Makefile can wusually be found in the /[arch]/lib directory, for example /

33

Tau Compiler

appl e/ l'i b/ Makefile.tau-pdt.
tau_cc.sh also has the ability to use a Makefile specified in an environment variable. to run tau_cc.sh so
it uses the Makefile specified by environment variable TAU_MAKEFI LE, type:

%export TAU MAKEFI LE=[path to tau]/[arch]/lib/[makefile].
%tau_cc.sh sanpl eCprogramc

Similarly, if you want to set TAU COWPI LER options like selective instrumentation use the
TAU_OPTI ONS environment variable.

Chapter 4. Profiling

This chapter describes running an instrumented application and the generation and subsequent analysis
of profile data. Profiling shows the summary statistics of performance metrics that characterize applica-
tion performance behavior. Examples of performance metrics are the CPU time associated with a
routine, the count of the secondary data cache misses associated with a group of statements, the number
of times aroutine executes, etc.

4.1. Running the application

After instrumentation and compilation are completed, the profiled application is run to generate the pro-
file data files. These files can be stored in a directory specified by the environment variable PRO-
FI LEDI R as explained in Chapter 2. By default, all instrumented routines and statements are measured.
To selectively measure groups of routines and statements, we can use the command-line parameter -
- profi | e to specify the statements to be profiled. Example:

% set env PROFI LEDI R / hore/ sameer / profi |l edat a/ experi ment 55
Y% npirun -np 4 matrix

This profiles al routines
Y% npirun -np 4 matrix --profile io+field+2

The above profiles routines belonging to TAU | O, TAU_FI ELD and TAU_USER2 profile groups.
For adetailed list of groups, pleasereferto TAU [htt p: / / www. ¢s. uor egon. edu]

4.2. Selectivly Profiling an Application

TAU alow the users to select which functions to profile within a single application. One way the user
can selectivly instrument an application is by specifing rules which govern which functions should be
profiled.

TAU's environment variable TAU_THROTTLE may be turned on to enable selective instrumentation
basied on such rules. TAU uses a default rule of numcalls > 100000 & & usecg/call < 10 which means
that if a function executes greater than 100000 times and has an inclusive time per call of less than 10
microseconds, that profiling of that function will be disabled after that threshold is reached. To change
the values of numcalls and usecs/call the user may optionally set environment variables:

% setenv TAU THROTTLE 1
% set env TAU THROTTLE_NUMCALLS 2000000
% setenv TAU THROTTLE_PERCALL 5

to change the values to 2 million and 5 microseconds per call. Throttling is disabled by default and will
not take effect unlessthe TAU_THROTTLE environment variableis set to some value.

For more control over selective instrumentation use the tool "tau_reduce". Seetau_reduce

4.3. Running an application using DyninstAPI

35

http://www.cs.uoregon.edu

Profiling

Install DyninstAPI package and refer to the installed directory while configuring TAU. Uset au_r un,
atool that instruments the application at runtime.

The commandline options accepted by tau run are:

Usage: tau_run [-Xrun<Taulibrary>][-v][-0 outfile] \
[-f <instrunentation file>] <application> [args]

By default, | i bTAU. so is loaded by tau_run. However, the user can override this and specify another
file using the -Xrun<Taulibrary>. In this case lib<Taulibrary>.so will be loaded using
LD LI BRARY_PATH.

The -f <instrumentation file> option can be used to specify an exclude/include list of routines and/or
files for instrumentation. The list of routines to be excluded from instrumentation is specified, one per
line, enclosed by BEG N_EXCLUDE LI ST and END_EXCLUDE LI ST. Instead of specifying which
routines should be excluded, the user can specify the list of routines that are to be instrumented using the
include list, one routine name per line, enclosed by BEG N_INCLUDE LI ST and
END | NCLUDE_ LI ST. Similarly, files can be included or excluded with the BE-

G N_FI LE_EXCLUDE_LI ST, END_FILE EXCLUDE_ LI ST, BEG N_FI LE_| NCLUDE_LI ST,

and END FI LE | NCLUDE LI ST lines. '# (when the first character of the line) begins a comment.
However '# used within aline specifies awild-card. For example:

#Tell tau to not profile these functions
BEG N_EXCLUDE_LI ST

voi d quicksort(int *, int, int)

The next |ine excludes all functions begining with "sort__
"int *"

void sort #(int *)

void interchange(int *, int *)

and havi ng argunents

END_EXCLUDE_LI ST

#Excl ude these files fromprofiling
BEG N_FI LE_EXCLUDE_LI ST

*,. S0

END_FI LE_EXCLUDE_LI ST
Touset au_r un, TAU is configured with DyninstAPI as shown below:

% configure -dyni nst=/usr/|ocal /packages/ dyni nst API
% make install

% cd tau/ exanpl es/ dyni nst

% make install

% tau_run klargest 2500 23

% ppr of ; par apr of

Support for new platforms and compilersis being added and this DyninstAPI option is experimental for
now.

4.4. Using Hardware Performance Counters

36

Profiling

Performance counters exist on modern microprocessors. These count hardware performance events such
as cache misses, floating point operations, etc. while the program executes on the processor. The Per-
formance Data Standard and APl (PAPI, PAPI [http://icl.cs.utk.edu/papi/]) and
Performance Counter Library (PCL, PCL [http://ww. fz-juelich.de/zanm PCL/])
packages provide a uniform interface to access these performance counters. TAU can use either PAPI or
PCL to access these hardware performance counters. To do so, download and install PAPI or PCL.
Then, configure TAU using the -pcl=<dir> or -papi=<dir> configuration command-line option to spe-
cify the location of PCL or PAPI . Build TAU and applications as you normally would (as described in
Chapters 2 and 3). While running the application, set the environment variable PCL_EVENT or
PAPI _EVENT respectively, to specify which hardware performance counter TAU should use while pro-
filing the application.

Note

By default, only one counter is tracked at a time. To track more than one counter use -
MULTI PLECOUNTERS. See Section 4.5, “Using Multiple Hardware Counters for Meas-
urement” for more details.

To select floating point instructions for profiling using PAPI , you would:

% configure -papi=/usr/local/packages/ papi-2.3
% nmake cl ean install

% cd exanpl es/ papi

% setenv PAPI _EVENT PAPI _FP_INS

% a. out

In addition to the following events, you can use native events (see papi_native) on a given CPU by set-
ting PAPI _EVENT to PAPI _NATI VE_<event >. For example:

% set env PAPI _EVENT PAPI _NATIVE PM BI Q | DU FULL_CYC
% a. out

Table 4.1. Events measured by setting the environment variable PAPI_EVENT in
TAU

PAPI_EVENT EVENT Measured

PAPI_L1 DCM Level 1 data cache misses

PAPI L1 ICM Level 1 instruction cache misses
PAPI_L2 DCM Level 2 data cache misses

PAPI L2 ICM Level 2 instruction cache misses
PAPI_L3 DCM Level 3 data cache misses
PAPI_L3 ICM Level 3instruction cache misses
PAPI L1 TCM Level 1 total cache misses
PAPI_L2 TCM Level 2total cache misses

PAPI L3 TCM Level 3total cache misses
PAPI_CA_SNP Snoops

PAPI_CA_SHR Request for access to shared cache line (SMP)

37

http://icl.cs.utk.edu/papi/
http://www.fz-juelich.de/zam/PCL/

Profiling

PAPI_EVENT EVENT Measured

PAPI_CA_CLN Request for access to clean cache line (SMP)
PAPI_CA_INV Cache Line Invaidation (SMP)
PAPI_CA_ITV Cache Line Intervention (SMP)

PAPI_L3 LDM Level 3 load misses

PAPI L3 STM Level 3 store misses

PAPI_BRU_IDL Cycles branch unitsareidle
PAPI_FXU_IDL Cyclesinteger unitsareidle
PAPI_FPU_IDL Cyclesfloating point units areidle
PAPI_LSU_IDL Cyclesload/store units areidle

PAPI_TLB DM Data trandlation |ookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_TLB TL Total translation lookaside buffer misses
PAPI_L1 LDM Level 1 load misses

PAPI_ L1 STM Level 1 store misses

PAPI_L2 LDM Level 2 load misses

PAPI_ L2 STM Level 2 store misses

PAPI_BTAC M BTAC miss

PAPI_PRF DM Prefetch data instruction caused a miss
PAPI_L3 DCH Level 3 Data Cache Hit

PAPI_TLB_SD Trandation lookaside buffer shootdowns (SMP)
PAPI_CSR FAL Failed store conditional instructions
PAPI_CSR_SUC Successful store conditional instructions
PAPI_CSR TOT Total store conditional instructions

PAPI_MEM_SCY

Cycles Stalled Waiting for Memory Access

PAP_MEM_RCY

Cycles Stalled Waiting for Memory Read

PAPI_MEM_WCY

Cycles Stalled Waiting for Memory Write

PAPI_STL_ICY Cycleswith No Instruction Issue
PAPI_FUL_ICY Cycles with Maximum Instruction Issue
PAPI_STL_CCY Cycles with No Instruction Completion
PAPI_FUL_CCY Cycles with Maximum Instruction Completion
PAPI_HW _INT Hardware interrupts

PAPI_BR _UCN Unconditional branch instructions executed
PAPI_BR CN Conditional branch instructions executed
PAPI_BR TKN Conditional branch instructions taken
PAPI_BR_NTK Conditional branch instructions not taken
PAPI_BR MSP Conditional branch instructions mispredicted
PAPI_BR _PRC Conditional branch instructions correctly predicted
PAPI_FMA_INS FMA instructions completed

PAPI_TOT_IIS Total instructions issued

PAPI_TOT_INS Total instructions executed

PAPI_INT_INS Integer instructions executed

38

Profiling

PAPI_EVENT EVENT Measured

PAPI_FP_INS Floating point instructions executed
PAPI_LD_INS Load instructions executed
PAPI_SR INS Store instructions executed
PAPI_BR_INS Total branch instructions executed
PAPI_VEC INS Vector/SIMD instructions executed
PAPI_FLOPS Floating Point Instructions executed per second
PAPI_RES_STL Cycles processor is stalled on resource
PAPI_FP _STAL FP units are stalled
PAPI_TOT_CYC Total cycles

PAPI_IPS Instructions executed per second
PAPI_LST_INS Total load/store instructions executed
PAPI_SYC_INS Synchronization instructions executed
PAPI_L1 DCH L1 D Cache Hit

PAPI_L2 DCH L2 D Cache Hit

PAPI_L1 DCA L1 D Cache Access

PAPI_L2 DCA L2 D Cache Access

PAPI_L3 DCA L3 D Cache Access

PAPI_L1 DCR L1 D Cache Read

PAPI_L2 DCR L2 D Cache Read

PAPI_L3 DCR L3 D Cache Read

PAPI_L1 DCW L1 D Cache Write

PAPI_L2 DCW L2 D Cache Write

PAPI_L3 DCW L3 D Cache Write

PAPI_L1 ICH L1 instruction cache hits

PAPI_L2 ICH L2 instruction cache hits

PAPI_L3 ICH L3 instruction cache hits

PAPI_L1 ICA L1 instruction cache accesses
PAPI_L2 ICA L2 instruction cache accesses
PAPI_L3 ICA L 3 instruction cache accesses

PAPI L1 ICR L1 instruction cache reads

PAPI L2 ICR L2 instruction cache reads

PAPI_L3 ICR L3 instruction cache reads

PAPI_L1 ICW L1 instruction cache writes

PAPI_L2 ICW L2 instruction cache writes

PAPI_L3 ICW L3 instruction cache writes

PAPI_L1 TCH L1 total cache hits

PAPI_L2 TCH L2 total cache hits

PAPI_L3 TCH L 3 total cache hits

PAPI_L1 TCA L1 total cache accesses

PAPI_L2 TCA L2 total cache accesses

PAPI_L3 TCA L 3 total cache accesses

39

Profiling

PAPI_EVENT EVENT Measured
PAPI_L1 TCR L1 total cache reads
PAPI_L2 TCR L2 total cache reads
PAPI_ L3 TCR L 3 total cache reads
PAPI_L1 TCW L1 total cache writes
PAPI L2 TCW L2 total cache writes
PAPI_ L3 TCW L3 total cache writes
PAPI_FML_INS FM ins
PAPI_FAD_INS FA ins
PAPI_FDV_INS FD ins
PAPI_FSQ_INS FSqins
PAPI_FNV_INS Finvins

For example to measure the floating point operations in routines using PCL,

% ./ configure -pcl=/usr/local/packages/pcl-1.2

% set env PCL_EVENT PCL_FP_I NSTR
% npirun -np 8 application

Table 4.2. Events measured by setting the environment variable PCL_EVENT in

TAU

PCL_EVENT

EVENT Measured

PCL_L1CACHE_READ

L1 (Level one) cache reads

PCL_L1CACHE_WRITE

L1 cache writes

PCL_L1CACHE_READWRITE

L1 cache reads and writes

PCL_LA1CACHE HIT L1 cache hits
PCL_L1CACHE_MISS L1 cache misses
PCL_L1DCACHE _READ L1 data cache reads
PCL_L1DCACHE WRITE L1 data cache writes
PCL_L1DCACHE READWRITE L1 data cache reads and writes
PCL_L1DCACHE_HIT L1 data cache hits

PCL_L1DCACHE_MISS

L1 data cache misses

PCL_L1ICACHE_READ

L1 instruction cache reads

PCL_L1ICACHE WRITE

L1 instruction cache writes

PCL_L1ICACHE_READWRITE

L1 instruction cache reads and writes

PCL_L1ICACHE HIT

L1 instruction cache hits

PCL_L1ICACHE_MISS

L1 instruction cache misses

PCL_L2CACHE_READ

L2 (Level two) cache reads

PCL_L2CACHE_WRITE

L2 cache writes

PCL_L2CACHE_READWRITE

L2 cache reads and writes

PCL_L2CACHE_HIT

L2 cache hits

PCL_L2CACHE_MISS

L2 cache misses

40

Profiling

PCL_EVENT EVENT Measured
PCL_L2DCACHE_READ L 2 data cache reads
PCL_L2DCACHE_WRITE L2 data cache writes
PCL_L2DCACHE_READWRITE L 2 data cache reads and writes
PCL_L2DCACHE_HIT L 2 data cache hits

PCL_L2DCACHE_MISS

L2 data cache misses

PCL_L2ICACHE_READ

L2 instruction cache reads

PCL_L2ICACHE_WRITE

L2 instruction cache writes

PCL_L2ICACHE_READWRITE

L2 instruction cache reads and writes

PCL_L2ICACHE_HIT

L2 instruction cache hits

PCL_L2ICACHE_MISS

L2 instruction cache misses

PCL_TLB_HIT TLB (Trandation Lookaside Buffer) hits
PCL_TLB_MISS TLB misses

PCL_ITLB_HIT Instruction TLB hits

PCL_ITLB_MISS Instruction TLB misses

PCL_ DTLB_HIT Data TLB hits

PCL_DTLB_MISS Data TLB misses

PCL_CYCLES Cycles

PCL_ELAPSED_CYCLES Cycles elapsed

PCL_INTEGER_INSTR

Integer instructions executed

PCL_FP_INSTR

Floating point (FP) instructions executed

PCL_LOAD_INSTR

Load instructions executed

PCL_STORE_INSTR

Store instructions executed

PCL_LOADSTORE_INSTR

L oads and stores executed

PCL_INSTR

Instructions executed

PCL_JUMP_SUCCESS

Successful jumps executed

PCL_JUMP_UNSUCCESS

Unsuccessful jumps executed

PCL_JUMP

Jumps executed

PCL_ATOMIC_SUCCESS

Successful atomic instructions executed

PCL_ATOMIC_UNSUCCESS

Unsuccessful atomic instructions executed

PCL_ATOMIC Atomic instructions executed
PCL_STALL_INTEGER Integer stalls

PCL_STALL_FP Floating point stalls

PCL_STALL_JUMP Jump stalls

PCL_STALL_LOAD Load stalls

PCL_STALL_STORE Store Stalls

PCL_STALL Stalls

PCL_MFLOPS Millions of floating point operations/second
PCL_IPC Instructions executed per cycle

PCL_L1DCACHE_MISSRATE

Level 1 data cache missrate

PCL_L2DCACHE_MISSRATE

Level 2 data cache missrate

PCL_MEM_FP_RATIO

Ratio of memory accessesto FP operations

41

Profiling

4.5. Using Multiple Hardware Counters for
Measurement

TAU can be configured to record more than one hardware performance counter, along with time for
each timer and routine. To use this feature, TAU is configured with the - MULTI PLECOUNTERS option.
Example:

% / configure - MULTI PLECOUNTERS - LI NUXTI MERS - CPUTI ME \

- papi =/t ool s/ papi -2. 3

LIST OF COUNTERS:

Set the following values for the COUNTER<1-25> environment variables.

GET_TI ME_OF_DAY --- For the default profiling option using gettimeofday()

SA _TI MERS --- For - SA@ Tl MERS configuration option under IRIX

CRAY_TI MERS --- For - CRAYTI MERS configuration option under Cray X1.

LI NUX_TI MERS --- For -LINUXTIMERS configuration option under Linux

CPU_TI ME --- For user+system time from getrusage() call with - CPUTI ME
P_WALL_CLOCK_TI ME --- For PAPI's WALLCLOCK timeusing - PAPI WALLCLOCK
P_VI RTUAL_TI ME --- For PAPI's process virtual time using - PAPI VI RTUAL

TAU_MUSE --- For reading counts of Linux OS kernel level events when MAGNET/MUSE is in-
stalled and -muse configuration option is enabled. MUSE
[http://public.lanl.gov/radiant/]. TAU_MJSE PACKAGE environment variable has to be set to pack-
age name (busy_time, count, etc.)

TAU_MPI _MESSAGE_SI ZE --- For tracking the cumulative message size for al MPI operations by
anode for each routine.

Note

When TAU is configured with -TRACE -MULTIPLECOUNTERS and -papi=<dir> op-
tions, the COUNTER1 environment variable must be set to GET_TIME_OF DAY to al-
low TAU's tracing module to use a globally synchronized real-time clock for timestamping
event records. When we use tracing with hardware performance counters, the counters spe-
cified in environment variables COUNTER[2-25] are accessed at routine transitions and
logged in the trace file. Use tau2vtf tool to convert TAU traces to VTF3 traces that may be
loaded in the Vampir trace visualization tool.

and PAPI/PCL options that can be found in Table 4.1, “Events measured by setting the environment
variable PAPI_EVENT in TAU” and Table 4.2, “Events measured by setting the environment variable
PCL_EVENT in TAU". Example:

PCL_FP_I NSTR --- For floating point operations using PCL (-pcl=<dir>)

42

http://public.lanl.gov/radiant/

Profiling

* PAPI _FP_I NS --- For floating point operations using PAPI (-papi=<dir>)

* PAPI _NATI VE_<event > --- For native papi events using PAPI (-papi=<dir>)

NOTE: When - MULTI PLECOUNTERS is used with - TRACE option, the tracing library uses the
wallclock time from the function specified in the COUNTERL variable. This should typically point to
wallclock time routines (suchas GET_TI ME_OF_DAY or SG _TI MERS or LI NUX_TI MVERS).

Example:

% set env COUNTERL P_WALL_CLOCK TI ME
% set env COUNTER2 PAPI _L1_ DCM
% set env COUNTER3 PAPI _FP_I NS

will produce profile files in directories caled MJULT_P_WALL_CLOCK_TI ME,
MULTI __PAPI _L1_DCM and MJULTI _PAPI _FP_I NS.

4.6. Running a Python application with TAU

TAU can automatically instrument al Python routines when the tau python package is imported. To ex-
ecute the program, tau.run routine is invoked with the name of the top level Python code. For e.g.,

#!/ usr/ bin/env python

i mport tau
fromtime inport sleep

def f2():
print "Inside f2: sleeping for 2 secs..."
sl eep(2)
def f1():
print "Inside f1, calling f2..."
f2()

def QurMain():
f1()

tau. run(' QurMain()"')

instruments routines Qur Mai n(), f1() and f2() athough there are no instrumentation calls in
the routines. To use this feature, TAU must be configured with the -pythoninc=<dir> option (and -
pythonlib=<dir> if running under IBM). Before running the application, the environment variable PY-
THONPATH should be set to include the TAU library directory (where tau.py is stored). Manua instru-
mentation of Python sourcesis aso possible using the Python API and the pyt au package. For e.g.,

#!/ usr/ bin/env python

i mport pytau
fromtine inport sleep

x = pytau.profileTiner("A Sleep for excl 5 secs")
y = pytau.profileTimer("B Sleep for excl 2 secs")
pyt au. start (x)

print "Sleeping for 5 secs ..."

43

Profiling

sl eep(5)

pytau. start(y)

print "Sleeping for 2 secs ...
sl eep(2)

pyt au. st op(y)

pyt au. dbDunp()

pyt au. st op(x)

shows how two timers x and y are created and used. Note, multiple timers can be nested, but not over-
lapping. Overlapping timers are detected by TAU at runtime and flagged with a warning (as exclusive
timeis not defined when timers overlap).

4.7. pprof

pprof sorts and displays profile data generated by TAU. To view the profile, merely execute pprof in the
directory where profile files are located (or set the PROFI LEDI R environment variable).

% ppr of
Itsusage is explained below:

usage: pprof [-c|-b]-m-t|-e|-i] [-r] [-s] [-n nunm] [-f filenane] \
[-1] [node nunbers]
-c : Sort by nunber of Calls
-b : Sort by nunber of suBroutines called by a function
-m: Sort by MIliseconds (exclusive tine total)
-t : Sort by Total milliseconds (inclusive tinme total) (DEFAULT)
-e : Sort by Exclusive tine per call (nsec/call)
-i : Sort by Inclusive tine per call (total msec/call)
-v : Sort by standard deViation (excl usec)
-r : Reverse sorting order
-s : print only Summary profile information
-n num: print only first num functions
-f filename : specify full path and Filenane w thout node ids
-1 . List all functions and exit
node nunbers : prints information about all contexts/threads
for specified nodes

4.8. Running a JAVA application with TAU

Java applications are profiled/traced using the - Xr unTAU command-line parameter as shown below:

% cd tau/ exanpl es/j ava/ pi

% setenv LD LI BRARY_PATH $LD LI BRARY_PATH: / horre/ t au/
solaris2/lib

% j ava - XrunTAU Pi

Running the application generates profile files with names having the form pro-
file.<node>.<context>.<thread>. These files can be analyzed using pprof or paraprof (see below).

Chapter 5. Eclipse Tau Java System
5.1. Installation

Copy the plugins directory in the tau2/tools/src/taujava directory to the location of your eclipse installa-
tion. You may have to restart eclipseif it is running when thisis done.

In eclipse go to the Window menu, select Preferences and go to the TauJava Preferences section. Enter

the location of the lib directory in the tau installation for your architecture in the Tau Library Directory
field. Other options may also be selected at thistime.

Figure5.1. TAUJava Options Screen
1—5

pe filter text | ¥ | @ wvalue must be an existing directory Gow
General
b Setup Tau instrumentation for Java
> Ant
b Help Selective Instrumentation File: | Browse. ..
b Install/Update || Enable Selective Instrumentation.
I Java
b Plug-in Development TAU Library Directory: |fhomeiusers;’u5er;'tau2;’x86_64i|ib Browse. ..
I Run/Debug ¥ Use Alternative TAU Output Directory?
b Team Alternate TAU Output Directory: |J’home.fusersfuseffDesktop Browse. ..
|~ Automatically run ParaProf on profile output?
TAU Analysis Method:
\ Restore Defaults) l J
=K

ﬁ ’L Cancel |

5.2. Instrumentation

Java programs can be instrumented at the level of full Java projects, packages or individual Java files.
From within the Java view simply right click on the element in the package explorer that you wish to in-
strument select the Tau pop up menu and click on Instrument Project, Package or Java respectively.

Figure5.2. TAUJava Project I nstrumentation

45

Eclipse Tau Java System

rl'_ —nnhlir class Jltest |
New FHUSTRUMENTATION - Do ne

b Go Into

Open in New Window param args

Open Type Hierarchy F4

Lic static wvoid maings
S| Copy Ctrl+Insert FSTRUMENTATION - Do nc

"% Paste Shift+Insert |/ 1000 Auto-generate
Delete Delete
Build Path PUSTRUMENTATION - Do nc
Source Shift+AlK+S P
Refactor Shift+AlL+T »

Import...

23
Ly Export...
e

Refresh F5

Close Project

Bun As
Debug As

Team

v v v w

Compare With

Restore from Local History...

s Uninstrument Project
PDE Tools Instrument Project
Properties Alt+Enter

Note that the instrumenter will add the TAU jar file to the project's class-path the first time any element
isinstrumented.

Do not perform multiple instrumentations of the same Java file. Do not edit the comments added by the
instrumenter or adjust the white space around them. Doing so may prevent the uninstrumenter from
working properly.

5.3. Uninstrumentation

Uninstrumenting a Java project, package or file works just like instrumenting. Just select the uninstru-
ment option instead. Note that the uninstrumenter only removes TAU instrumentation as formatted and
commented by the instrumenter. Running the uninstrumenter on code with no TAU instrumentation
present has no effect.

46

Eclipse Tau Java System

5.4. Running Java with TAU

To automatically analyze your instrumented project on a Unix-based system TAU must first be con-
figured with the -JDK option, and any other options you want applied to your trace output. On windows
the type of analysis to be conducted, Profile, Call path or Trace, should be selected from the Window,
Preferences TauJava Preferences menul.

Once that has been accomplished, right click on the Java file containing the main method you want to
run, go to the TAU menu and click on Run Tau-Instrumented Java. The program will run and, by de-
fault, the profile and/or trace files will be placed in atimestamped directory, inside a directory indicating
the name of the file that was run, in the TAU_Output directory in the home directory of the Java project.

Figure5.3. TAUJava Running

ol —public class Jtest {
-~
thESt S*TAU_INSTRUMENTATION - Do not edit between thes

~ | jtest

S e

. New]
I+ =LIRE Systel

F3

I & TAU.jar -
[= sardine

Open
Open With
Open Type Hierarchy

b4

F4

I main({5tring[] args) {
- Do not edit between thes

renerated method stub

= Copy

[Paste

Delete
Build Path
Source

Refactor

Ctrl+Insert
Shift+Insert
Delete
3
3
»

Shift+Alt+5
Shift+Alt+T

- Do not edit between thes:

f23 Import. ..
i Export. ..

References
Declarations

v v

« Refresh

F5

Run As
Debug As
Team
Compare With
Replace With

v v vy v v

Restore from Local History ...

Tau

Properties

Run Tau-Instrumented Java

Alt+Enter

-

Uninstrument Java
Instrument Java

Problems | Javadoc | Declaration | & Console 23

47

Eclipse Tau Java System

5.5. Options

The following options are accessible from the Window, Preferences TAUJava Preferences menu.

Use Alternative TAU Output Directory: Causes the TAU_Output directory to be placed in the location
specified in the associated field. The internal directory structure of the TAU_Output directory remains
unchanged.

Automatically run ParaProf on profile output?. Causes the TAU profile viewer, paraprof, to run on the
output of profile and call-path analysis output as soon as the trace files have been produced.

Enable selective instrumentation: Causes Java elements specified in the given selection file to be in-
cluded or excluded from instrumentation. By default all packages files and methods are included. The
file should conform to the TAU file selection format described here.

Any line beginning with a # is a conment and will be disregarded.

#

If an entry is both included and excluded inclusion will take precedence.
#

Entries in INCLUDE or EXCLUDE |lists nmay use * as a wildcard character.
#

I f an EXCLUDE LIST is specified, the methods in the list will not be
instrunented.

#

BEA N_EXCLUDE LI ST

mai n

END EXCLUDE LI ST

#

If an INCLUDE LIST is specified, only the nethods in the list will be
instrunented.

BEG N_| NCLUDE_LI ST

END_| NCLUDE_LI ST

TAU al so accepts FILE_| NCLUDE/ EXCLUDE |ists. These nmay be specified with
the wildcard character # to exclude/include multiple files.

These options nay be used in conjunction with the routine | NCLUDE/ EXCLUDE
lists as shown above.

HFHHFHHFH

BEG N_FI LE_| NCLUDE_LI ST
foo.java

hel | o#. j ava

END FI LE_| NCLUDE_LI ST

#
BEG N_FI LE_EXCLUDE LI ST
bar.java

END FI LE_EXCLUDE LI ST

Note that the order of the individual sections does not matter
and not all of the sections need to be included. Each section
must be cl osed.

48

Chapter 6. Tracing

Typically, profiling shows the distribution of execution time across routines. It can show the code loca
tions associated with specific bottlenecks, but it does not show the temporal aspect of performance vari-
ations. Tracing the execution of a parallel program shows when and where an event occurred, in terms
of the process that executed it and the location in the source code. This chapter discusses how TAU can
be used to generate event traces.

Figure 1 show the possible interactions between different trace file formats.

Figure6.1. Performance Data | O Chart

TAU

6.1. Generating Event Traces

TAU must be configured with the - TRACE option to generate event traces. This can be used in conjunc-
tion with - PROFI LE to generate both profiles and traces. The traces are stored in a directory specified
by the environment variable TRACEDI R, or the current directory, by default. The environment variables
TAU_TRACEFI LE may be used to specify the name of Vampir trace file. When this variable is set,
trace files are automatically merged and the tau2vtf is invoked to convert the merged trace file to VTF3
trace format. This conversion takes place on node O, thread 0. The intermediate trace files are deleted.
To retain the trace files, the user can set the environment variable TAU_KEEP_TRACEFI LES to true.
When TAU_TRACEFI LE is not specified, the user needs to merge and convert the traces as below. Ex-

49

Tracing

ample:

% ./configure -arch=sgi 64 -TRACE -npi -vtf=/usr/local/vtf3-1.34 -slog2
% make cl ean; nake install

% set env TRACEDI R /user s/ saneer/tracedat a/ experi nent 56

Y% npirun -np 4 matrix

This generates files named

t aut race. <node>. <cont ext >. <t hread>.trc and events. <node>. edf

Using the utility tau_merge, these traces are then merged as shown below:

% t au_ner ge
usage: tau_nerge [-a] [-r] [-n] [-e eventedf*]
[-m mergededf] Inputtraces* (outputtrace|-)
Not e: tau_nerge assunes edf files are naned
event s. <nodei d>. edf, and generates a nerged edf file tau. edf
%tau_nerge tautrace*.trc matrix.trc

This generates matrix.trc as the merged trace file and tau.edf as the merged event description file.

The utility tau_treemerge.pl may be used to generate the trace filesin a hierarchical manner. It generates
tau.trc and tau.edf files.

% tau_treenerge. pl
%tau_treenmerge.pl -help
tau_treenerge.pl [-n <break amount>]

tau_treemerge.pl can take an optional argument (with -n <value>) to specify the maximum number of
trace files to merge in each invocation of tau_merge. If we need to merge 2000 trace files and if the
maximum number of open files specified by unix is 250, tau_treemerge.pl will incrementally merge the
trace files so as not to exceed the number of open file descriptors. This is important for the IBM Blue-
Gene/LL. machine where such restrictions are present on the front-end node.

To convert merged or per-thread traces to another trace format, the utilities tau_convert, tau2vtf, or
tau2slog2 are used as shown below:

% t au2vt f

Usage: tau2vtf <TAU trace> <edf file> <out file> [-a]-fa]
[- nomessage] [-V]

-a : ASCIl VTF3 file fornat

-fa . FAST ASCII VTF3 file fornat

-nonessage : Suppress printing of nessage information in the trace

-V . Verbose

Default trace format of <out file> is VIF3 binary

e.g.,

tau2vtf merged.trc tau.edf app.vpt.gz

% tau2vtf matrix.trc tau.edf matrix.vpt.gz

% vanpir matrix.vpt. gz

50

Tracing

To generate slog2 trace files that may be visualized using Jumpshot, we recommend using the slog2
SDK and Jumpshot bundled with TAU.

% configure -slog2 -TRACE ...

% t au2sl og2

tau2sl og2 converts a TAU formatted trace file to the SLOXR format
for Junpshot trace visualizer

Usage: tau2slog2 <tau_tracefile> <edf file> -0 <slog_tracefile>

For e.g.,

% tau2sl og2 app.trc tau.edf -o app.slog2

To generate traces that may be visualized using Vampir, we recommend using tau2vtf over the older
tau_convert tool. tau2vtf can produce binary traces with user-defined events (hardware performance
counters from PAPI etc.) while tau_convert cannot do this. Binary traces load faster in Vampir.

% tau_convert

usage: tau_convert [-alog | -SDDF | -dunp | -paraver [-t] | -pv |
-vanpir [-1ongsynbol bugfix] [-conmpact] [-user|-class|-all]
[-nocomm] inputtrc edffile [outputtrc]

Note: -vanpir option assumes mnultiple threads/node

Note: -t option used in conjunction with -paraver option assunes
mul ti pl e threads/ node

To view the dump of the trace in text form, use

% tau_convert -dunp matrix.trc tau.edf

tau_convert can also be used to convert traces to the Vampir [http://www.vampir-ng.de/] trace format.
For single-threaded applications (such as the MPI application above), the - pv option is used to generate
Vampir traces as follows:

% tau_convert -pv matrix.trc tau.edf matrix. pv
% vanpir matrix.vpt.gz &

To convert TAU traces to SDDF or ALOG trace formats, - SDDF and - al og options may be used. When
multiple threads are used on anode (aswith - j dk, -pthread or -tuli pthread optionsduring
configure), the - vanpi r option is used to convert the traces to the vampir trace format, as shown be-
low:

% tau_convert -vanpir smartsapp.trc tau.edf snartsapp. pv
% vanpir snartsapp. pv &

To convert to the Paraver trace format, use the - par aver option for single threaded programs and -
paraver -t optionfor multi-threaded programs.

NOTE: To ensure that inter-process communication events are recorded in the traces, in addition to the
routine transitions, it is necessary to insert TAU TRACE SENDMSG and TAU TRACE RECVNMSG
macro calls in the source code during instrumentation. This is not needed when the TAU MPI wrapper
library is used.

51

http://www.vampir-ng.de/

6.2.

Tracing

Vampir format traces may be converted to TAU profiles using the vtf2profile tool.

% vtf2profile -f matrix.vpt.gz -p profil edatadir
% vtf2profile
Usage: vtf2profile [options]

***************************HELP***************************

* '-h' --display this help text. *
* '-¢' --open command line interface. *
* '-f' --used as -f <VTF File> where *
* VTF File is the name of the trace file *
* to be converted to TAU profiles. *
* '-p' --used as -p <path> where 'path' is the relative *
* path to the directory where profiles are to *
* st ored. *
* '-i' --used as -i <fronmr <to> where 'froml and 'to' are*
* integers to mark the desired profiling interval.*
kkkkkhkhkhkhkhkkhkhkhkhkkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhkhkhkhkhkkkhkkhkhk k k khkkkkk k k ***x*x*%

TAU Trace Format Reader Library

6.2.1. Tau Reader Usage
6.2.1.1. SYNOPSIS

An API for reading data from TAU tracefiles

See TAU_tf.h

6.2.1.2. DESCRIPTION

The TAU Trace Format Reader system, defined in TAU_tf.h, operates primarily via a series C/C++ of
callback methods, each representing a data type contained in a TAU tracefile. The TAU trace is opened
with a call to the function: Ttf_FileHandleT Ttf_OpenFileForlnput(const char * name, const char * edf);
Where *name and *edf are the locations of the TAU trace and event definition files to be read respect-
ively. The TtfFileHandleT returned is then used to access the TAU trace. eg: fh =
Ttf_OpenFileForlnput(argv[1], argv[2]);

The callback methods are stored in a calback table, a struct of the type Ttf_Callbacks. The
Ttf_Callbacks struct contains entities representing each of the 11 defined callbacks: Ttf_DefClkPeriodT
DefClkPeriod; Ttf_DefThreadT DefThread; Ttf _DefStateGroupT DefStateGroup; Ttf DefStateT Def-
State; Ttf_EndTraceT EndTrace; Ttf EnterStateT EnterState; Ttf LeaveStateT LeaveState,
Ttf_SendMessageT SendMessage; Ttf RecvMessageT RecvMessage; Ttf_DefUserEvent De-
fUserEvent; Ttf_EventTrigger EventTrigger; The struct also contains "void* UserData;" which is used
as an argument to each of the callback functions.

The trace data relevant to a callback function's associated TAU event type are delivered to the function
viaits arguments. Additionally the user data argument may be used to pass in data defined elsewhere in
the trace reading process, before the callback functions are invoked. The userData argument is often
used to provide the file handler for functions to which the read trace events are being written. The user-
Data argument must be recast to its original type before use. For example, the following callback func-
tion, compliant with the definition of Ttf_DefClkPeriodT, receives the clock period information from
the TAU tracefile, in addition to the userData that specifies the the location of sprintf's target.

int CockPeriod (void* userData, double clkPeriod)
sprintf((char*)userData,"C ock period %g\n", clkPeriod);

52

Tracing

return O;

The callback table should be initialized by associating each of its elements with a complementary call-
back function. As the trace file is read the contents of each entry will be passed to the corresponding
callback function. Alternatively if an element of the callback table is set to 0 no action will be taken
when its associated entry type is encountered. Each element of the callback table must be initialized to a
viable function or 0. For example, to create a callback table, th, and initialize the DefClkPeriod element
with the function defined above one would use the following:

Ttf_Cal | backsT cb;
cb. Def O kPeri od = Cl ockPeri od;

Once the calback table is initialized the tracefile reading may commence. This is done via the
Ttf_ReadNumEvents function defined in TAU_tf.h. Because Ttf_ReadNumEvents requires trace files to
be read in chunks of events of the number specified when the function is called it is common practice to
read a tracefile by enclosing TtfReadNumEvents in a loop which terminates when there are no records
left to read (i.e. the return value of TtF_ReadNumEventsis 0). The EndTrace callback function may also
set aflag that bresks out of the loop. For example, using the Ttf_FileHandleT fh and Ttf_CallbacksT cb
the following would process the entire tracefile specified within fh:

do{
recs_read = Ttf_ReadNuntEvents(fh,ch, 1024);

while (recs_read >=0);
In some circumstances it may be convenient to parse the trace files more than once using different call-

back tables and methods. For example, this technique is often useful when all of the the initialization re-
cords must be registered and processed before the event records.

When the processing of a tracefile is complete the tracefile should be closed with the Ttf_CloseFilg(
Ttf_FileHandleT fileHandle); function. eg:

Ttf_Cl oseFil e(fh);

6.2.2. Callback API
6.2.2.1. int Ttf_DefClkPeriodT(userData, clkPeriod);

Arguments: voi d* userData, double clkPeriod
Returns: int status

This method is called when the trace reader encounters the definition of the clock period of the trace be-
ing read. It is called with the user defined argument userData and the clock period, clkPeriod, defined in
the TAU trace. It should return O upon successful completion.

6.2.2.2. int Ttf_EndTraceT(userData,nodeToken,threadToken);

Argunments: void *userData, unsigned int nodeToken, unsigned int
t hr eadToken

Returns: int status

53

Tracing

This method is called when an EOF is encountered in atracefile. It is called with the user defined argu-
ment userData and the numeric ID of the node and thread, nodeToken and threadToken respectively,
where the trace has ended. Note that the full trace has not concluded until the end of each node/thread
combination has been reached. It should return 0 upon successful completion.

6.2.2.3. int Ttf_DefStateGroupT(userData, stateGroupToken,
stateGroupName);

Arguments: void *userData, unsigned int stateG oupToken, const char
*st at eG oupNane

Returns: int status

This method is called when the trace reader encounters a state group definition. It is called with the user
defined argument userData the numeric ID of the state group being defined, stateGroupToken, and the
name of the group being defined, stateGroupName. It should return O upon successful completion.

6.2.2.4. int Ttf_DefStateT(userData, stateToken, stateName,
stateGroupToken);

Argunents: void *userData, unsigned int stateToken, const char
*st at eName, unsigned int stateG oupToken

Returns: int status

This method is called when the trace reader encounters a state definition. A state generally represents a
programmatic function. It is called with the user defined argument userData, the numeric ID of the state
being defined, stateToken, the name of the state being defined, stateName, and the numeric group 1D of
the state being defined, stateGroupToken. It should return O upon successful completion.

6.2.2.5. int Ttf_DefUserEvent(userData, userEventToken, userEvent-
Name, monotonicallylncreasing);

Arguments: void *userData, unsigned int userEventToken, const char
*user Event Name, int nonotonicallylncreasing

Returns: int status

This method is called when the trace reader encounters a user defined event definition. It is called with
the user defined argument userData, the numeric ID of the user defined event, userEventToken, the
name of the user defined event, userEventName, and monotonicallylncreasing a numeric indicator of if
the user defined event is monotonically Increasing. If monotonicallylncreasing is greater than 0 the user
defined event's value will increase monotonically. If it is O then it will not be. It should return O upon
successful completion.

6.2.2.6. int Ttf_EnterStateT(userData, time, nodeToken, thread-
Token, stateToken);

Arguments: void* userData, double time, unsigned int nodeToken, un-
signed int threadToken, unsigned int stateToken

Returns: int status

This method is called when the trace reader encounters a state entry event. It is called with the user
defined argument userData, the time of the state entry, time, the numeric ID of the node and thread

54

Tracing

where the entry is taking place, nodeToken and threadToken respectively, and the numeric ID of the
state that has been entered. It should return O upon successful completion.

6.2.2.7. int Ttf_LeaveStateT(userData, time, nodeToken, thread-
Token);

Argurents: void* userData, double time, unsigned int nodeToken, un-
signed int threadToken

Returns: int status

This method is called when the trace reader encounters a state exit event. It is called with the user
defined argument userData, the time of the state exit, time and the numeric IDs of the node and thread
where the exit is taking place, nodeToken and threadToken respectively. It should return O upon suc-
cessful completion.

6.2.2.8. int Ttf_SendMessageT(userData, time, sourceNodeToken,
sourceThreadToken, destinationNodeToken, destinationThread-
Token, messageSize, int messageTag);

Argunents: void* userData, double tinme, unsigned int sourceNodeToken,
unsi gned int sourceThreadToken, unsigned int destinati onNodeToken, un-
signed int destinationThreadToken, unsigned int messageSi ze, unsigned
i nt messageTag

Returns: int status

This method is called when the trace reader encounters a message send event. It is called with the user
defined argument userData, the time of the transmission, time, the numeric 1Ds of the node and thread
from which the message was sent, sourceNodeToken and sourceT hreadToken respectively, the numeric
IDs of the node and thread to which the message was sent, destinationNodeToken and destination-
ThreadToken respectively, the size of the message, messageSize, and the numeric ID of the message,
messageT ag. It should return O upon successful completion.

6.2.2.9. int Ttf_RecvMessageT(userData, time, sourceNodeToken,
sourceThreadToken, destinationNodeToken, destinationThread-
Token, messageSize, int messageTag);

Argunents: void* userData, double tine, unsigned int sourceNodeToken,
unsi gned i nt sourceThreadToken, unsigned int destinati onNodeToken, un-
signed int destinationThreadToken, unsigned int messageSi ze, unsigned
i nt messageTag

Returns: int status

This method is called when the trace reader encounters a message receive event. It is called with the user
defined argument userData, the time of the receipt, time, the numeric IDs of the node and thread from
which the message was sent, sourceNodeToken and sourceThreadToken respectively, the numeric IDs
of the node and thread to which the message was sent, destinationNodeToken and destinationThread-
Token respectively, the size of the message, messageSize, and the numeric ID of the message, mes-
sageTag. It should return O upon successful completion.

6.2.2.10. int Ttf_EventTrigger(userData, time, nodeToken, thread-
Token, userEventToken, userEventValue);

55

Tracing

Argunents: void *userData, double time, unsigned int nodeToken, un-
signed int threadToken, wunsigned int userEventToken, 1long [|ong
user Event Val ue

Returns: int status

This method is called when the trace reader encounters a user defined event trigger. It is called with the
user defined argument data userData, the time of the event trigger, time, the numeric IDs of the node and
thread where the event was triggered, nodeToken and threadToken respectively, the numeric ID of the
user defined event triggered, userEventToken and the value recorded by the user defined event,
userEventValue. It should return O upon successful completion.

6.2.3. TauReader API
6.2.3.1. Ttf_FileHandleT TtfOpenFileForinput(name, edf);

Argunents: const char *nanme, const char *edf
Returns: Ttf_Fil eHandl eT fil eHandl e

Given the full name of the TAU trace file, name, and the corresponding event file, edf, and returns the
virtua file handle that represents the trace in its entirety.

6.2.3.2. int Ttf_AbsSeek(handle, eventPosition);

Argurments: Ttf _Fil eHandl eT handl e, int eventPosition
Returns: int position

Given a Ttf_fileHandleT object, handle, this function will move to the nth event in the associated trace-
file where n = the input int eventPosition. A negative position indicates to start from the tail of the event
stream. The position will be returned if the operation is successful, otherwise it will return 0.

6.2.3.3. int Ttf_RelSeek(handle, plusMinusNumEvents);

Argunents: Ttf_Fil eHandl eT handl e, int plusM nusNunEvents
Returns: int position

Given a Ttf_fileHandleT object, handle, this function will shift the current position by a number of
events equal to the input int plusMinusNumEvents. The new position will be returned if the operation is
successful, otherwise it will return O.

6.2.3.4. int Ttf_ReadNumEvents(fileHandle,callbacks, numberO-
fEvents);

Argunents: Ttf_FileHandl eT fileHandl e, Ttf_Call backsT call backs, int
nunber Of Event s

Returns: int nunEvent sRead

Given a Ttf_FileHandleT, handle, a fully initialized Ttf_CallbacksT struct, callbacks, and an integer in-
dicating the number of events to read, numberOfEvents, this function will read the number of eventsin-
dicated starting at the current position of the file handle while advancing the current position of the
handle by that number. Each event read will be sent to the appropriate callback function specified in the
callbacks. When successful this function returns the number of events read. This may be 0 or less than

56

Tracing

the number specified if there are fewer remaining events to be read than numberOf Events requests. If an
error is encountered it will return -1.

6.2.3.5. Ttf_FileHandleT Ttf_CloseFile(fileHandle);
Argunents: Ttf FileHandl eT fil eHandl e
Returns: Ttf_Fil eHandl eT fil eHandl e

When the tracefile reading is complete the file should be closed with this function.

57

Chapter 7. Tools

58

Tools

Name

vtf2profile -- Generate a TAU profile set from avampir tracefile

vtf2profile[-pprofile][-i interval _start interval _end][-c][-h]{-f
tracefile}

Description

vtf2profile is created when TAU is configured with the -vtf=<vtf_dir> option. Thistool convertsaVTF
trace file (*.vpt) to a tau profile set (profile. A.B.C where A, B and C are the node, context and thread
numbers respectively).

The vtf file to be read is specified in the command line by the -f flag followed by the file's location. The
VTF tracefile specified may be in gzipped form, eg app.vpt.gz. -p is similarly used to specify the relative
path to the directory where the profile files should be stored. If no output directory is specified the cur-
rent directory will be used. A contiguous interval within the vitf file may be selected for conversion by

using the -i flag followed by two integers, representing the timestamp of the start and end of the desired
interval respectively. The entire vif fileis converted if no interval is given.

Options
-f tracefil e -Specify the Vampir tracefile to be converted.

-p profil e -Specify the location where the profile file(s) should be written.

-i interval _start interval _end -Limit the profile produced to the specified interval within
the vampir tracefile.

- ¢ -Opens a command line interface for the program.
- h -Displays a help message.
Examples

To convert avampir tracefile, trace.vpt, to an equivalent TAU profile, use the following:
vtf2profile -f trace. vpt

To produce a TAU profile in the ./profiles directory representing only the events from the start of the
tracefile to timestamp 6000, use:

vtf2profile -f trace.vpt -p ./profiles -i 0 6000

See Also

tau2vtf

59

Tools

Name

tau2vtf -- convert TAU tracefilesto vampir tracefiles

tau2vtf [-nonmessage] [-v][[-a]|[-fa]l{tau_tracefile} {tau_eventfile} {
vtf tracefile}

Description

This program is generated when TAU is configured with the -vtf=<vtf_dir> option.

The tau2vtf trace converter takes a single tau_tracefile (*.trc) and tau_eventfile (*.edf) and produces a
corresponding vtf_tracefile (*.vtf). The input files and output file must be specified in that order. Multi-
file TAU traces must be merged before conversion.

The default output file format is VTF3 binary. If the output filename is given as the .vpt.gz type, rather
than .vpt, the output file will be gzipped. There are two additional output format options. The command
line argument '-a produces the vtf file output in ASCIl VTF3 format. The command line argument '-fa

produces the vtf file output in the FAST ASCII VTF3 format. Note that these arguments are mutually
exclusive.

Options
- nomessage Suppresses printing of message information in the trace.
- v Verbose mode sends trace event descriptions to the standard output as they are converted.
- a Print the vtf file output in the human-readable VTF3 ASCII format
- f a Print the vtf file in the simplified human-readable FAST ASCII VTF3 format

Examples

The program must be run with the tau trace, tau event and vtf output files specified in the command line
in that order. Any additional arguments follow. The following will produced a VTF, app.vpt, from the
TAU trace and event files merged.trc and tau.edf tracefile:

tau2vtf nmerged.trc tau.edf app.vpt

The following will convert merged.trc and tau.edf to a gzipped FAST ASCII vampir tracefile app.vpt.gz,
with message events omitted:

tau2vtf merged.trc tau.edf app.vpt.gz -nonmessage -fa

See Also

vtf2profile, tau_merge, tau_convert

60

Tools

Name
tau2elg -- convert TAU tracefilesto Epilog tracefiles

tau2elg [-nonmessage | [-v] { tau_tracefile } { tau_ eventfile } {
elg tracefile}

Description
This program is generated when TAU is configured with the -epilog=<epilog_dir> option.

The tau2elg trace converter takes a tau trace file (*.trc) and event definition file (*.edf) and produces a
corresponding epilog binary trace file (*.elg). Multi-file TAU traces must be merged before conversion.

Options
- homessage Suppresses printing of message information in the trace.

- v Verbose mode sends trace event descriptions to the standard output as they are converted.

Examples

The program must be run with the tau trace, tau event and elg output files specified in the command line
in that order. Any additional arguments follow. The following would convert merged.trc and tau.edf to
the Epilog tracefile app.elg, with message events omitted:

./tau2vtf merged.trc tau.edf app.elg -nonessage

See Also

tau_merge

61

Tools

Name
tau2slog? -- convert TAU tracefilesto SLOG2 tracefiles

tau2slog2{tau_tracefile}{tau_eventfile}{-oslog2 tracefile}

Description
This program is generated when TAU is configured with the -slog2 or -slog2=<dog2_dir> option.

The tau2slog2 trace converter takes a single tau trace file (*.trc) and event definition file (*.edf) and pro-
duces a corresponding slog2 binary trace file (*.d0g2).

The tau2slog2 converter is called from the command line with the locations of the tau trace and event
files. These arguments must be followed by the -o flag and the name of the slog2 file to be written.
tau2slog 2 accepts no other arguments.

Examples

A typical invocation of the converter, to create app.slog2, is as follows;

tau2sl og2 app.trc tau.edf -o app.slog2

See Also

tau_merge, tau_convert

62

Tools

Name
tau2otf -- convert TAU tracefilesto OTF tracefiles for Vampir/VNG

tau2otf [-nstreans][-nonessage][-V]

Description

This program is generated when TAU is configured with the -otf=<otf_dir> option. The tau2otf trace
converter takes a TAU formatted tracefile (*.trc) and a TAU event description file (*.edf) and produces
an output trace file in the Open Trace Format (OTF). The user may specify the number of output streams
for OTF. The input files and output file must be specified in that order. TAU traces should be merged
using tau_merge prior to conversion.

Options
- n streams Specifies the number of output streams (default is 1). - nonmessage Suppresses printing of

message information in the trace. - v Verbose mode sends trace event descriptions to the standard output
asthey are converted.

Examples

The program must be run with the tau trace, tau event and otf output files specified in the command line
in that order. Any additional arguments follow. The following will produced an OTF file, a pp.otf and
other related event and definition files, from the TAU trace and event files merged.trc and tau.edf trace
file

tau2otf nerged.trc tau.edf app.otf

See Also

tau2vtf(1), vtf2profile(1), tau_merge(1), tau_convert(1)

63

Tools

Name

tau_merge -- combine multiple node and or thread TAU tracefiles into amerged tracefile

tau_nergef[-a][-r][-n][-eeventfile_list][-moutput_eventfile]{trace-
file_list}[{output_tracefile}|{- }]

Description

tau_merge is generated when TAU is configured with the -TRACE option.

This tool assembles a set of tau trace and event files from multiple multiple nodes or threads across a
program's execution into a single unified trace file. Many TAU trace file tools operate on merged trace
files.

Minimally, tau_merge must be invoked with alist of unmerged trace files followed by the desired name
of the merged trace file or the - flag to send the output to the standard out. Typically the list can be des-
ignated by giving the shared name of the trace files to be merged followed by desired range of thread or
node designators in brackets or the wild card character *' to encompass variable thread and node desig-
nations in the filename (trace.A.B.C.trc where A, B and C are the node, context and thread numbers re-
spectively). For example tautrace.* .trc would represent all tracefiles in a given directory while taut-
race.[0-5].0.0.trc would represent the tracefiles of nodes 0 through 5 with context 0 and thread 0.
tau_merge will generate the specified merged trace file and an event definition file, tau.edf by default.
The event definition file can be given an alternative name by using the '-m' flag followed by the desired
filename. A list of event definition files to be merged can be designated explicitly by using the '-€' flag
followed by alist of unmerged .edf files, specified in the same manner asthe tracefilelist.

If computational resources are insufficient to merge all trace and event files ssmultaneously the process
may be undertaken hierarchically. Corresponding subsets of the tracefiles and eventfiles may be merged
in sequence to produce a smaller set of files that can then be to merged into a singular fully merged

tracefile and eventfile. E.g. for a 100 node trace, trace sets 1-10, 11-20, ..., 91-100 could be merged into
traces 1a, 2a, ..., 10a. Then 1a-10a could be merged to create a fully merged tracefile.

Options
- e eventfile_list explicitly define the eventfiles to be merged
- moutput_eventfile explicitly name the merged eventfile to be created
- send the merged tracefile to the standard out
- a adjust earliest timestamp time to zero
- r do not reassemble long events
- n do not block waiting for new events. By default tau_merge will block and wait for new events to be

appended if atracefile isincomplete. This command allows offline merging of (potentially) incomplete
tracefiles.

Examples

To merge all TAU tracefilesinto app.trc and produce a merged tau.edf eventfile:

tau_nerge *.trc app.trc

Tools

To merge al eventfiles 0-255 into ev0_255merged.edf and TAU tracefiles for nodes 0-255 into the
standard out:

tau_nerge -e events.[0-255].edf -mev0_255nerged. edf \
tautrace.[0-255].*.trc -

To merge eventfiles 0, 5 and seven info ev057.edf and tau tracefiles for nodes O, 5 and 7 with context
and thread 0O into app.trc:

tau_nerge -e events.0.edf events.5.edf events.7.edf -mev057. edf \
tautrace.0.0.0.trc tautrace.5.0.0.trc tautrace.7.0.0.trc app.trc

See Also

tau_convert
tau2vtf
tau2elg
tau2slog2

65

Tools

Name

tau_convert -- convert TAU tracefiles into various alternative trace formats
tau_convert [[-alog]|[-SSDF]|[-dunp]|[-paraver [-]]|[-pv]|[-vanpir [-

I ongsynbol bugfix][-conpact J[[-user J|[-class]]|[-all]][-nocomm]]][out -
puttrc]{inputtrc}{edffile}

Description

tau_convert is generated when TAU is configured with the -TRACE option.

This program requires specification of a TAU tracefile and eventfile. It will convert the given TAU
traces to the ASCII-based trace format specified in the first argument. The conversion type specification
may be followed by additional options specific to the conversion type. It defaults to the single threaded

vampir format if no other format is specified. tau_convert also accepts specification of an output file as
the last argument. If noneisgiven it prints the converted data to the standard out.

Options

- al og convert TAU tracefile into the alog format (This format is deprecated. The SLOG2 format is re-
commended.)

- SDDF convert TAU tracefile into the SDDF format

- dunp convert TAU tracefile into multi-column human readabl e text

- par aver convert TAU tracefileinto paraver format

- t indicate conversion of multi threaded TAU trace into paraver format

- pv convert single threaded TAU tracefile into vampir format (all -vampir options apply) (default)
- vanpi r convert multi threaded TAU tracefile into vampir format

-1 ongsynbol bugf i x make the first characters of long, similar identifier strings unique to avoid a
bug in vampir

- conpact abbreviate individua event entries
-al | compact all entries (default)

- user compact user entries only

- ¢l ass compact class entries only

- noconmdisregard communication events

[out puttrc] specify the name of the output tracefile to be produced

Examples

To print the contents of a TAU tracefile to the screen:

tau_convert -dunp app.trc tau.edf

66

Tools

To convert amerged, threaded TAU tracefile to paraver format:

tau_convert -paraver -t app.trc tau.edf app.pv

See Also

tau_merge, tau2vtf, tau2slog2

67

Tools

Name

tau_reduce -- generates selective instrumentation rules based on profile data

tau_reduce{-f filename}[-n][-r filename][-ofilenanme][-Vv][-p]

Description

tau_reduce is an application that will apply a set of user-defined rules to a pprof dump file (pprof -d) in
order to create a select file that will include an exclude list for selective implementation for TAU. The
user must specify the name of the pprof dump file that this application will use. This is done with the -f
filename flag. If no rulefileis specified, then a single default rule will be applied to the file. Thisruleis:
numcalls > 1000000 & usecs/call < 2, which will exclude al routines that are called at least 1,000,000
times and average less then two microseconds per call. If arulefile is specified, then this rule is not ap-
plied. If no output file is specified, then the results will be printed out to the screen.

Rules

Users can specify a set of rules for tau_reduce to apply. The rules should be specified in a separate file,
one rule per line, and the file name should be specifed with the appropriate option on the command line.
The grammar for a rule is: [GROUPNAME:]FIELD OPERATOR NUMBER. The GROUPNAME fol-
lowed by the colon (;) isoptional. If included, the rule will only be applied to routines that are a member
of the group specified. Only one group name can be applied to each rule, and a rule must follow a group-
name. If only a groupname is given, then an unrecognized field error will be returned. If the desired ef-
fect isto exclude al routines that belong to a certain group, then atrivial rule, such as GROUP:numcalls
> -1 may be applied. If a groupnameis given, but the data does not contain any groupname data, then
then an error message will be given, but the rule will till be applied to the date ignoring the groupname
specification. A FIELD is any of the routine attributes listed in the following table;

Table 7.1. Selection Attributes

ATTRIBUTE NAME MEANING

numcalls Number of timesthe routineis called

numsubrs Number of subroutines that the routine contains
percent Percent of total implementation time

usec Exclusive routine running time, in microseconds
cumusec Inclusive routine running time, in microseconds
count Exclusive hardware count

total count Inclusive hardware count

stddev Standard deviation

usecg/call Microseconds per call

countsg/call Hardware counts per call

Some FIELDS are only available for certain files. If hardware counters are used, then usec, cumusec,
usecs/per call are not applicable and a error is reported. The opposite is true if timing data is used rather
than hardware counters. Also, stddev is only available for certain files that contain that data.

An OPERATOR is any of the following: < (lessthan), > (greater than), or = (equals).

A NUMBER is any number.

68

Tools

A compound rule may be formed by using the & (and) symbol in between two simple rules. There is no
"OR" because there is an implied or between two separate simple rules, each on a separate line. (ie the
compound rule usec < 1000 OR numcalls = 1 is the same as the two simple rules "usec < 1000" and
"numcalls=1").

Rule Examples

#exclude all routines that are nenbers of TAU USER and have | ess than
#1000 mi cr oseconds
TAU _USER: usec < 1000

#exclude all routines that have | ess than 1000 m croseconds and are
#cal l ed only once.
usec < 1000 & nuntalls =1

#exclude all routines that have | ess than 1000 usecs per call OR have a percent
#l ess than 5

usecs/call < 1000

percent < 5

NOTE: Any linein the rule file that begins with a # is a comment line. For clarity, blank lines may be
inserted in between rules and will also be ignored.

Options
- f filename specify filename of pprof dump file
- p print out all functions with their attributes
- o filename specify filename for select file output (default: print to screen

- r filename specify filename for rulefile

- v verbose mode (for each rule, print out rule and all functions that it excludes)

Examples

To print to the screen the selective instrumentation list for the paraprof dump file app.prf with default se-
lection rules use:

tau_reduce -f app.prf

To create a selection file, app.sel, from the paraprof dump file app.prf using rules specified in foo.rlf
use:

tau_reduce -f app.prf -r foo.rlf -o app.sel

See Also

69

Part Il. ParaProf

Table of Contents

S 11 oo 1o ' o 72
8.1. Using ParaProf from the command [ineccoooiiiiiiiiiiiiiii e, 72

8.2. SUPPOIEd FOIMELScevniiei it aeas 72

8.3. Command liNE OPLIONScvuiieiei i 73

9. Profile DataManagemeENtcouuiiiiie e e e e e e 74
9.1. ParaProf Manager WIiNGOWcc.uviiiuiiiiiiii v e e 74

9.2. Loading Profil@Scuuuiieiiii e 74

0.3. Databhase INtEraCtionooeuuiiiiiiiiii e 75

9.4. Creating Derived MELIICSccuuiiiiiiiii e 75

9.5. MaiN DAataWIiNAOWoiiiiiiiiiii e 75

10. 3-D ViISUBIIZALION ...ttt e et e e e et e e e e et e et eee 77
10.1. Triangle MESh PIOtoveeiee e 77

0 I = T g . o 77

10.3. 3-D SCALEr PlOt ...ciiiiiieeeie e 78

11. Thread Based DiSPlaYScceuu ettt e e e e e e ean e aeees 80
11.1. Thread Bar Graphcooniiniii e e 80

11.2. Thread Statistics TEXt WINCAOWveviiiiiieiiiiieeeciii e 80

11.3. Thread StatisticS TAhIE ..ovvveieiiei e 81

11.4. Call Grapn WINAOWccouuniiiiiiiieiiii e 81

11.5. Thread Call Path Relations Windowccciviiiiiiiiiiiiiieiecceeeeee 82

11.6. User Event StatisticS WINAOWoiviiiiiiiiiiiici e 83

11.7. User Event Thread Bar Chartccoviiiiiiiiii e 83

12. FUNCLiON BaSed DiSPIAYSvvvneeiiiiiieeie et e e e e e e e e e e e e e e e eaes 85
2 I g Tox o) == = o o 85

12.2. FUNCLION HIStOGraM ... 85

13. Phase Based DiSPIayScieereieeiiiii ettt 87
13.1. Using Phase Based Displaysccuueieiiiiiiiiiiieei e e 87

14, COMPAratiVE ANBIYSIS ..euiiiiei et e e e e 89
14.1. Using Comparitive ANAYSISuuiiiinieiiieiiii e e e e e e e e 89

15. MisCEllan@OUS DiSPIAYSuvvenieei i et e e e e e e e e e e e eaes 91
15.1. User Event Bar Graphiiiiiiiiiiiiic e 91

15,2, LBOOEIS ittt 1

15.2.2. FUNCEION LEAGET ...t 91

15.2.2. GroUP LEAQES ...euieieiiei et 92

15.2.3. User EVENt LEAQES .ovnniiiiiii e 92

16, PrEfEIENCES ...t ee 94
16.1. PreferenCeS WINCOWcoeuniiiiii e eees %!

16.2. DEfAUIt COIOIS .nniiiiieiiii et eaes 95

T O] [0 gl Y/« H PP 95

71

Chapter 8. Introduction

ParaProf is a portable, scalable performance analysis tool included with the TAU distribution.

' I mportant

ParaProf requires Java 1.3 for basic functionality. Java 1.4 is required for 3d visualization
and image export. Additionally, OpenGL is required for 3d visualization.

Note

Most windows in ParaProf can export bitmap (png/jpg) and vector (svg/eps) images to disk
(png/jpg) or print directly to a printer. This are available through the File menu.

8.1. Using ParaProf from the command line

ParaProf is ajava program that is run from the supplied par aprof script (par apr of .bat for windows bin-
ary release).

% par aprof --help
Usage: paraprof [options] <files/directory>

Opt i ons:

-f, --filetype <fil etype> Speci fy type of performance data,
options are: profiles (default), pprof,
dynapr of, npip, gprof, psrun, hpm
packed, cube, hpc

-h, --help Di splay this hel p nessage
-p Use “pprof” to conpute derived data
-1, --fixnames Use the fixnanes option for gprof

--pack <file> Pack the data into packed (.ppk) fornat
(does not |aunch ParaProf GU)

--dunp Dunp profile data to TAU profile fornat
(does not |aunch ParaProf GUI)

Not es:
For the TAU profiles type, you can specify either a specific set of
profile files on the conmandl i ne, or you can specify a directory
(by default the current directory). The specified directory will
be searched for profile.*.*.* files, or, in the case of
nmul tiple counters, directories named MITI _* containing profile data.

8.2. Supported Formats

ParaProf can load profile date from many sources. The types currently supported are;

» TAU Profiles - Output from the TAU measurement library, these files generaly take the form of
profile. X X X one for each node/context/thread combination. When multiple counters are
used, each metric islocated in a directory prefixed with "MULTI__". To launch ParaProf with all the

72

Introduction

metrics, simply launch it from the root of the MULTI___ directories.
* pprof - Dump Output from TAU's pprof -d. Provided for backward compatibility only.
» DynaProf - Output From DynaProf's wallclock and papi probes.
e mpiP - Output from mpiP.
e gprof - Output from gprof, see aso the --fixnames option.
* HPM Toolkit - Output from HPM Toolkit.
» ParaProf Packed Format - Export format supported by PerfDMF/ParaProf. Typically .ppk.
* Cube - Output from Kojak Expert tool for use with Cube.

» HPCToolkit - XML data from hpcquick. Typically, the user runs hpcrun, then hpcquick on the res-
ulting binary file.

8.3. Command line options

In addition to specifying the profile format, the user can also specify the following options

» --fixnames - Use the fixnames option for gprof. When C and Fortran code are mixed, the C routines
have to be mapped to either .function or function_. Strip the leading period or trailing underscore, if
itisthere.

e --pack <file> - Rather than load the data and launch the GUI, pack the datainto the specified file.

e --dump - Rather than load the data and launch the GUI, dump the datato TAU Profiles. This can be
used to convert supported formatsto TAU Profiles.

73

Chapter 9. Profile Data Management

ParaProf uses PerfDMF to manage profile data. This enables it to read the various profile formats as
well as store and retrieve them from a database.

9.1. ParaProf Manager Window

Upon launching ParaProf, the user is greeted with the ParaProf Manager Window.

Figure 9.1. ParaProf Manager Window

X [al®
File Options Help
@ Applications Field Yalue
¢ [standard Applications EE Mame AQRSAZD
¢ 3 Default App |Application ID 7
¢ [J Default Exp \E;ersm_nl.
¢ [uimah16. ppk/packed, dataf B Ia:st;p é”n
@ PAPIFP_INS 3 argadigm
@ P_WaALL CLOCK_TIME i®]
@ PAPI_TOT_CYC i|usage.text
@ PAPI_LL_DCM :|exacution_options
@ P_YIRTUAL_TIME Huserdata

o= [Runtime Applications
¢ I DB Applications
& 9 ACRSAZD
o= [Basic run-time prafiling for Sacarra
o= 3 Gyro
o [gyro B1-std
o [Heap memaory managernent for SOcorro
o= 3 hydroshock.
o [MFI
o= [mpiP data
o= [Mew Application
o [PMED
o 9 Pop
o [J93D

This window is used to manage profile data. The user can upload/download profile data, edit meta-data,
launch visual displays, export data, derive new metrics, etc.

9.2. Loading Profiles

To load profile data, select File->Open, or right click on the Application's tree and select "Add Trial".

Figure 9.2. Loading Profile Data

X Load Trial [=]lx]

Trial Type |Tau profiles |'|

| Select Directory ||jhomefamoms |

74

Profile Data Management

Select the type of data from the "Trial Type" drop-down box. For TAU Profiles, select a directory, for
other types, files.

9.3. Database Interaction

Database interaction is done through the tree view of the ParaProf Manager Window. Applications ex-
pand to Experiments, Experiments to Trials, and Trials are loaded directly into ParaProf just as if they
were read off disk. Additionally, the meta-data associated with each element is show on the right, asin
Figure 9.1, “ParaProf Manager Window”. A trial can be exported by right clicking on it and selecting
"Export as Packed Profile".

New trials can be uploaded to the database by either right-clicking on an entity in the database and se-
lecting "Add Trial", or by right-clicking on an Application/Experiment/Trial hierarchy from the " Stand-
ard Applications' and selecting "Upload Application/Experiment/Trial to DB".

9.4. Creating Derived Metrics

ParaProf can created derived metrics using the Derived Metric Panel, available from the Options menu
of the ParaProf Manager Window.

Figure 9.3. Creating Derived Metrics

X ParaProf M EEE
[File Options Help
@ Applications Field walue
¢ CJ standard Applications “[Wame rmultifmpiliebfamaorrisfhome f
& [Default App Application D 0
¢ [Default Exp “|Experiment 1D o

¢ 3 multifmpilie/amorris /home, g} 0
@ PAPI_FP_INT :
@ PAPI_LL_DCM
@ CET_TIME_QF_DAY
@ PAPI_FP_ING [CET_TIME_OF_DAY
o= 3 Runtime Applications

o= 7 DB Applications

Argument 1: 0:0:0:0 - PAPI_FP_IMNS

Ar 2 00007 - GET_TIME_OF_DAY |
= Apply operation

In Figure 9.3, “Creating Derived Metrics’, we have just divided Floating Point Instructions by Wall-
clock time, creating FL OPS (Floating Point Operations per Second). The 2nd argument is a user editable
text-box and can be filled in with scalar values by using the keyword 'val' (e.g. "val 1.5").

9.5. Main Data Window

Upon loading a profile, or double-clicking on a metric, the Main Data Window will be displayed.

75

Profile Data Management

Figure 9.4. Main Data Window

(==

X : uintah16.ppki
File Options Windows Help

Metric; P_WALL CLOCK_TIME
alue: Exclusive

st dev. e] W] Tkl BT T —
mean [— e e ole] [(el el [—

nct 0,00

nct 10,0 e —] [(o] (e [T —
nct2,00

nct3,00 e] W o] [el Tl T —
nct4,0,0 T e]] | Dol kel 1] —
n,c15,0,0 e e] | el e][] —
n,c16,0,0 [e — [l [] (] | Lo —
n,c17,0,0 [e o] [] i 11—
nct 800 T T e] [ol bl 0] —
[N NoR R S)| — — i
nt 10,00 E i e e ool [el el | O —
net11,0,0 T el el e ool [el (el [T —
netl12,00 el e oo bl [(ol kel T —
net12,00 e e o] [(] el] —

netla00 EEE el e oo DI (] e] —
netls00 e e T Tl el T —

This window shows each thread as well as statistics as a combined bar graph. Each function is represen-
ted by a different color (though possibly cycled). From anywhere in ParaProf, you can right-click on ob-
jects representing threads or functions to launch displays associated with those objects. For example, in
Figure 9.4, “Main Data Window”, right click on the text n,c,t, 8,0,0 to launch thread based displays for

node 8.

Figure9.5. Unstacked Bars

el
L
=

X ParaProf: uintahi6.ppk/packed/'data/
File Options Windows Help

bt etric: PowiALL_CLOCK_TIME
alue: Exclusive

st dew.
mean
n,c,t 0,00
n,ct 1,00
n,c,t 2,00
n,ct 3,00
n,c,t 4,0,
n,ot 5,0
n,c,t 6,0,
n,c,t 7,0,
n,c,t 8,0,

(e

EDDDDDDDDDDDHHHDD
_EHHHNNNNNNNn”nnn

IO ODDIEn]-

DT
~-ogegEere o
e [t

UDUDDDEEDD [

I TG
e oo

L

-
="

A

Y ou may also turn off the stacking of bars so that individual functions can be compared across threadsin
aglobal display.

76

Chapter 10. 3-D Visualization

ParaProf displays massive parallel profiles through the use of OpenGL hardware acceleration through
the 3D Visualization window. Each window is fully configurable with rotation, translation, and zooming
capabilities. Rotation is accomplished by holding the left mouse button down and dragging the mouse.
Trangdation is done likewise with the right mouse button. Zooming is done with the mousewheel and the
+ and - keyboard buttons.

10.1. Triangle Mesh Plot

Figure 10.1. Triangle Mesh Plot

X ParaProf Visualizer: Application 13, Experiment 23, Trial 56. [[=][=][x]

File Options Windows Help

[]
¥| ® Triangle Mesh
Ear Plot

Scatter Plot

Height Metric

Exclusive w [|Time -
Color Metric
Exclusive | [Time -
MPI_Recd
Function
< L] »
251000
Thread
q M >

Height value 14 37 seconds

Color value 14 27 seconds

Mesh Plot | Axes ColorScale | Render

Plot Width d 2
Plot Depth (s
Plot Height o}

Transparency ————1)}

This visualization method shows two metrics for all functions, all threads. The height represents one
chosen metric, and the color, another. These are selected from the drop-down boxes on the right.

To pinpoint a specific value in the plot, move the Function and Thread sliders to cycle through the avail-

able functiong/threads. The values for the two metrics, in this case for MPl _Recv() on Node 351,
thevaueis14. 37 seconds.

10.2. 3-D Bar Plot

Figure 10.2. 3-D Mesh Plot

77

3-D Visualization

X ParaProf Visualizer: Application 13, Experiment 23, Trial 57.

[=]=]x]
File Options Windows Help
1
k| 2 Triangle Mesh
‘| @ Bar Prot
i| O Scatter Plot
Height Metric
|| [inctusive [+ [time [~
|| cotor Metric
r |Inclusive |'l |Time |"
buts
Function
[«] [[»]
3100
Thread

[« Tuf

[»]

Height value 2.506& seconds

Color value 2.506 seconds

Bar Plot | Axes | ColorScale | Render |

Plot Width g
Plot Depth (e
Plot Height d
Bar Size E———"
v Transpareney ——H F———

This visualization method is similar to the triangle mesh plot. It simply displays the data using 3d bars
instead of a mesh. The controls works the same. Note that in Figure 10.2, “3-D Mesh Plot” the transpar-
ency option is selected, which changes the way in which the selection model operates.

10.3. 3-D Scatter Plot

Figure 10.3. 3-D Scatter Plot

78

3-D Visualization

X ParaProf Visualizer: Application 13, Experiment 23, Trial 58. ||T||E”7|

File Options Windows Help

Triangle Mesh
Ear Plot

® Scatter Plot

MPI_Sendi
Width
Exclusive | |Time |+
IMPI_Recvi
Depth
Exclusive ¥ | |Time | v
[outs
Height
Exclusive | |Time |+
lexxchange_3
Color
Exclusive ¥ | |Time | v
ScatterPlot | Axes ColorScale | Render
Point size ==}
Point detail ﬁv

This visualization method plots the value of each thread along up to 4 axes (each a different function/met-
ric). This view alows you to discern clustering of values and relationships between functions across
threads.

Select functions using the button for each dimension, then select a metric. A single function across 4
metrics could be used, for example.

79

Chapter 11. Thread Based Displays

ParaProf displays several windows that show data for one thread of execution. In addition to per thread
values, the users may also select mean or standard deviation as the "thread" to display. In this mode, the
mean or standard deviation of the values across the threads will be used as the value.

11.1. Thread Bar Graph

Figure11.1. Thread Bar Graph

X nc10,0,0 - Application 13, Experiment 23, Trial 58. |[=[=][]
File Options Windows Help

M etric: Time
alue: Exclusive
Units: seconds

12.878 [] MPI_Recw(i

4.983 MPI_Init)
1483 [bits
1.297 4] rhs
1287 [bws
1.069 [MPI_waitQ
0.867 Bl MPI_Send(
0.769 [jacu
0.759 B jacld
0.691 [] exchange_1 |
0.415 [beast_inputs
0,088 | exchange_3
0.069 | setiv
0.03 | exact
0.024 | MPI_Allgather(
0.015 | erhs
0.014 | read_input
0.012 | error
0.01 | MPI_Allreduced
nnn7 | el lrac

K

This display graphs each function on a particular thread for comparison. The metric, units, and sort order
can be changed from the Options menu.

11.2. Thread Statistics Text Window

Figure 11.2. Thread Statistics Text Window

80

Thread Based Displays

X nct,0,0,0 - Application 13, Experiment 23, Trial 58. |[=][][]
File Options Windows Help
Metric Mame: Time
Gorted By Exclusive
Lnits: secands
%Total Time Exclusive Inclusive #Calls #hild Calls InclusiveCall Name
49.8 13.878 13.878 HO000 Q 1.7348E-4 MPI_Eecuwi)
18.0 4.983 5.008 1 2 5.008 MPI_Init{)
8.5 1.483 2.368 40000 BO0O0 5.9202E-3 hlts
0.9 1.397 2.76 251 502 0.011 =|
55.7 1.287 15.528 40000 80000 3.8819E-4 buts
3.8 1.069 1.069 508 s} 0.002 MPT_Wait{)
3.1 0.867 0.867 80504 [} 1.0771E-5
2.8 0,789 0. 769 40000 Q 1.9213E-3 Jacu
2.7 0.759 0,759 40000 0 1.8969E-5
54.2 0.601 15.125 160000 160000 0.4533E-5 Lo
81.1 0.415 22,608 3 180267 T7.536 hoast_inputs
5.2 0,083 1.452 504 1512 0,003
0.3 0.069 0.094 1 48000 0.0094 setiv
0.1 0.03 0.03 SEEE6 [} 5. 1404E-F exacT
0.1 0.024 0.024 2 Q 0.012
0.4 0.015 0,104 1 2 0.104 erhs
0.1 0.014 0.018 1 2 0.018
0.1 0.012 0.021 1 8001 0.021
0.0 .01 0.01 g 0 0,001
0.0 0.007 0.007 508 s} 1.3455E-5 MPI_Trecu()
0.0 0,006 0,008 1 2886 0.008 sethy <
I I

This display shows appr of style text view of the data.

11.3. Thread Statistics Table

Figure 11.3. Thread Statistics Table

X Thread nc.t, 3,00 - . 16.ppk I[=]m][x]
File Options Windows Help
|| E || |
Mame A [P_waALL CLOCK TIME Calls Chilct Calls
& maind woid {int, char **) [| 0.015 1 14|~
Lintah::PracessaorGraup *Uintah::Parallel:-getRaatPracessor [l 0 1 8]
Uintah::SimpleSimulationController &Uintah: SimpleSimulatior [l 0 1 8]
Uintah::SirmulationController &lintah::simulationController:Si [l 0 1 0
bool Uintah::Parallel::usingMPIQ 0 1 0
int Uintah::Parallel: getMPIRank 0 1 8]
woid Uintah:: OnDemandDatawarehouse: ~OnDemandDatat [l 0 2 4]
woid Uintah:: Parallel:: determinelfRunninglndertd PIGint, char [l 0,002 1 8]
o= yoid Uintah:: Parallel::finalizeM anager{Uintah::Parallel:: Circur [l 0.011 i 1
9 void Uintah:: Parallel: initializeManager(nt & char **&, const [l 0.001 1 H
MPI_Camrm_ranki [| 0 1 ol 8
MPI_Camm_size() | 0 1 ol
o MPI_Init_thread()] 6327 1 EE:]
woid Uintah::Parallel::noThreading) |] s} 1 8]
¢ woid Uinah::sirmplesirmulationCartraller:: rung UintahSimple 1l 0.074 1 154
o MPIscheduler: actualyCompiled] 0.109 2 44
o= MPECheduler:executed] 2768 11 2,460
o= MP|_Reduced [| 0.001 40 40
Uintah::DataWarehouse: ScrubMaode Uintah:: OnDemandC [l 0 21 4]
Uintah::OnDemandDatawarehouse &Uintah::OnDemandl [l s} 11 8]
hiool Uintah: OnDemandDarawarehouse: timastepabore [l [10 0
hiool Uintah: OnDemandDatawarehouse: timastepRestar [l 0 10 o |
koal Uintah::SimpleSimulationCantraller:: needRecampile: [l 0 10 4]
o= void Uintah:: OnDemandDatatarehouse:: get{Uintah::Red [l 0001 10 30|
: o wvoid Uintah:: OnDemandDatatifarehouse: overridedconst |l 00071 1} 40/%

This display shows a cube style call graph enabled table view of the data. It also functions as a regular
statistics table without callpath data. The data can be sorted by columns by clicking on the column head-
ing.

11.4. Call Graph Window

81

Thread Based Displays

Figure 11.4. Call Graph Window

XﬂeanCaIIanh- r p ||THE”?|
File Options Windows Help
L[[} DNNERNNEEE

main

This display shows callpath data in a graph using two metrics, one determines the width, the other the
color. The full name of the function as well as the two values (color and width) are displayed in atooltip
when hovering over a box. By clicking on a box, the actual ancestors and descendants for that function
and their paths (arrows) will be highlighted with blue. This alows you to see which functions are called
by which other functions since the interplay of multiple paths may obscure it.

11.5. Thread Call Path Relations Window

Figure 11.5. Thread Call Path Relations Window

82

Thread Based Displays

X call Path Data nc.t,-1.-1,1 - Application 18, Experiment 32, Trial 87. [=][=][=]
File Options Windows Help
Metric Mame: GET_TIME_OF_DAY
Borted By Exclusive
Units: seconds
Exclusive Inclusive Callsy/Tot.Calls Mame [id] =
14.934 14.935 1/1 main() void (int, char *¥)[5]
- 14.934 14.935 1 MPI_Init_thread() [133]
5.0E-5 B.0E-5 4,34 MPT_art r_get (3 [123]
1.58E-4 1.58E-4 8/5 MPT_ATTr_put () [124]
9.8E-5 9.6E-5 4/4 MPI_Errhandler_set{) [130]
5.97E-4 5.97E-4 1/1 WPI_Keyval_create() [136]
1.42E-4 1.42E-4 11,1214 MPI_Type_commit() [148]
1.67E-4 1.67E-4 a/8 MPI_Twpe_contiguous () [149]
7.6E-5 7.6E-5 5/5 MPI_Type_struct() [154]
0.0538 0.053 2/214 MPIScheduler:ractual TyCompile () [143]
11.9438 11.85 2127214 MPIScheduler: texecute() [144]
s 12,006 12.008 214 MPT_411 reduce) [122]
0,002 0,002 214,/395 MPI_Twpe_size() [153]
9.051 9.051 30,90 MPIScheduler: :postMPIRecws() [145]
9.6E-4 9.6E-4 G0,/90 Relocate::relocateParticles [MPIScheduler::execu
- 9.052 9.052 o0 MPI_Recv() [141]
5.726 5.726 2237223 MPIScheduler: :processMPIRecws () [146] Z
[1 \ [»]
I I

This display shows callpath data in a gprof style view. Each function is shown with its immediate par-
ents. For example, Figure 11.5, “Thread Call Path Relations Window” shows that MPl _Recv() iscall
from two places for a total of 9. 052 seconds. Most of that time comes from the 30 calls when
MPI _Recv() iscaled by MPl Schedul er: : post MPl Recvs() . The other 60 calls do not amount
to much time.

11.6. User Event Statistics Window

Figure 11.6. User Event Statistics Window

X ne,1,2,0,0 - Application 18, Experiment 32, Trial 87. |[=][@][x]
File Options Windows Help

Gorted By Mumber of Samples

NumSamples Max Min Hean Std. Dewv Nane

390 2B1712 4 53601 D4022 Messane size received Trom all nodes
350 281600 4 53576 94001

214 24 4 12.43 7.237

181 112 4 23.823 40,191 Messane size for reduce

This display shows a pprof style text view of the user event data. Right clicking on a User Event will
give you the option to open a Bar Graph for that particular User Event across all threads. See Sec-
tion 15.1, “User Event Bar Graph”

11.7. User Event Thread Bar Chart

83

Thread Based Displays

Figure 11.7. User Event Thread Bar Chart Window

XUser Event flash v.ppk/ ris/h / ||T||E”7|
File Options Windows Help
Thread: n,c,t 00,0
“alue Type: Max Walue
22528 Message size sent to all nodes 1=
16320 RN Message size receiwed from all nodes
4400 [] Message size for broadcast =
20552 [MPISsend() - Heap Memaory (KB
20557 [l MPI_Waitany) - Heap Memary (KB} =
20479 [LOGFILE BREAK_LOGFILE - Heap Memony (KE)
20479 [LOGFILE:CLOSE_LOCFILE - Heap Memaory (KB
2041.1 (o MPI_Waitall) - Heap Memory (KE)
2041.1 [MPl_Irecvd - Heap Memory (KB)
2029.6 [LOGFILE:OPEN_LOGFILE - Heap Mamary (KE)
20385 LOGFILE :WEITE_PERFMOMN_SUMMARY - Heap Memary (KB}
2032.2 CURRENT _DATE_TIME - Heap Memory (KB}
2029.1 MPI_Tyme_free(- Heap Memory (KE)
2029 [MPI_Tyoe_commitfy - Heap Memary (KE)
2028.6 [MPI_Tyoe_wectord - Heap Mermory (KB
2028.6 [0] MPLlsend) - Heap Memory (KB)
2028.6 [mmm] MOYE_BLOCK. - Heap Mermary {KE)
2028.c [MPI_Allreduced) - Heap Mermory (KB)
2024 MPI_Barrier) - Heap Memaony (KE)
2023.9 MFI_Finalize(- Heap Mamary (KE)
2023.8 LOGFILE :LOGFILE_WRITE.STR. - Heap Memary (KB}
2023.8 MESH_FINALIZE - Heap Memory (KB)
2023.4 DBASEPREOPERTIES: DEASEPROPERTYINTEGER - Heap Memaory (KEB)
2023.4 PROFILE_FINALIZE - Heap Memary (KE)
20232 || AMR_DIAGOMNAL PATCH - Heap Memary (KEB)
2022.2 [AMR_GUARDCELL_CC_C_TO_F - Heap Memory (KE)
2023.3 [DBASETREE:DBASELOCALBLOCKCOUNT - Heap Memory (KE)
2023.2 [l DBASETREE::DEASEMEICHBORBLOCKLIST - Heap Memory (KB)
20233 [AMR_GUARDCELL_C_TO_F - Heap Memary (KE) <
[Il [[»]
I I

This display shows a particular thread's user defined event statistics as a bar chart. Thisis the same data

from the Section 11.6, “User Event Statistics Window”, in graphical form.

Chapter 12. Function Based Displays

ParaProf has two displays for showing a single function across all threads of execution. This chapter de-
scribes the Function Bar Graph Window and the Function Histogram Window.

12.1. Function Bar Graph

Figure 12.1. Function Bar Graph

XFumtk}n Data iranda16k.pphij ked'data/ “THEIM

File Options Windows Help

ame: MPI_Barrier()

Metric Name: Time
alue: Exclusive

Lnits: seconds

21917 [0. dev.
71077 e mean
120, 6 L e et 0,050
ey AN
1245 e gt 2,000
ey A
by —————————————————— WA
126 el net5,00
1262 e ncre,0,0
1265 e ngr7,0,0
124.6 el met 8OO
ey WAL
2. e et 10,000
127,47 10,0
27 | ev12.00
126 0 g ngt13,0,0
L2, 7 g t140,0
1204 e 15,050
122, 2 | ner16,0,0
1220 e ner27.00
12 ey ner18,0,0
L2 s | ner19,0,0
L2 0 e net20,0,0
L2 L e net200,0
123 4y ngt22,0,0
1273 L | m gt 22,0,0
1207 el met240,0
1235 e ncras,0,0 =
ey |

mE

This display graphs the values that the particular function had for each thread along with the mean and
standard deviation across the threads. Y ou may also change the units and metric displayed from the Op-
tions menu.

12.2. Function Histogram

Figure 12.2. Function Histogram

85

Function Based Displays

X 16k.ppk/pa : ID(EIES

File Options Windows Help

Number of Bins
(1} a0 100

MPI_Barrier()

400

Threads

0
1214 24.28 36.42 48.56 50.7 72.83 84.97 97.11 109.3 1214
Exclusive Time (seconds)

This display shows a histogram of each thread's value for the given function. Hover the mouse over a
given bar to see the range minimum and maximum and how many threads fell into that range. Y ou may
also change the units and metric displayed from the Options menu.

You may also dynamically change how many bins are used (1-100) in the histogram. This option is
available from the Options menu. Changing the number of bins can dramatically change the shape of the
histogram, play around with it to get afeel for the true distribution of the data.

86

Chapter 13. Phase Based Displays

When a profile contains phase data, ParaProf will automatically run in phase mode. Most displays will

show datafor a particular phase. This phase will be displayed in teh top left corner in the meta data pan-
el.

13.1. Using Phase Based Displays

Theinitia window will default to top level phase, usually main

Figure 13.1. Initial Phase Display

X ParaProf: phase3d_new.ppkiuintah Phase: main{) void (int, char **) I[=][=][x]
File Options Windows Help

Phase: maind woid {int, char **)
Metric: Time
alue: Exclusive

nc,t11,0,0

i [«

To access other phases, either right click on the phase and select, "Open Profile for this Phase", or go to
the Phase Ledger and select it there.

Figure 13.2. Phase L edger

XPhaae Ledger: 'oh | o ”T”E”7|

File Windows Help

W 10 Phase

O neration o
[neration 1
O neration 2
E neration 3
O neration 4
B maing

ParaProf can aso display a particular function's value across all of the phases. To do so, right click on a

87

Phase Based Displays

function and select, " Show Function Data over Phases'.

Figure 13.3. Function Data over Phases

X n,c,t0,0,0 - Function Data: c++/phase! les/tau2/amarrisihome/ [BEE
File Options Windows Help

Fame: main
Metric Mame: Time
alue: Exclusive

Units: seconds

L O | aaeeeaeee. 1eration o
ooz [] man{

002] |21 011 2
L 002 e granion 4
L0 . heration =

1.002 Iteration 1

Because Phase information is implemented as callpaths, many of the callpath displays will show phase

data as well. For example, the Call Path Text Window is useful for showing how functions behave
across phases.

Chapter 14. Comparative Analysis

ParaProf can perform cross-thread and cross-trial anaylsis. In this way, you can compare two or more
trials and/or threadsin asingle display.

14.1. Using Comparitive Analysis

Comparative analysis in ParaProf is based on individual threads of execution. There is a maximum of
one Comparison window for a given ParaProf session. To add threads to the window, right click on
them and select "Add Thread to Comparison Window". The Comparison Window will pop up with the

thread selected. Note that "mean" and "std. dev." are considered threads for this any most other pur-
poses.

Figure 14.1. Comparison Window (initial)

X Comparison Window ||T”E|m
File Options Windows Help
Metric: Time [l 128 - Mean

alue: Exclusive
Units: seconds

4.802 [] MPI_Recw) -
0.908 [MPIINtD
0.699 [l MPI_Sendq
0.419 [bits
03284 [buts
0.376 [l MPI_Wait)
0275 [exchange_1
0.242 B rhs
0.177 & jacu
0.168 & jacld
0.141 [E bcast_inputs
0.058 [| MPI_Bcasig -
0.051 [] exchange_3

0.045 [MPI_Allreduce(
0.017 | setiv
0012 | MPI_Allgather(
0.008 | error

e

Add additional threads, from any trial, by the same means.

Figure 14.2. Comparison Window (2 trials)

89

Comparative Analysis

X Com parison Window

==

File Options Windows Help

Metric: Time A 125 - Mean

alue: Exclusive [l u.C.512 - Mean
Lnits: seconds

4802 B
12 3 [—————

0.008 [
2015 [—

0699 [
2306 —

0.419 @
1462 —

03284 O
1336 [

0376 @
0651 [

0375 @
L0037 [

0.242 [
1352 [

0.177 1

MPI_Recw)

MP_Init

MPI_Send ()

hlts

buts

MP1_Wait()

exchange_1

rhs

0.776 [™

0.168 [
0724 12°H

f?'i: 1=|] hcast_inputs

IC

Figure 14.3. Comparison Window (3 threads)

X Com parison Window

[+][=][x]

File Options Windows Help

Metric: Tirmne Eiua12s - Mean
alue: Exclusive [l u.C.512 - Mean
Units: seconds [A 128 - n,c,1 0,0,0

MPI_Recw)

MPI_Init()

MPI_Send()

hits

buts

MPI_Wait()

exchange_1

IC

90

Chapter 15. Miscellaneous Displays
15.1. User Event Bar Graph

In addition to displaying the text statistics for User Defined Events, ParaProf can aso graph a particular
User Event across al threads.

Figure 15.1. User Event Bar Graph

X user Event Window: Application 13, Experiment 23, Trial 57. ===
File Options Windows Help
ame: Message size sent to all nodes
alue Type: Mumber of Samples
31504 — 1,01 0,0,0 [~
31506 —— 1,1 15,0,0
31506 I—— 1,1 112,0,0
31508 — 1,01 127,0,0 |=
47258 —— ", 10,0
47255 —— 012,00 ||
47258 —— ., 0,0
47258 —— ! 0,0
47258 (—— .1 5,0,
47255 — ., 0,0
47255 —— ., 70,0
47255 ——— ., S, 0,0
47255 —— ., 90,0
47255 ——— !, 10,0,0
47255 —— !, 11,0,0
47255 [—— ., 12,0,0
47255 [—— ., 12,0,0
47255 [—— ., 14,0,0
47255 [—— ., 16,0,0
47255 | —— ., % 2,0,0
47255 — ., 45, 0,0
47250 —— ., 64,0,0
47250 —— ., 50,0,0
47250 —— ., 96,0,0
47259 —— ., 7 1,0,0
47259 —— .71 47,0,0 ||
. .

This display graphs the value that the particular user event had for each thread.

15.2. Ledgers

ParaProf has three ledgers that show the functions, groups, and user events.

15.2.1. Function Ledger

Figure 15.2. Function L edger

91

Miscellaneous Displays

X Function Ledger Window: uintah16.ppk/packedidatalamorris/homs| = |[B][%]
File Windows Help

B ~0d Reference (data) Paniclevariable < T x> allocated

W Add Reference (pseth Particleariable <T > allocated

[allocate Data ParticleYariable<T>allocateq)

B cComact:exMamintegrated [MPIScheduler: execute]
Contact::exMomlinterpolated [MPIScheduler: execute(]
Datasrchiver::outputCheckpointReduction [MPIScheduler::execute(]
MPIScheduler::actuallyCompiled

MPIScheduler:executed

MPIScheduler::postMPIRecys()

MPIScheduler:processMPIRecys ()

MPL_Allreduce(

MPI_Attr_get()
MPI_ATTE_put)
MPI_Bsend()
MPI_Buffer_attach(

me

MPI_Buffer_detachi
MPI_Cormrm_rank
MPI_Comm_size() -
] [¥]

OO OEDEEEN

-

The function ledger shows each function along with its current color. As with other displays showing
functions, you may right-click on a function to launch other function-specific displays.

15.2.2. Group Ledger

Figure 15.3. Group L edger

X Group Ledger Window: uiniahiﬁ.ppkz'packelmmm
File Windows Help

Contact: exMomintiegrated

Contact:: exMaminterpolated
Datadrchiver: outputCheckpointReduction
MPI

M PM: actualhdnitialize
MPM::applyExternalloads
MPM::computelnternalForce
MPM::computelnternalHeatRate

M PM:computestressTensor
MPM::integrateAcceleration
MPM::integrateTemperatureRate

M PM:interpolateParticlesToGrid
MPM:interpolateT oParticlesAndUpdate
MPM::printParticleCount
MPM::setGridBoundan onditions

M PM::solveEquationsM otion
MPM::solveHeatEquations
MPM::updateErosionParameter
Felocate:relocateParticles
TAL_CALLPATH

[E TAL_DEFAULT

W TAU_USER

[TAU_USER3

B ThermalContact: computeHeatExchange
W :end old data

OEECOEEEEEEOEONCEEN

The group ledger shows each group along with its current color. This ledger is especially important be-
cause it gives you the ability to mask all of the other displays based on group membership. For example,
you can right-click on the MPI group and select "Show This Group Only" and all of the windows will
now mask to only those functions which are members of the MPI group. You may also mask by the in-
verse by selecting "Show All Groups Except This One" to mask out a particular group.

15.2.3. User Event Ledger

Figure 15.4. User Event L edger

92

Miscellaneous Displays

X User Event Window: uintah16.ppkipackedidal[= [B1][%]
File Windows Help

[Message size for gather

W Message size far reduce

W Message size received from all nodes
[0 Message size sent to all nodes

The user event ledger shows each user event along with its current color.

93

Chapter 16. Preferences

Preferences are modified from the ParaProf Preferences Window, launched from the File menu. Prefer-
ences are saved between sessionsinthe . Par aPr of / Par aPr of . prefs

16.1. Preferences Window

In addition to displaying the text statistics for User Defined Events, ParaProf can also graph a particular
User Event across all threads.

Figure 16.1. ParaProf Preferences Window

X ParaProf Preferences ||T||E||7‘
File
Font
‘Sanssmf |-| nct 0,00 T
poct 0,01 L
[| Bold Size not o 0,02 .
[] tatic
(1} 10 20 30 40
Window defaults Settings
[] Show Path Title in Reverse
[Reverse Call Paths
Interpret threads that do not call a
[l Show values as Percent given function as a 0 value for
S1atistics computation
Restore Defaults Apply

The preferences window allows the user to modify the behavior and display style of ParaProf's win-
dows. The font size affects bar height, a sample display is shown in the upper-right.

The Window defaults section will determine the initia settings for new windows. Y ou may change the
initial units selection and whether you want values displayed as percentages or as raw values.

The Settings section controls the following

e« Show Path Title in Reverse - Path title will normally be shown in normal order
(/home/amorris/data/etc). They can be reverse using this option (etc/data/amorrisshome). This only
affects loaded trials and the titlebars of new windows.

* Reverse Call Paths - This option will immediately change the display of all callpath functions
between Root => Leaf andLeaf <= Root.

e Statistics Computation - Turning this option on causes the mean computation to take the sum of
value for afunction across all threads and divide it by the total humber of threads. With this option
off the sum will only be divided by the number of threads that actively participated in the sum. This
way the user can control whether or not threads which do not call a particular function are consider
as a0 in the computation of statistics.

94

Preferences

16.2. Default Colors

Figure 16.2. Edit Default Colors

X ParaProf: Edit Default Colors =alx]
File

Default Color Set

Swatches | HSE | RGE |

=

| »

Add Function Color
Group 3

Group 4 Add Group Color

| |
Qroup 5 | | R O O O O
Group 6 | Delete Selected Color | jﬂﬂJJJJJJjjJJJJJJ
oI
| | (=]
| |

Recent

Croug 7

Update Selected Color

Croug 8

Group 8
Group 10

Restore Defaults

Group 11 L
Group 12
Func. Highlight 3 Preview
Groug Highlight D -

. Sample Text Sample Text
User Ewvent Highlight D

Misc. Func Color [«
I} [»]

-

The default color editor changes how colors are distributed to functions whose color has not been spe-
cifically assigned. It is accessible from the File menu of the Preferences Window.

16.3. Color Map

Figure 16.3. Color Map

X ParaProf: Color Map “T”EIM

Assign Colors

Currently Assigned Colers

subdamain il Remove

errar
) Remove All
MPI_Barrier]

read_input

=0
MPI_Cammm_sizef)
MPI_Attr_get(
I2norm

huts

exchange_4
exchange_&
applu

sethyper

bcast_inguts
neighbors

jacu -

The color map shows specifically assigned colors. These values are used across all trials loaded so that
the user can identify a particular function across multiple trials. In order to map an entire trial's function
set, Select "Assign Defaults from ->" and select aloaded trial.

Individual functions can be assigned a particular color by clicking on them in any of the other ParaProf

95

Preferences

Windows.

96

Part lll. PerfDMF

Table of Contents

I 11 oo o oo S 99
17. 0 Pref@QUISITES ..ooveieiiiii ettt ettt et e 99
17.2. INSEAGHON ..oiieieeee e 99
18. USING PEITDIME .oeiiii et e e e et e e e e e 101
18.1. perfdmf _Createappcvvueee e e e 101
18.2. perfdmf _Createapp . ..ccvvevee et 101
18.3. perfdmf_loadtrialccoouuiiiiii 101

98

Chapter 17. Introduction

17.1.

17.2.

PerfDMF (Performance Data Management Framework) is a an API/Toolkit that sits atop a DBMS to
manage and analyze performance data. The APl isavailablein its native Javaform aswell as C.

Prerequisites

1. A supported database (currently, PostgreSQL, MySQL, or Oracle).
2. Javald.

Installation

The PerfDMF utilities and applications are installed as part of the standard TAU release. Shell scripts
areinstalled in the TAU bin directory to configure and run the utilities. It is assumed that the user hasin-
stalled TAU and run TAU's configure and 'make install'.

1. Create adatabase. This step will depend on the user's chosen database.
e PostgreSQL:
$ createdb -O perfdnf perfdnf
Or, from psgl

psql =# create dat abase perfdnf with owner = perfdnf;

e MySQL: Fromthe MySQL prompt

nysqgl > create dat abase perfdnf;

* Oracle: Itisrecommended that you create a tablespace for perfdmf:

create tabl espace perfdnf
datafile '/path/to/ somewhere' size 500m reuse;

Then, create a user that has this tablespace as default:

create user anorris identified by db;

grant create session to anorris;

grant create table to anorris;

grant create sequence to anorris;

grant create trigger to anorris;

alter user anorris quota unlinmted on perfdnf;
alter user anorris default tabl espace perfdnf;

PerfDMF is set up to use the Oracle Thin Java driver. You will have to obtain this jar file for
your database. In our case, it was ojdbcl4.jar

2. Configure PerfDMF. To configure PerfDMF, run the perfdmf_configure from the TAU bin direct-
ory.

99

Introduction

The configuration program will prompt the user for several values. The default values will work for
most users. When configuration is complete, it will connect to the database and test the configura-
tion. If the configuration is valid and the schema is not found (as will be the case on initial config-
uration), the schemawill be uploaded. Be sure to specify the correct schemafor your database.

100

Chapter 18. Using PerfDMF

The easiest way to interact with PerfDMF is to use ParaProf which provides a GUI interface to all of the
database information. In addition, the following commandline utilities are provided.

18.1. perfdmf_createapp

This utility creates applications with a given name

$ perfdnf_createapp -n "New Application”
Created Application, ID: 24

18.2. perfdmf_createapp

This utility creates experiments with a given name, under a specified application

$ perfdnf_createexp -a 24 -n "New Experi ment"
Created Experinment, ID: 38

18.3. perfdmf_loadtrial

This utility uploads atrial to the database with a given name, under a specified experiment

Usage: perfdnf |oadtrial -e <experinent id> -n <nane>
[options] <files>

Requi red Argunents:

-e, --experinentid <nunmber> Speci fy associ at ed experi nent
ID for the trial
-n, --name <text> Specify the nane of the trial

Optional Argunents:

-f, --filetype <filetype> Speci fy type of performance data,
options are: profiles (default), pprof,
dynapr of, npip, gprof, psrun, hpm
packed, cube, hpc

-t, --trialid <nunber> Specify trial ID

-i, --fixnames Use the fixnanes option for gprof

Not es:
For the TAU profiles type, you can specify either a specific set of
profile files on the conmandl i ne, or you can specify a directory
(by default the current directory). The specified directory will
be searched for profile.*.*.* files, or, in the case of
nmul tiple counters, directories nanmed MITI _* containing profile data.

Exampl es:
perfdnf | oadtrial -e 12 -n "Batch 001"
This will load profile.* (or nmultiple counters directories MILTI_*)
into experiment 12 and give the trial the nane "Batch 001"

perfdnf_loadtrial -e 12 -n "HPM data 01" perfhpnt

101

Using PerfDMF

This will |oad perfhpm files of type HPMIool kit into experiment
12 and give the trial the nane "HPM data 01"

102

Part IV. PerfExplorer

Table of Contents

S 11 oo o o o 105
20. Installation and CONfiQUIaLIONcccuueueeiiiiie ittt e et e e e et eeees 106
20.1. Available configuration OPLiONSceeuuiieiiieiiieei e 106

21. RUNNING PEIfEXPIOIEr . oeniei e e eaas 107
A OV (= N 7= Y2 = 108
22.1. DIMeNsion REAUCLIONuuiiiiiiiiieiiiii e 108

22.2. Max NUMBEr Of CIUSLEN'Soieiiiii e 108

22.3. Performing Cluster ANAlYSISuuiiiiiiiieeiiii e 109

P T 1 0 £ TSP 115
23.1. SEtting Parametersuoviiiieeee e 115

23.1.1. Group Of INEEIESE .. cevueeie e e e 115

23.1.2. MEtric Of INTEreStooieiieieiiii e 115

23.1.3. Event Of INEEreSt ...oovniiiieeee e e 115

23.1.4. Total Number of TIMEStEPSuevviviieeeiii e 116

23.2. Standard Chart TYPESceeueeineiii e eees 116

23.2.1. Timesteps Per SECONdcveviviiiiiiiiieee e 116

23.2.2. RAatiVE EffiCIENCY ..vviiveiiiiicec e 117

23.2.3. Relative Efficiency by Eventccooeviviiiiiiiii e 117

23.2.4. Relative Efficiency for One Eventccoovevviiiiiiiiiiiiieiiiineeees 118

23.2.5. RAAIVE SPEEAUD ...ueiiiiiieiiii e 119

23.2.6. Relative Speedup by Bventccciviiiiiiiiiiii 119

23.2.7. Relative Speedup for OneEventccccoveiiiiiiii i, 120

23.2.8. Group % of Total RUNLIMEccevniiiiiiei e 120

23.2.9. Runtime Breakdownccuiieiiiiiiiiiiiin e 121

23.3. Phase Chart TYPES .vuueiiiiii ettt et 121

23.3.1. Relative Efficiency per Phaseooveveeiniiiiiiiiieciiieeeeeieee 122

23.3.2. Relative Speedup per Phaseoooouviiiiiii e, 122

23.3.3. Phase Fraction of Total RUNtIMEc.coeiiiiiiiiiiieceeee, 123

104

Chapter 19. Introduction

PerfExplorer is aframework for parallel performance data mining and knowledge discovery. The frame-
work architecture enables the development and integration of data mining operations that will be applied
to large-scale paralel performance profiles.

The overall goa of the PerfExplorer project is to create a software to integrate sophisticated data mining
techniquesin the analysis of large-scale parallel performance data.

PerfExplorer supports clustering, summarization, association, regression, and correlation. Cluster ana-
lysisisthe process of organizing data points into logically similar groupings, called clusters. Summariz-
ation is the process of describing the similarities within, and dissimilarities between, the discovered
clusters. Association is the process of finding relationships in the data. One such method of association
is regression analysis, the process of finding independent and dependent correlated variables in the data.
In addition, comparative analysis extends these operations to compare results from different experi-
ments, for instance, as part of a parametric study.

In addition to the data mining operations available, the user may optionally choose to perform comparat-
ive analysis. The types of charts available include time-steps per second, relative efficiency and speedup
of the entire application, relative efficiency and speedup of one event, relative efficiency and speedup
for al events, relative efficiency and speedup for all phases and runtime breakdown of the application
by event or by phase. In addition, when the events are grouped together, such as in the case of commu-
nication routines, yet another chart shows the percentage of total runtime spent in that group of events.
These analyses can be conducted across different combinations of parallel profiles and across phases
within an execution.

105

Chapter 20. Installation and
Configuration

20.1.

PerfExplorer uses PerfDMF databases so if you have not already you will need to install PerfDMF, see
Chapter 17, Introduction. To configure PerfExplorer move to thet ool s/ src/ Per f Expl orer/ dir-
ectory in you TAU distribution. Type:

%./configure

If you haven't already done so for other TAU tools, add [path to tau]/tau2/appl e/ binto
your path.

The following command-line options are available to configure:

Available configuration options

* -engi ne=<anal ysi s engi ne>
Specifies the data-mining engine to use. The supported options include weka and R.
e -rroot=<directory>

Specifies the directory where R is installed. Specifically, it should be the directory where the bi n,
i nclude,lib,library andshar e directories are located.

 -o0bjectport=<avail abl e network port>
Specifies the port that the PerfExplorer server should use, when running PerfExplorer in client-serv-
er mode. Select an available network port, and make sure that other appropriate network configura-
tions are made (firewalls, etc.). The default port is 9999.

* -registryport=<avail abl e network port>
Specifies the port that the rmiregistry should use, when ruining PerfExplorer in client-server mode.
Select an available network port, and make sure that other appropriate network configurations are
made (firewalls, etc.). The default port is 1099.

e -server=<server nane>

Specifies the fully qualified domain name of the server where PerfExplorer is run, when running
PerfExplorer in client-server mode.

106

Chapter 21. Running PerfExplorer

To run PerfExplorer type:

% per f expl orer

When PerfExplorer loads you will see on the left window all the experiments that where loaded into
PerfDMF. You can select which performance data you are interested by navigating the tree structure.
PerfExplorer will allow you to run analysis operations on these experiments. Also the cluster analysis
results are visible on the right side of the window. Various types of comparative analysis are available
from the drop down menu selected.

To run an analysis operation, first select the metric of interest form the experiments on the left. Then
perform the operation by selecting it from the Anal ysi s menu. If you would like you can set the
clustering nethod, dinension reduction, normalization method and the
nunber of clusters fromthe same menu.

The options under the Charts menu provide analysis over an entire trial. To view these charts first
choose a metric of interest by selecting atrial form the tree on the left. Then choose the Set Metri ¢
of Interest orSet Event of |nterest formtheCharts menu. Now you can view achart
by selecting it from the Char t s menu.

107

Chapter 22. Cluster Analysis

22.1

22.2.

Cluster analysisis a valuable tool for reducing large parallel profiles down to representative groups for
investigation. Currently, there are two types of clustering analysis implemented in PerfExplorer. Both
hierarchical and k-means analysis are used to group parallel profilesinto common clusters, and then the
clusters are summarized. Initially, we used similarity measures computed on a single parallel profile as
input to the clustering algorithms, although other forms of input are possible. Here, the performance data
is organized into multi-dimensional vectors for analysis. Each vector represents one parallel thread (or
process) of execution in the profile. Each dimension in the vector represents an event that was profiled
in the application. Events can be any sub-region of code, including libraries, functions, loops, basic
blocks or even individual lines of code. In simple clustering examples, each vector represents only one
metric of measurement. For our purposes, some dissimilarity value, such as Euclidean or Manhattan dis-
tance, is computed on the vectors. As discussed |ater, we have tested hierarchical and k-means cluster
analysisin PerfExplorer on profiles with over 32K threads of execution with few difficulties.

Dimension Reduction

Often, many hundreds of events are instrumented when profile data is collected. Clustering works best
with dimensions less than 10, so dimension reduction is often necessary to get meaningful results. Cur-
rently, there is only one type of dimension reduction available in PerfExplorer. To reduce dimensions,
the user specifies aminimum exclusive percentage for an event to be considered "significant".

To reduce dimensions, select the "Select Dimension Reduction” item under the "Analysis' main menu
bar item. The following dialog will appear:

Figure 22.1. Selecting a dimension reduction method

B O O Dimiensizn Eadusiion

Erleni a dirmension redusiion meihod:
| frrer H Perueni [

Select "Over X Percent”. The following dialog will appear:

Figure 22.2. Entering a minimum threshold for exclusive percentage

enn Edinimm Perceniivgs:

ith sxalusive bime % greaier than X

NS

Enter avalue, for example"1".

Max Number of Clusters

By default, PerfExplorer will attempt k-means clustering with values of k from 2 to 10. To change the
maximum number of clusters, select the "Set Maximum Number of Clusters' item under the "Analysis"

108

Cluster Analysis

main menu item. The following dialog will appear:

Figure 22.3. Entering a maximum number of clusters

enon Bz ©lusiars
Envizer the max number of slosiers (22— 185
#

{ Cannel)
o

22.3. Performing Cluster Analysis

To perform cluster analysis, you first need to select a metric. To select a metric, navigate through the
tree of applications, experiments and trials, and expand the tria of interest, showing the available met-
rics, as shown in the figure below:

Figure 22.4. Selecting a Metric to Cluster

ee6 PrerfFsplorer Oliani
Filz Arizksis Yisws Chias Yiswzlizarion Halp

L2 BV

L8 Bictwiorin
L& {HFESHIP
L2 b ARRES (Lisrge sl Aroriis Rk
|2 Rt

|3 FOF

L& SHARIRL

L8 kit 030

L2 SFheE

L& Uiriigh

L& HRE

L2 ayro i -nid

2 ayro sl HFRG

{ @ Enalwin Banagercni | @ Clusier Resulis | @ Coreelaiion Resulis

Fizld Waluz
M mame FOWALL) OUK_TIRE
Ffairiz: 11 1270
Vil 13 T

4 Y Y Y Y Y Y Y Y Y YYYYYYYY

¥ LF 1H.1h

B @ P ORELL K TR
> @ FEFI_FE_INS

@ BAFLINT _INS

P @ PAFICTINN G

@ FAFICTIN I

P @ FEFITIN NS L
WFe Al b _iFpT H

After selecting the metric of interest, select the "Do Clustering” item under the "Analysis' main menu
bar item. The following dialog will appear:

Figure 22.5. Confirm Clustering Options

109

Cluster Analysis

enon Tanfirm Analysis

K Bleans
BRI

Trial: sPPRA:Frosi: 16, 16:P WALL LK TIME

Perform slusizring with the thess opiions?

G i (Mo, noiyes)

After confirming the clustering, the clustering will begin. When the clustering results are available, you
can view them in the "Cluster Results' tab.

Figure 22.6. Cluster Results

e6e PerfExplorer Client
File Analysis Views Charts Visualization Help
Performance Data " -
m @ Analysis Management ~ @ Cluster Results | @ Correlation Results]
¥ | Database Profiles
P L5 AVUS 0 100 200 T
> | | Bigscience /1 A
» | CFDSHIP “- Dm III IIl D‘
b |0 LAMMPS (Large-scale Atomic Molecula -
> [1 Miranda ll 1 =
» |3 POP —
> | SHAMRC
4 0D 100 200 i
> 0 suczono o = o[| of
> | 5Phot 0.00 LJ
» [Uintah 1] L L
n
b
(3 wRF : o 2 2|0
b | gyro.Bl-std —
b | gyro.Bl-std.HPM A 0 50 100 o
b | gyro.B2-cy o [- 0 of
» | gyro.B2-cy.HPM 11 0.00 . 1 1
P | gyro.B3-gtc I 2 2
> | gyro.B3-gic.HPM 3l s 3 || 3|
¥ (.7 sPPM po—
¥ .7 Frost
! Fros 0 25 50 75 T n |
¥ 7 16.16 oM = w A 0| N NI 0
> @ P_WALL_CLOCK_TIME . ooo{ * ! i'.h:: - |)
_ L
P @ PAPI_FP_INS i 3 —) I'_i-, 3 3
P @ PAPILINT_INS 4 5 i q 4
> @ PAPL_TOT_CYC 1
b @ PAPI_TOT_IIS 1 D 25 50 75 | ¥
N ——| 0.25 [“ o F— =-b 4
b @ PAPI_TOT_INS v | &= —Y 14l
t-——--—-—--———-—-—’ 14 e /

There are a number of images in the "Cluster Results" window. From left to right, the windows indicate
the cluster membership histogram, a PCA scatterplot showing the cluster memberships, a virtual topo-
logy of the parallel machine, the average values for each event in each cluster, the maximum values for
each event in each cluster, and the minimum values for each event in each cluster. Clicking on a thumb-
nail image in the main window will bring up the images, as shown below:

Figure 22.7. Cluster M ember ship Histogram

110

Cluster Analysis

806 analyin rasuli

s[RI Frost S8 P _ WAL _CILOCR_TIRMIE

Thireids in closier
I_I 4 i1 N Tinh 124 1450 14 21y 225 A0y

luzter Hornber

-
-

Wi hreaiis inelusier A4

Figure 22.8. Cluster M ember ship Scatter plot

111

Cluster Analysis

8e6ee analysis_result

PCA Results

232 .

aRnn -

4278 -

2250

azzc

azup

0. 647INTFRF, .,
&
3
3
-

-a02s

=AU

AT -

=025

=ALs0

i =
=200
1338 -
- -br 06 05 b4 -0d -0z 01 aw Al
085 1barrier [Openti? loraton: file:muawdi.F <550, 0=]...

W Clustor 5 B Clusor 1

Figure 22.9. Cluster Virtual Topology

az

a3

a4

112

Cluster Analysis

866

firnpsf clusiarlmise, LSS 4300027002 clusinrs. png

Figure 22.10. Cluster Average Behavior

113

Cluster Analysis

analysis pasuli

(PR Fres il &9 8 P_Weall [ORI

Tl Euritiri

luzter Furmker

Cal
-

W FLF
B parrier
U barrier

trrier
H parrier
M barrier
M birrier
W parrier
W tarrier
M birrier
N parrier
M parrier

i [QpenkE eaiion: file:rmin
Wi [Openbdl sciion: file: b
B0k [OpwenRd 1 Toscaiioon: Tilernbn,

iy [QpenRE Weaiion: Fie it
Wi [Openbdl sciion: file:nmb

BWUIMIEE BIMIFRE SEER tarrier [Openkdl caiien: fileronbis F o859, O]
[Opnbd 1 losziion: file:]
[Opnbd 1 losziion: file:]
[Oprnkl® iion: fi 1]
]

[Coppe b1 Ticswidesnes Tile e
[Openbdl* lozsiion: file:
[Openbl* nziion: file:n
[Oprnkdl® siion: file:r
[Opnbd 1 losziion: file:
[Oprnkl lvaiion: file:
[Coppe b1 Ticswidesnes Tile e]
[Ooppenbd 1 Toisiion: Tilerntass F <h23, o]
ALE 1258, a8
B 15, T
Fc AN, 200
Foane, Ahhn
Foehinis, Baus]

i [Openbdl eaiion: T F <998, 1160%]

114

Chapter 23. Charts
23.1. Setting Parameters

There are afew parameters which need to be set when doing comparisons between trials in the database.
If any necessary setting is not configured before requesting a chart, you will be prompted to set the
value. The following settings may be necessary for the various charts available:

23.1.1. Group of Interest

TAU events are often associated with common groups, such as"MPI", "TRANSPOSE", etc. This value
is used for showing what fraction of runtime that this group of events contributed to the total runtime.

Figure 23.1. Setting Group of Interest

O O O Giraap of intersesi

Please enisr ihe group of inisresi

CALTHLATISH e

€ Cansl) E—HH

23.1.2. Metric of Interest

Profiles may contain many metrics gathered for asingle trial. This selects which of the available metrics
the user isinterested in.

Figure 23.2. Setting Metric of I nterest

@ 7 Beiric of ingoresi

Plesase enier the mesinis of inieresi
P AMAL))1 TIRE .

(fanzzl) f 15K)

23.1.3. Event of Interest

Some charts examine eventsin isolation. This setting configures which event to examine.

Figure 23.3. Setting Event of I nterest

115

Charts

@ O Feni of inkeresi

Plsasee enier the weeni of inieresi
ol

ol i |m

174

[LSTETIT]

lessraiioon (0 =2 Lol
Iissraiioon (0 =2 Loll iy

Ieasraiion {1 =2 1)1
Iesraiion {f =2 Rl
liasraiion {8 =2 B _ir
IRasraiicon {1 =2 s M

23.1.4. Total Number of Timesteps

One chart, the "Timesteps per second”" chart, will calculate the number of timesteps completed per
second. This setting configures that value.

Figure 23.4. Setting Timesteps

800 Tasial Tirnesisge

Plzeanes enier vhe foial number of §
Ly

aegit Tor the cxperimeni

(canuel) G

23.2. Standard Chart Types
23.2.1. Timesteps Per Second

The Timesteps Per Second chart shows how an application scales as it relates to time-to-solution. If the
timesteps are not already set, you will be prompted to enter the total number of timestepsin the trial (see
Section 23.1.4, “Total Number of Timesteps®). If there is more than one metric to choose from, you
may be prompted to select the metric of interest (see Section 23.1.2, “Metric of Interest”). To reguest

this chart, select one or more experiments or one view, and select this chart item under the "Charts"
main menu item.

Figure 23.5. Timesteps per Second

116

Charts

I

Tiwississs

n 26 BDTR A0 426 960 976 200 22K R0 276 300 AAR ARN ATR 400 425 46D 476 KO0 RAR
Muiritie:r af sz

[W B e P ctveishatfnenng | 4

23.2.2. Relative Efficiency

The Relative Efficiency chart shows how an application scales with respect to relative efficiency. That
is, as the number of processors increases by a factor, the time to solution is expected to decrease by the
same factor (with ideal scaling). The fraction between the expected scaling and the actual scaling is the
relative efficiency. If there is more than one metric to choose from, you may be prompted to select the
metric of interest (see Section 23.1.2, “Metric of Interest”). To request this chart, select one experiment
or view, and select this chart item under the "Charts' main menu item.

Figure 23.6. Relative Efficiency

806 Fzelaiinins Fifigiiceniey
el Gt 7 : e cssialomll ksl A

gl

a.0n - : - :
0 a5 50 7R 900 435 460 975 200 235 250 375 00 AR IR0 ATHR 400 435 4KN 475 SO0 535
Muritet af Frossssan

[® 59 e i afnsng | 4

23.2.3. Relative Efficiency by Event

The Relative Efficiency By Event chart shows how each event in an application scales with respect to
relative efficiency. That is, as the number of processors increases by a factor, the time to solution is ex-
pected to decrease by the same factor (with ideal scaling). The fraction between the expected scaling and
the actual scaling is the relative efficiency. If there is more than one metric to choose from, you may be
prompted to select the metric of interest (see Section 23.1.2, “Metric of Interest”). To request this chart,

117

Charts

select one or more experiments or one view, and sdlect this chart item under the "Charts" main menu
item.

Figure 23.7. Relative Efficiency by Event

Fislaiive Fificienicy by

25 R0 7R 100 125 150 475 A00 225 AR0 275 25 AR A75 400 425 450 475 500 R3S
Mugitid af Prosasan

[Wean ® ol 40 M = Mt ¥oeodes = dek © n BHE 0 oder | 4

23.2.4. Relative Efficiency for One Event

The Relative Efficiency for One Event chart shows how one event from an application scales with re-
spect to relative efficiency. That is, as the number of processors increases by a factor, the time to solu-
tion is expected to decrease by the same factor (with ideal scaling). The fraction between the expected
scaling and the actual scaling is the relative efficiency. If there is more than one event to choose from,
and you have not yet selected an event of interest, you may be prompted to select the event of interest
(see Section 23.1.3, “Event of Interest”). If there is more than one metric to choose from, you may be
prompted to select the metric of interest (see Section 23.1.2, “Metric of Interest”). To request this chart,
select one or more experiments or one view, and select this chart item under the "Charts’ main menu
item.

Figure 23.8. Relative Efficiency one Event

eoe

Eigse i

Galll_weaaall

n 25 AN 7R 90N 426 98N 47/ AN 23K RN ATHR ANN AR ARN ATH 40N 43R ARN 476 &RON R2R
Mugrine: af oz

B G gichn B ehwstsiatinong

118

Charts

23.2.5. Relative Speedup

The Relative Speedup chart shows how an application scales with respect to relative speedup. That is, as
the number of processors increases by a factor, the speedup is expected to increase by the same factor
(with ideal scaling). The ideal speedup is charted, along with the actual speedup for the application. If
there is more than one metric to choose from, you may be prompted to select the metric of interest (see
Section 23.1.2, “Metric of Interest”). To request this chart, select one or more experiments or one view,
and select this chart item under the "Charts' main menu item.

Figure 23.9. Relative Speedup

606

2 Spedig

el 2.l

sl atfieesnig el

"

o

N 25 R0 7R 100 425 480 175 200 235 IR0 A7H A0Q A5 RN ATH 400 425 450 475 SO0 RIS
Mugribid af Prosaian

B g i Poenmeiaiaffiosng D keal 4

23.2.6. Relative Speedup by Event

The Relative Speedup By Event chart shows how the events in an application scale with respect to relat-
ive speedup. That is, as the number of processors increases by a factor, the speedup is expected to in-
crease by the same factor (with ideal scaling). The ideal speedup is charted, along with the actual spee-
dup for the application. If there is more than one metric to choose from, you may be prompted to select
the metric of interest (see Section 23.1.2, “Metric of Interest”). To request this chart, select one experi-
ment or view, and select this chart item under the "Charts' main menu item.

Figure 23.10. Relative Speedup by Event

119

Charts

e6eé

[

"

o

n 25 B TR 100 42K 980 978 AN 23K RN ATR QNN AR ARN ATH 400 425 ARD 476K KOO R2R
Muiriney af PFroseasars

Gl Goll b e} wl M ¥ wsdian = ikl lin_HHe attir vl

23.2.7. Relative Speedup for One Event

The Relative Speedup for One Event chart shows how one event in an application scales with respect to
relative speedup. That is, as the number of processors increases by a factor, the speedup is expected to
increase by the same factor (with ideal scaling). The ideal speedup is charted, along with the actual spee-
dup for the application. If there is more than one event to choose from, and you have not yet selected an
event of interest, you may be prompted to select the event of interest (see Section 23.1.3, “Event of In-
terest”). If there is more than one metric to choose from, you may be prompted to select the metric of in-
terest (see Section 23.1.2, “Metric of Interest”). To request this chart, select one or more experiments or
one view, and select this chart item under the "Charts' main menu item.

Figure 23.11. Relative Speedup one Event

606

el

It}

g

N 25 RN75I00 436 150 975 200 2R 2/0 A7R A
Mugribe:r of Froes:

W it n . chaniaiaffnonng O e

23.2.8. Group % of Total Runtime

The Group % of Total Runtime chart shows how the fraction of the total runtime for one group of events
changes as the number of processors increases. If there is more than one group to choose from, and you
have not yet selected a group of interest, you may be prompted to select the group of interest (see Sec-

120

Charts

tion 23.1.1, “Group of Interest”). If there is more than one metric to choose from, you may be prompted
to select the metric of interest (see Section 23.1.2, “Metric of Interest”). To request this chart, select one
or more experiments or one view, and select this chart item under the "Charts" main menu item.

Figure 23.12. Group % of Total Runtime

enNne Triznzpse Tiris / Taial Buriidene

sl s -esialomll 2, slhemial.

AL il Wi § el Bl

75 400 425 460 475 ANN 235 ARN A7
Muigiteer of e

W 29 sind-n Lt i afnesng y

23.2.9. Runtime Breakdown

The Runtime Breakdown chart shows the fraction of the total runtime for all events in the application,
and how the fraction changes as the number of processors increases. If there is more than one metric to
choose from, you may be prompted to select the metric of interest (see Section 23.1.2, “Metric of In-
terest”). To request this chart, select one experiment or view, and select this chart item under the
"Charts" main menu item.

Figure 23.13. Runtime Breakdown

8ene
Wizl [Rnariiene: el

| Burikireie BreseRedowr

AN —
9 L e
an
n&
an

5

oI
w6 W
s A0

= &R
Wm0
n

i
i
i

n

in
5

45 RN 7R 00 935 R0 I7R 200 235 RN 97K AN AK ARA ATR 4NN 435 460 475 AO0
Muimibieer of Frosssars

WG WGy B s ml i Wean Dok in_mHS Wi

23.3. Phase Chart Types

121

Charts

TAU now provides the ability to break down profiles with respect to phases of execution. One such ap-
plication would be to collect separate statistics for each timestep, or group of timesteps. In order to visu-
alize the variance between the phases of execution, a number of phase-based charts are available.

23.3.1. Relative Efficiency per Phase

The Relative Efficiency Per Phase chart shows the relative efficiency for each phase, as the number of
processors increases. If there is more than one metric to choose from, you may be prompted to select the
metric of interest (see Section 23.1.2, “Metric of Interest”). To request this chart, select one experiment
or view, and select this chart item under the "Charts' main menu item.

Figure 23.14. Relative Efficiency per Phase

Filagize Fificisnicy b Fi

.
N.25
n.2n
nis
n.an
.05
non
a

25 B0 TR 100 435 450 97R 200 235 250 ATH A0 AR ASN ATH 400 435 450 475 SO0 RIS
Mugibi:r af Froszsion

W i 1 friion 1 Fibmation 2 Fipmmation 3 Tiriiors 4 ¥ Hueaion & Fitmaiion & Tt 7 Titriiors 8 4 fosiion §

23.3.2. Relative Speedup per Phase

The Relative Speedup Per Phase chart shows the relative speedup for each phase, as the number of pro-
cessors increases. If there is more than one metric to choose from, you may be prompted to select the
metric of interest (see Section 23.1.2, “Metric of Interest”). To request this chart, select one experiment
or view, and select this chart item under the "Charts' main menu item.

Figure 23.15. Relative Speedup per Phase

122

Charts

0 25 B0 7R 100 435 150 175 200 235 R0 7R 00 A2F AR0 ATH 400 435 450 475 SO0 R3S
Muribizr of Froszason

B ipmiion 0 Heeion 1 litmtion 2 liraminon 3 lemiion 4 F Hsebon & frsmiion & % Heewiion 70 Heebon 8 4 esion 9

= ihnal Vi

23.3.3. Phase Fraction of Total Runtime

The Phase Fraction of Total Runtime chart shows the breakdown of the execution by phases, and shows
how that breakdown changes as the number of processors increases. If there is more than one metric to
choose from, you may be prompted to select the metric of interest (see Section 23.1.2, “Metric of In-
terest”). To request this chart, select one experiment or view, and select this chart item under the
"Charts" main menu item.

Figure 23.16. Phase Fraction of Total Runtime

80606 Tzl Puoriiieins HeessRebinar
el R Erealdomm for g,k

el 2 clizsizal. i inesmgg el

1nn
0k
an
B&
AN
2"
7n
&R
an

5

&0
45
an
Ak
an
25
20
15

in

AR R0 7R 400 43R RN 176 200 225 380 A7H ANND 225 RN ATH 4D0 425 45D 475 A0N
Mgt OF Fraseisar

B fieomtion 0 M getion 1 B Hiestion 2 T bior 33 tmetiori 4 B fiwoation & lirbon & tirtior 7 B tieatior A B e sation 1 “

123

Summary

The TAU performance framework and toolkit is an ongoing research and development project. The
TAU Portable Profiling and Tracing Toolkit described in this document represents functionality present
in the current software release. All available software should be considered research software available
to the community under the BSD style license.

1. Software Availability

TAU Portable Profiling and Tracing Toolkit may be downloaded as freeware from the following website
TAU [http://www.cs.uoregon.edu/research/tau] :

http://ww. cs. uor egon. edu/ resear ch/t au

For more information, please refer to the documentation section at the above URL. Bug reports and
comments may be sent to:

t au- bugs@s. uor egon. edu

Technical papers about TAU can be downloaded from the TAU Publications homepage at TAU-PUBS
[http://www.cs.uoregon.edu/research/tau/pubs.php]

2. Acknowledgments

The TAU development team wishes to thank the U.S. Government, Department of Energy, and the Na
tional Science Foundation for their support of the TAU project under the DOE MICS office contracts,
University of Utah ASC subcontract, ASC Level 3, and NSF grants.

124

http://www.cs.uoregon.edu/research/tau
http://www.cs.uoregon.edu/research/tau/pubs.php

Part V. appendices

Table of Contents

. TAU INStrumeEntation APl ..o e ettt e e e eanas 128
TAU PROFILE ...coniii e 131
TAU PROFILE TIMER ..ot 132
TAU _PROFILE START oo 134
TAU PROFILE _STOP ...t e e e 135
TAU_PROFILE_TIMER DYNAMIC ..o 136
TAU_PROFILE DECLARE _TIMER ...iitiiiiiicii e e 138
TAU _PROFILE CREATE TIMERoiiiii e 139
TAU _GLOBAL _TIMER ...t 140
TAU_GLOBAL_TIMER EXTERNAL ...ouiiiiiiiiieie e 141
TAU_GLOBAL_TIMER _START ..ttt e e 142
TAU_GLOBAL_TIMER STOP ..ottt e e e 143
TAU PHASE ..o 144
TAU _PHASE CREATE DYNAMIC ... 145
TAU _PHASE CREATE STATIC ..o 147
TAU PHASE START e 149
TAU PHASE STOP ..oeiciii e e e e e 150
TAU_GLOBAL _PHASE ... e e e s 151
TAU_GLOBAL_PHASE EXTERNAL ..o 152
TAU _GLOBAL PHASE START oo 153
TAU_GLOBAL PHASE STOPciitiiiii e 154
TAU _PROFILE EXIT i e 155
TAU_REGISTER THREADiiiiiiiie e e e 156
TAU_PROFILE_SET NODEccuuiiiiiiiiieee e e e e e e 157
TAU_PROFILE_SET CONTEXT ..iiiiiiiiiieiiieeee e e e e 159
TAU _REGISTER FORK ...t 161
TAU _REGISTER EVENT ..ot 162
TAU EVENT e 163
TAU_REGISTER CONTEXT EVENT ..ot 164
TAU_CONTEXT _EVENT ..o e e 166
TAU_ENABLE CONTEXT _EVENT .ot 168
TAU _DISABLE CONTEXT EVENT ..ot 169
TAU _EVENT _SET NAME ..o 170
TAU_EVENT DISABLE MAX ooeiii et 171
TAU_EVENT DISABLE MEAN ..ot 172
TAU_EVENT DISABLE MIN ..o 173
TAU_EVENT DISABLE _STDDEV ..ottt 174
TAU _REPORT _STATISTICS ..ot 175
TAU_REPORT _THREAD STATISTICS ..ot 176
TAU_ENABLE _INSTRUMENTATION ..oiiiiiiiicee e 177
TAU_DISABLE INSTRUMENTATION ...uciiiiiiiiere e 178
TAU_ENABLE GROUP ..ot e n e e 179
TAU _DISABLE GROUP ...ttt e s 180
TAU_PROFILE TIMER _SET GROUPcouiiiiiiiiiieiieceeeeeeee e 181
TAU_PROFILE TIMER _SET GROUP NAMEcoiiiiiiiiiii e, 182
TAU_PROFILE TIMER _SET NAME ..., 183
TAU_PROFILE _TIMER _SET TYPE ..oiiviiiiici e 184
TAU_PROFILE_SET _GROUP _NAMEciiiiiiiicee e 185
L1721 186
TAU PROFILE INIT o 187
TAU_GET _PROFILE GROUP ..ot 188
TAU_ENABLE GROUP NAME ...ttt 189
TAU_DISABLE GROUP _NAME ...ttt 190

126

appendices

TAU_ENABLE ALL _GROUPS ...t 191
TAU _DISABLE ALL _GROUPS ..ottt 192
TAU_GET_EVENT _NAMES ... 193
TAU GET EVENT VALS .. 194
TAU_GET _COUNTER NAMES ... 196
TAU_GET _FUNC NAMES ... oo 197
TAU_GET _FUNC VALS .. e 198
TAU_ENABLE TRACKING MEMORY ...coiiiiiiiiiiienec e 200
TAU_DISABLE _TRACKING _MEMORYoiiiiiiiiiiieieeeeeeee e 201
TAU _TRACK _MEMORY .ot 202
TAU _TRACK _MEMORY _HEREc.ccviiiiiiiiieee e 203
TAU_ENABLE TRACKING_MEMORY_HEADROOMcccocvvvieiiinennnnn. 204
TAU_DISABLE TRACKING_ MEMORY_HEADROOMccccovvvvieviineennnn, 205
TAU_TRACK_MEMORY_HEADROOMccoviiiiiiieiiiecc e eea e 206
TAU_TRACK_MEMORY_HEADROOM HEREccooviiiiiiiiiiiieeeeaen, 207
TAU_SET INTERRUPT INTERVAL ..o 208
[IR 209
TAU _TYPE STRING ...t 210
TAU DB DUMP oo e e e e e 212
TAU DB DUMP_INCR ..ot e e e e 213
TAU_DB DUMP _PREFIX ..ottt e e 214
TAU DB PURGE ... 215
TAU DUMP _FUNC NAMES ... 216
TAU DUMP _FUNC VALS ... 217
TAU_DUMP_FUNC VALS INCR ..o 218
TAU _PROFILE _STMT oot e e e e e e e e e e 219
TAU_PROFILE_CALLSTACK .ot 220
TAU TRACE RECVMSG ..ottt 221
TAU _TRACE SENDMSGuuiiiiiiieeee et 223
T N Y =T o oo A = P 225
TAU_MAPPING ..o e e e e 226
TAU_MAPPING CREATE ...t oii e e e 227
TAU_MAPPING _LINK L. e e e 229
TAU_MAPPING OBJECT ..ottt e e 231
TAU_MAPPING PROFILEcoovniiiiieii e 232
TAU_MAPPING PROFILE _START ..ot 233
TAU_MAPPING PROFILE _STOPuiiiiiieiiiieee e e e 234
TAU_MAPPING _PROFILE TIMER ...ccoviiiiiices e 235
AL ENVIroNmMENt VariablESo 236

127

TAU Instrumentation API

Introduction

C++

The C++ API is a set of macros that can be inserted in the C++ source code. An extension of the
same APl isavailable to instrument C and Fortran sources.

At the beginning of each instrumented source file, include the following header

#i ncl ude <TAU. h>

C

The API for instrumenting C source code is similar to the C++ API. The primary difference is that
the TAU_PROFI LE() macro is not available for identifying an entire block of code or function. In-
stead, routine transitions are explicitly specified using TAU_PROFI LE_TI MER() macro with
TAU_PROFI LE_START() and TAU_PROFI LE_STOP() macros to indicate the entry and exit
from a routine. Note that, TAU_TYPE_STRI N&) and CT() macros are not applicable for C. It is
important to declare the TAU_PROFI LE_TI MER() macro after al the variables have been de-
clared in the function and before the execution of the first C statement.

Example:

#i ncl ude <TAU. h>

int min (int argc, char **argv) {

int ret;

pthread_attr_t attr;

pt hread_t tid;

TAU_PROFI LE_TI MER(tautimer,"main()", "int (int, char **)",

TAU_DEFAULT) ;
TAU _PROFI LE _START(tauti nmer);
TAU_PROFI LE_ | NI T(argc, argv);
TAU_PROFI LE_SET _NCDE(0) ;
pthread _attr _init(&attr);
printf("Started Main...\n");
/'l other statements
TAU_PROFI LE_STOP(t auti mer) ;
return O;

Fortran 77/90/95

The Fortran90 TAU API allows source code written in Fortran to be instrumented for TAU. This
API is comprised of Fortran routines. As explained in Chapter 2, the instrumentation can be disabled
in the program by using the TAU stub makefile variable TAU_DI SABLE on the link command line.
This pointsto alibrary that contains empty TAU instrumentation routines.

128

TAU Instrumentation APl

Timers

e Statictimers

These are commonly used in most profilers where all invocations of a routine are recorded. The
name and group registration takes place when the timer is created (typically the first time aroutine is
entered). A given timer is started and stopped at routine entry and exit points. A user defined timer
can also measure the time spent in a group of statements. Timers may be nested but they may not
overlap. The performance data generated can typically answer questions such as: what is the total
time spent in MPI_Send() across all invocations?

* Dynamictimers

To record the execution of each invocation of a routine, TAU provides dynamic timers where a
unique name may be constructed for a dynamic timer for each iteration by embedding the iteration
count in it. It uses the start/stop calls around the code to be examined, similar to static timers. The
performance data generated can typically answer questions such asiwhat is the time spent in the
routine foo() in iterations 24, 25, and 407?

e Static phases

An application typically goes through several phases in its execution. To track the performance of
the application based on phases, TAU provides static and dynamic phase profiling. A profile based
on phases highlights the context in which aroutine is called. An application has a default phase with-
in which other routines and phases are invoked. A phase based profile shows the time spent in a
routine when it was in a given phase. So, if a set of instrumented routines are called directly or indir-
ectly by a phase, we'd see the time spent in each of those routines under the given phase. Since
phases may be nested, a routine may belong to only one phase. When more than one phase is active
for a given routine, the closest ancestor phase of aroutine along its callstack is its phase for that in-
vocation. The performance data generated can answer questions such as: what is the total time spent
in MPI_Send() when it wasinvoked in all invocations of the |O (10 => MPI_Send()) phase?

* Dynamic phases

Dynamic phases borrow from dynamic timers and static phases to create performance data for all
routines that are invoked in a given invocation of a phase. If we instrument a routine as a dynamic
phase, creating a unique name for each of its invocations (by embedding the invocation count in the
name), we can examine the time spent in all routines and child phases invoked directly or indirectly
from the given phase. The performance data generated can typically answer questions such as: what
is the total time spent in MPI_Send() when it was invoked directly or indirectly in iteration 24? Dy-
namic phases are useful for tracking per-iteration profiles for an adaptive computation where itera-
tions may differ in their execution times.

» Callpaths

In phase-based profiles, we see the relationship between routines and parent phases. Phase profiles
do not show the calling structure between different routines as is represented in a callgraph. To do
so, TAU provides callpath profiling capabilities where the time spent in a routine along an edge of a
callgraph is captured. Callpath profiles present the full flat profiles of routines (or nodes in the
callgraph), as well as routines along a callpath. A callpath is represented syntactically as a list of
routines separated by a delimiter. The maximum depth of a callpath is controlled by an environment
variable.

» User-defined Events

Besides timers and phases that measure the time spent between a pair of start and stop calls in the
code, TAU also provides support for user-defined atomic events. After an event is registered with a

129

TAU Instrumentation APl

name, it may be triggered with a value at a given point in the source code. At the application level,
we can use user-defined events to track the progress of the simulation by keeping track of applica-
tion specific parameters that explain program dynamics, for example, the number of iterations re-
quired for convergence of a solver at each time step, or the number of cellsin each iteration of an ad-
aptive mesh refinement application.

130

Name
TAU_PROFILE -- Profile a C++ function

TAU_PROFI LE(functi on_name, type, group);
char* or string& function_nane;

char* or string& type;

TauGroup_t group;

Description

TAU_PROFI LE profiles afunction. This macro defines the function and takes care of the timer start and
stop aswell. The timer will stop when the macro goes out of scope (asin C++ destruction).

Example

int foo(char *str)
TAU_PROFI LE(f 00", "int (char *)", TAU_DEFAULT);

}

See Also

TAU_PROFILE_TIMER

131

Name
TAU_PROFILE_TIMER -- Defines a static timer.

C/C++:

TAU PROFI LE TI MER(ti mer, function_nanme, type, group);
Profiler tiner;

char* or string& function_nane;

char* or string& type;

TauG oup_t group;

Fortran:

TAU_PROFI LE_TI MER(profil er, nane);
i nteger profiler(2);
character nane(size);

Description

CIC++:

With TAU_PROFI LE_TI MER, a group of one or more statements is profiled. This macro has a timer
variable as its first argument, and then strings for name and type, as described earlier. It associates the
timer to the profile group specified in the last parameter.

Fortran :

To profile ablock of Fortran code, such as a function, subroutine, loop etc., the user must first declare a
profiler, which is an integer array of two elements (pointer) with the save attribute, and pass it as the
first parameter to the TAU_PROFI LE_TI MER subroutine. The second parameter must contain the name
of the routine, which is enclosed in a single quote. TAU_PROFI LE_TI MER declares the profiler that
must be used to profile a block of code. The profiler is used to profile the statements using
TAU_PROFI LE_START and TAU_PROFI LE_STOP as explained later.

Example

C/C++:

tenpl ate< class T, unsigned Dim >
voi d BareFiel d<T,Dine::fill GuardCells(bool reallyFill)

/1 profiling macros
TAU TYPE_STRI NG taustr, CT(*this) + " void (bool)");
TAU PROFILE("BareField::fill@ardCells()", taustr, TAU FIELD);
TAU _PROFI LE_TI MER(sendtimer, "fill GuardCells-send”,
taustr, TAU FIELD);
TAU_PROFI LE_TI MER(| ocal stimer, "fill GuardCells-Iocals",
taustr, TAU Fl ELD);

Fortran :

132

TAU_PROFILE_TIMER

subroutine bcast_inputs
inmplicit none

i nteger profiler(2)
save profiler

i ncl ude ' mpi npb. h'
i ncl ude ' appl u.incl

i nterger |IERR
call TAU PROCFI LE TI MER(profiler, 'bcast_inputs')

See Also

TAU_PROFILE_TIMER_DYNAMIC, TAU_PROFILE_START, TAU_PROFILE_STOP

133

Name
TAU_PROFILE_START -- Starts atimer.

C/C++:

TAU _PROFI LE_START(ti ner);
Profiler tiner;

Fortran:

TAU_PROFI LE_START(profiler);
i nteger profiler(2);

Description

Startsthetimer givenby t i mer

Example

CIC++:

int foo(int a)
TAU_PROFI LE_TI MER(tinmer, "foo", "int (int)", TAU USER);
TAU_PROFI LE_START(ti ner);

TAU_PROFI LE_STOP(ti mer);
return a;

Fortran :

subroutine F1()
integer profiler(2) / 0, 0/
save profiler

call TAU PROFILE TIMER(profiler,'f1()")
call TAU PROFI LE START(profiler)

cal | TAU PROFI LE_STOP(profiler)
end

See Also

TAU_PROFILE_TIMER, TAU_PROFILE_STOP

134

Name
TAU_PROFILE_STOP -- Stops atimer.

C/C++:

TAU PROFI LE _STOP(ti ner);
Profiler tiner;

Fortran:

TAU PROFI LE STOP(profiler);
i nteger profiler(2);

Description

Stops the timer given by ti nmer . It isimportant to note that timers can be nested, but not overlapping.
TAU detects programming errors that lead to such overlaps at runtime, and prints a warning message.

Example

CIC++:

int foo(int a) {
TAU_PROFI LE_TI MER(tinmer, "foo", "int (int)", TAU USER);
TAU_PROFI LE_START(ti mer);

TAU_PROFI LE_STOP(ti ner);
return a;

}

Fortran :

subroutine F1()
i nteger profiler(2) / 0, 0/
save profiler

call TAU PROFI LE_TI MER(profiler," f1()")
call TAU PROFI LE START(profiler)

cal | TAU PROFI LE_STOP(profiler)
end

See Also

TAU_PROFILE_TIMER, TAU_PROFILE_START

135

Name

TAU_PROFILE_TIMER_DYNAMIC -- Defines adynamic timer.

C/C++:

TAU PROFI LE_TI MER DYNAM C(ti nmer, function_nane, type, group);
Profiler tiner;

char* or string& function_nane;

char* or string& type;

TauG oup_t group;

Fortran:
TAU_PROFI LE_TI MER DYNAM C(profiler, name);

integer profiler(2);
character nane(size);

Description

Exam

TAU_PROFI LE_TI MER_DYNAM C operates similar to TAU_PROFI LE_TI MER except that the timer
is created each time the statement is invoked. This way, the name of the timer can be different for each
execution.

ple

CIC++:

int main(int argc, char **argv) {
int i;
TAU_PROFI LE_TI MER(t, "main()", "", TAU_DEFAULT);
TAU_PROFI LE_SET_NODE(0) ;
TAU_PROFI LE_START(t);

for (i=0; i&5; i++) {
char buf[32];
sprintf(buf, "lteration %", i);

TAU_PROFI LE_TI MER_DYNAM C(ti ner, buf, "", TAU USER);
TAU_PROFI LE_START(ti ner);

printf("lteration %@\n", i);

f10);

TAU_PROFI LE_STOP(ti ner);

return O;

Fortran :

subroutine | TERATI O\(val)
i nteger val
character(13) cvar
i nteger profiler(2) / 0, 0/

136

TAU_PROFILE_TIMER_DYNAMIC

save profiler
print *, "lteration ", val
wite (cvar,'(a9,i2)') 'lteration', val

call TAU PROFI LE TI MER _DYNAM C(profiler, cvar)
call TAU PROFI LE START(profiler)

call F1()
call TAU PROFI LE_STOP(profiler)
return
end
See Also

TAU_PROFILE_TIMER, TAU_PROFILE_START, TAU_PROFILE_STOP

137

Name
TAU_PROFILE_DECLARE_TIMER -- Declares atimer for C

C:

TAU PROFI LE DECLARE TI MER(ti ner);
Profiler tiner;

Description

Because C89 does not allow mixed code and declarations, TAU_PROFI LE_TI MER can only be used
once in afunction. To declare two timersin a C function, use TAU_PROFI LE_DECLARE_TI MER and
TAU_PROFI LE_CREATE_TI MER

Example
C:
int f1(void)
TAU_PROFI LE_DECLARE_TI MER(t 1) ;
TAU_PROFI LE_DECLARE_TI MER(t 2) ;

TAU_PROFI LE_CREATE_TIMER(t1, "timer1l", "", TAU USER);
TAU_PROFI LE_CREATE_TIMER(t2, "timer2", "", TAU_USER):

TAU_PROFI LE_START(t1);
TAU_PROFI LE_START(t2) ;
TAU_PROFI LE_STOP(t 2) ;

TAU PROFI LE_STOP(t 1) ;
return O;

See Also

TAU_PROFILE_CREATE_TIMER

138

Name
TAU_PROFILE_CREATE_TIMER -- Creates atimer for C

C:

TAU PROFI LE CREATE TI MER(ti ner);
Profiler tiner;

Description

Because C89 does not allow mixed code and declarations, TAU_PROFI LE_TI MER can only be used
once in afunction. To declare two timersin a C function, use TAU_PROFI LE_DECLARE_TI MER and
TAU_PROFI LE_CREATE_TI MER

Example
C:
int f1(void)
TAU_PROFI LE_DECLARE_TI MER(t 1) ;
TAU_PROFI LE_DECLARE_TI MER(t 2) ;

TAU_PROFI LE_CREATE_TIMER(t1, "timer1l", "", TAU USER);
TAU_PROFI LE_CREATE_TIMER(t2, "timer2", "", TAU_USER):

TAU_PROFI LE_START(t1);
TAU_PROFI LE_START(t2) ;
TAU_PROFI LE_STOP(t 2) ;

TAU PROFI LE_STOP(t 1) ;
return O;

See Also

TAU_PROFILE_DECLARE_TIMER, TAU_PROFILE_START, TAU_PROFILE_STOP

139

Name
TAU_GLOBAL_TIMER -- Declares aglobal timer

CIC++:

TAU GLOBAL_TI MER(tiner, function_nane, type, group);
Profiler tinmer;

char* or string& function_nane;

char* or string& type;
TauG oup_t group;

Description

As TAU PROFI LE TI MER is used within the scope of a block (typically a routine),
TAU_G_OBAL_TI MER can be used across different routines.

Example

C/C++:
[* fl.c */
TAU_GLOBAL_TI MER(gl obal Timer, "global timer", "", TAU USER);
[* f2.¢c */
TAU_GLOBAL_TI MER_EXTERNAL(gl obal Ti ner);
i nt foo(void)
TAU_GLOBAL_TI MER_START(gl obal Ti ner);

[* T ¥
TAU_GLOBAL_TI MER_STOP() ;

See Also

TAU_GLOBAL_TIMER_EXTERNAL, TAU_GLOBAL_TIMER_START,
TAU_GLOBAL_TIMER_STOP

140

Name
TAU_GLOBAL_TIMER_EXTERNAL -- Declares aglobal timer from an external compilation unit

C/C++:

TAU GLOBAL_TI MER EXTERNAL(ti ner);
Profiler tiner;

Description

TAU_G_OBAL_TI MER_EXTERNAL allows you to access atimer defined in another compilation unit.

Example

C/C++:
/[* fl.c */
TAU_GLOBAL_TI MER(gl obal Tinmer, "global tinmer", "", TAU USER);
[* f2.¢c */
TAU_GLOBAL_TI MER_EXTERNAL(gl obal Ti rmer);
int foo(void) {
TAU GLOBAL_TI MER_START(gl obal Ti ner);
[* .0 %
TAU_GLOBAL_TI MER _STOP() ;
}

See Also

TAU_GLOBAL_TIMER, TAU_GLOBAL_TIMER_START, TAU_GLOBAL_TIMER_STOP

141

Name
TAU_GLOBAL_TIMER_START -- Starts aglobal timer

C/C++:

TAU GLOBAL_TI MER _START(ti ner);
Profiler tiner;

Description

TAU_G_OBAL_TI MER_START startsaglobal timer.

Example

C/C++:
/[* fl.c */
TAU_GLOBAL_TI MER(gl obal Tinmer, "global tinmer", "", TAU USER);
[* f2.¢c */
TAU_GLOBAL_TI MER_EXTERNAL(gl obal Ti rmer);
int foo(void) {
TAU GLOBAL_TI MER_START(gl obal Ti ner);
[* .0 %
TAU_GLOBAL_TI MER _STOP() ;
}

See Also

TAU_GLOBAL_TIMER, TAU_GLOBAL_TIMER_EXTERNAL, TAU_GLOBAL_TIMER_STOP

142

Name
TAU_GLOBAL_TIMER_STOP -- Stops aglobal timer

C/C++:
TAU_GLOBAL_TI MER_STOP() ;

Description
TAU_G_OBAL_TI MER_STOP stops aglobal timer.
Example
C/C++:
/* fl.c */
TAU GLOBAL_TI MER(gl obal Ti mer, "global tiner", "", TAU USER);

[* f2.c */

TAU_GLOBAL_TI MER_EXTERNAL(gl obal Ti rmer) ;
int foo(void)
TAU_GLOBAL_TI MER_START(gl obal Ti ner);
[* o0 %
TAU_GLOBAL_TI MER_STOP() ;
}

See Also

TAU_GLOBAL_TIMER, TAU_GLOBAL_TIMER_EXTERNAL, TAU_GLOBAL_TIMER_START

143

Name
TAU_PHASE -- Profile a C++ function as a phase

TAU_PHASE(functi on_name, type, group);
char* or string& function_nane;

char* or string& type;

TauGroup_t group;

Description

TAU_PHASE profiles a function as a phase. This macro defines the function and takes care of the timer
start and stop as well. The timer will stop when the macro goes out of scope (asin C++ destruction).

Example

int foo(char *str) {
TAU_PHASE(foo","int (char *)", TAU DEFAULT);

}

See Also

TAU_PHASE_CREATE_DYNAMIC, TAU_PHASE CREATE_STATIC

144

Name

TAU_PHASE_CREATE_DYNAMIC -- Defines a dynamic phase.

C/C++:

TAU PHASE CREATE DYNAM C(phase, function_nane, type, group);
Phase phase;

char* or string& function_nane;

char* or string& type;

TauG oup_t group;

Fortran:
TAU_PHASE CREATE_DYNAM C(phase, nane);

i nt eger phase(2);
character nane(size);

Description

Exam

TAU_PHASE CREATE_DYNAM C creates a dynamic phase. The name of the timer can be different for
each execution.

ple

CIC++:

int main(int argc, char **argv) {
int i;
TAU_PROFI LE_TI MER(t, "main()", "", TAU DEFAULT);
TAU_PROFI LE_SET_NODE(0) ;
TAU _PROFI LE_START(t);

for (i=0; i&5; i++) {
char buf[32];
sprintf(buf, "lteration %", i);

TAU_PHASE_CREATE_DYNAM C(ti mer, buf, "", TAU USER);
TAU_PHASE_START(ti ner);

printf("lteration %\n", i);

f10);

TAU_PHASE_STOP(ti mer)

return O;

Fortran :

subroutine | TERATI ON\(val)
i nteger val
character(13) cvar
i nteger profiler(2) / 0, 0/
save profiler

145

TAU_PHASE_CREATE_DYNAMIC

print *, "lteration ", val

wite (cvar,'(a9,i2)') 'lteration', val
cal | TAU PHASE_CREATE DYNAM C(profiler, cvar)
cal | TAU PHASE_START(profiler)

call F1()
call TAU PHASE STOP(profiler)
return
end
See Also

TAU_PHASE CREATE_STATIC, TAU_PHASE_START, TAU_PHASE_STOP

146

Name
TAU_PHASE CREATE_STATIC -- Defines a static phase.

C/C++:

TAU_PHASE CREATE STATI C(phase, function_nanme, type, group);
Phase phase;

char* or string& function_nane;

char* or string& type;

TauG oup_t group;

Fortran:
TAU_PHASE CREATE_STATI C(phase, nane);

i nt eger phase(2);
character nane(size);

Description

TAU_PHASE CREATE_STATI C creates a static phase. Static phases (and timers) are more efficient
than dynamic ones because the function registration only takes place once.

Example

C/C++:
int f2(void)
{
TAU_PHASE _CREATE_STATIC(t2,"1 O Phase", "", TAU USER);
TAU_PHASE _START(t 2);
i nput ();
out put () ;

TAU_PHASE STOP(t2):
return O;

Fortran :
subroutine F2()

i nteger phase(2) / 0, 0/
save phase

call TAU PHASE CREATE STATI C(phase, ' |1 O Phase')
call TAU PHASE START(phase)

call 1 NPUT()
cal |l OUTPUT()

call TAU PHASE STOP(phase)
end

See Also

147

TAU_PHASE_CREATE_STATIC

TAU_PHASE_CREATE_DYNAMIC, TAU_PHASE_START, TAU_PHASE_STOP

148

Name
TAU_PHASE_START -- Enters a phase.

C/C++:

TAU_PHASE_START(phase) ;
Phase phase;

Fortran:

TAU_PHASE_START(phase) ;
i nt eger phase(2);

Description

TAU_PHASE_START enters a phase. Phases can be nested, but not overlapped.

Example

C/C++:
int f2(void)
{
TAU_PHASE _CREATE_STATIC(t2,"1 O Phase", "", TAU USER);

TAU_PHASE_START(t2);
i nput () ;

out put () ;
TAU_PHASE_STOP(t 2);
return O;

Fortran :
subroutine F2()

i nteger phase(2) / 0, 0/
save phase

call TAU PHASE CREATE STATI C(phase, ' |1 O Phase')
call TAU PHASE START(phase)

cal | 1 NPUT()
cal |l OUTPUT()

call TAU PHASE STOP(phase)
end

See Also

TAU_PHASE_CREATE_STATIC, TAU_PHASE_CREATE_DYNAMIC, TAU_PHASE_STOP

149

Name
TAU_PHASE STOP -- Exits aphase.

CIC++:

TAU PHASE STOP(phase) ;
Phase phase;

Fortran:

TAU_PHASE_STOP(phase) ;
i nt eger phase(2);

Description

TAU_PHASE_STOP exits a phase. Phases can be nested, but not overlapped.

Example

C/C++:
int f2(void)
{
TAU_PHASE _CREATE_STATIC(t2,"1 O Phase", "", TAU USER);

TAU_PHASE_START(t2);
i nput () ;

out put () ;
TAU_PHASE_STOP(t 2);
return O;

Fortran :
subroutine F2()

i nteger phase(2) / 0, 0/
save phase

call TAU PHASE CREATE STATI C(phase, ' |1 O Phase')
call TAU PHASE START(phase)

cal | 1 NPUT()
cal |l OUTPUT()

call TAU PHASE STOP(phase)
end

See Also

TAU_PHASE_CREATE_STATIC, TAU_PHASE_CREATE_DYNAMIC, TAU_PHASE_START

150

Name
TAU_GLOBAL_PHASE -- Declares aglobal phase

CIC++:

TAU _GLOBAL_PHASE(phase, function_nane, type, group);
Phase phase;

char* or string& function_nane;

char* or string& type;
TauG oup_t group;

Description

Declares aglobal phase to be used in multiple compilation units.

Example

C/C++:
/* fl.c */
TAU_GLOBAL_PHASE(gl obal Phase, "gl obal phase", "", TAU USER);
[* f2.¢c */
i nt bar (void)
TAU_G.OBAL_PHASE START(gl obal Phase) ;

[* ...
TAU_G.OBAL_PHASE STOP(gl obal Phase) ;

See Also

TAU_GLOBAL_PHASE_EXTERNAL, TAU_GLOBAL_PHASE_START,
TAU_GLOBAL_PHASE_STOP

151

Name
TAU_GLOBAL_PHASE EXTERNAL -- Declares aglobal phase from an external compilation unit

C/C++:

TAU GLOBAL_PHASE EXTERNAL(ti ner);
Profiler tiner;

Description

TAU_GLOBAL_PHASE EXTERNAL alows you to access a phase defined in another compilation unit.

Example

C/C++:

/[* fl.c */

TAU _GLOBAL_PHASE(gl obal Phase, "gl obal phase", "", TAU USER);
[* f2.¢c */

i nt bar(void) {
TAU_G_OBAL_PHASE START(gl obal Phase) ;
[* .00
TAU_GL.OBAL_PHASE STOP(gl obal Phase) ;

}

See Also

TAU_GLOBAL_PHASE, TAU_GLOBAL_PHASE_START, TAU_GLOBAL_PHASE_STOP

152

Name
TAU_GLOBAL_PHASE START -- Starts agloba phase

C/C++:

TAU_GLOBAL_PHASE_START(phase) ;
Phase phase;

Description

TAU_G_OBAL_PHASE START starts aglobal phase.

Example

C/C++:

/[* fl.c */

TAU _GLOBAL_PHASE(gl obal Phase, "gl obal phase", "", TAU USER);
[* f2.¢c */

i nt bar(void)
TAU_G_OBAL_PHASE START(gl obal Phase) ;
[* .00
TAU_GL.OBAL_PHASE STOP(gl obal Phase) ;
}

See Also

TAU_GLOBAL_PHASE, TAU_GLOBAL_PHASE EXTERNAL, TAU_GLOBAL_PHASE STOP

153

Name
TAU_GLOBAL_PHASE_STOP -- Stops aglobal phase

C/C++:

TAU_GLOBAL_PHASE_STOP(phase) ;
Phase phase;

Description

TAU_G_OBAL_PHASE STOP stops aglobal phase.

Example

C/C++:

/[* fl.c */

TAU _GLOBAL_PHASE(gl obal Phase, "gl obal phase", "", TAU USER);
[* f2.¢c */

i nt bar(void) {
TAU_G_OBAL_PHASE STOP(gl obal Phase) ;
[* .00
TAU_GL.OBAL_PHASE STOP(gl obal Phase) ;

}

See Also

TAU_GLOBAL_PHASE, TAU_GLOBAL_PHASE EXTERNAL, TAU_GLOBAL_PHASE_START

154

Name
TAU_PROFILE_EXIT -- Alertsthe profiling system to an exit call

C/C++:

TAU_PROFI LE_EXI T(nessage) ;
const char * nessage;

Fortran:

TAU _PROFI LE_EXI T(nessage) ;
character nessage(size);

Description

TAU_PROFI LE_EXI T should be called prior to an error exit from the program so that any profiles or
event traces can be dumped to disk before quitting.

Example

CIC++:

if ((ret =open(...)) <0) {
TAU PROFI LE EXI T("ERROR in opening a file");
perror("open() failed");
exit(1l);

Fortran :

call TAU PROFILE EXI T(' abort called')

See Also

TAU_DB_DUMP

155

Name
TAU_REGISTER_THREAD -- Register athread with the profiling system

C/C++:
TAU_REG STER_THREAD() ;

Fortran:

TAU_REG STER THREAD) ;

Description

To register athread with the profiling system, invoke the TAU_REGQ STER_THREAD macro in the run
method of the thread prior to executing any other TAU macro. This sets up thread identifiers that are
later used by the instrumentation system.

Example

C/C++:

void * threaded_func(void *data) {
TAU REGQ STER THREAIX) ;
{ /**** NOTE WE START ANOTHER BLOCK | N THREAD */
TAU PROFI LE TI MER(tautinmer, "threaded func()", "int ()",
TAU_DEFAULT) ;
TAU _PROFI LE_START(t auti mer);

work(); /* work done by this thread */
TAU PROFI LE_STOP(t auti mer):

}
return NULL;

Fortran :

cal |l TAU REG STER_THREAIX)

Caveat

PDT based tau_instrumentor does not insert TAU REA STER_THREAD calls, they must be inserted
manually

156

Name

TAU_PROFILE_SET_NODE -- Informs the measurement system of the node id

C/C++:

TAU PROFI LE_SET_NODE(node) ;
i nt node;

Fortran:

TAU_PROFI LE_SET_NODE(node) ;
i nt eger node;

Description

Exam

The TAU_PROFI LE_SET_NODE macro sets the node identifier of the executing task for profiling and
tracing. Tasks are identified using node, context and thread ids. The profile data files generated will ac-
cordingly be named profile<node>.<context>.<thread>. Note that it is not necessary to cal
TAU_PROFI LE_SET_NODE when using the TAU MPI wrapper library.

ple

CIC++:

int main (int argc, char **argv) ({
int ret, i;
pthread_attr_t attr;
pt hr ead_t tid;
TAU_PRCFI LE_TI I\/ER(taut| mer,"main()", "int (int, char **)",

TAU DEFAULT)

TAU_PROFI LE_START(t auti mer);
TAU PROFI LE_I NI T(argc, ar gv)
TAU_PROFI LE_SET_NODE(0) ;
[* 0.0 %
TAU_ PROFI LE - STOP(tautiner);
return O;

}

Fortran :

PROGRAM SUM OF_CUBES
integer profiler(2) / 0, 0/
save profi I er
INTEGER :: H, T, U
cal | TAU PROF LE_I NI T()
cal | TAU PROFILE_TI MER(profiler, ' PROGRAM SUM OF_CUBES')
cal | TAU PROFI LE_START(profi l er)
cal | TAU PROFI LE_SET_NODE(0)
! This programprints all 3-digit nunbers that
I equal the sum of the cubes of their digits.
DO H , 9
DO , 9
0, 9

=1
1o

3

157

TAU_PROFILE_SET_NODE

IF (100*H + 10*T + U == H*3 + T**3 + U*3) THEN
PRINT "(311)", H T, U
ENDI F
END DO
END DO

END DO

call TAU PROFI LE STOP(profiler)

END PROGRAM SUM OF CUBES

See Also

TAU_PROFILE_SET_CONTEXT

158

Name

TAU_PROFILE_SET_CONTEXT -- Informs the measurement system of the context id

C/C++:

TAU _PROFI LE_SET _CONTEXT(cont ext);
i nt cont ext;

Fortran:

TAU_PROFI LE_SET_CONTEXT(cont ext) ;
i nt eger context;

Description

Exam

The TAU_PROFI LE_SET_CONTEXT macro sets the context identifier of the executing task for profil-
ing and tracing. Tasks are identified using context, context and thread ids. The profile data files gener-
ated will accordingly be named profile.<context>.<context>.<thread>. Note that it is not necessary to
cal TAU_PROFI LE_SET_CONTEXT when using the TAU MPI wrapper library.

ple

CIC++:

int main (int argc, char **argv) ({
int ret, i;
pthread_attr_t attr;
pt hr ead_t tid;
TAU_PRCFI LE_TI I\/ER(taut| mer,"main()", "int (int, char **)",

TAU DEFAULT)

TAU_PROFI LE_START(t auti mer);
TAU PROFI LE_I NI T(argc, ar gv)
TAU_PROFI LE_SET_NODE(0) ;
TAU_PROFI LE_SET_CONT EXT(1);
[* .. %
TAU _PROFI LE_STOP(t auti ner);
return O;

}

Fortran :

PROGRAM SUM OF CUBES
integer profiler(2) / 0, 0/
save prof| | er
INTEGER :: H, T, U
cal | TAU PROFI LE_I NI T()
cal | TAU PROFILE_TI MER(profiler, 'PROGRAM SUM OF_CUBES')
cal | TAU_PROFI LE_START(profi | er)
cal | TAU PROFI LE_SET_NODE(0)
cal | TAU_PROFI LE_SET_CONTEXT(1)
| This programprints all 3-digit nunbers that
! equal the sum of the cubes of their digits.
DOH=1, 9

159

TAU_PROFILE_SET_CONTEXT

3

o —~Cl

0
0*
NT

n3

Z T

0, 9
=0, 9
100*H + 10*T + U == H**3 + T**3 + W*3) THEN
RINT "(311)", H T, U
ENDI F
END DO
END DO
END DO
call TAU PROFI LE STOP(profiler)
END PROGRAM SUM OF CUBES

See Also

TAU_PROFILE_SET_NODE

160

Name

TAU_REGISTER_FORK -- Informs the measurement system that afork has taken place

C/C++:

TAU REGQ STER FORK(pid, option);
int pid;
enum TauFork_t option;

Description

To register a child process obtained from the fork() syscall, invoke the TAU_ REG STER FORK macro.
It takes two parameters, the first is the node id of the child process (typically the process id returned by
the fork call or any 0..N-1 range integer). The second parameter specifies whether the performance data
for the child process should be derived from the parent a the time of fork (
TAU _| NCLUDE_PARENT _DATA) or should be independent of its parent at the time of fork (
TAU_EXCLUDE_PARENT_DATA). If the process id is used as the node id, before any analysisis done,
all profile files should be converted to contiguous node numbers (from 0..N-1). It is highly recommen-
ded to use flat contiguous node numbersin this call for profiling and tracing.

ple

C/C++

plD = fork();

if (pID==0) {
printf("Parent : pid returned %\ n", plD)

} else {
/1 1f we'd used the TAU | NCLUDE_PARENT_DATA, we get
/1 the performance data fromthe parent in this process
/1 as well.
TAU_REG STER FORK(pl D, TAU_EXCLUDE_PARENT_DATA) ;
printf("Child : pid = %", plD);

}

161

Name

TAU_REGISTER_EVENT -- Registers a user event

C/C++:

TAU REQ STER EVENT(vari abl e, event _nane);
TauUser Event vari abl e;
char *event nane;

Fortran:
TAU REGQ STER _EVENT(vari abl e, event _nane);

int variable(2);
character event_name(size);

Description

TAU can profile user-defined events using TAU_REGQ STER_EVENT. The meaning of the event is de-
termined by the user. The first argument to TAU_REG STER _EVENT is the pointer to an integer array.
Thisarray is declared with a save attribute as shown below.

Example

CIC++:

i nt user_square(int count)
TAU REGQ STER EVENT(uel, "User Square Event");
TAU EVENT(uel, count * count);
return O,

}

Fortran :

i nteger eventid(2)

save eventid

call TAU REGQ STER EVENT(eventid, 'Error in Iteration')
cal | TAU EVENT(eventid, count)

See Also

TAU_EVENT, TAU_REGISTER CONTEXT_EVENT, TAU_REPORT_STATISTICS,
TAU_REPORT_THREAD_STATISTICS, TAU_GET_EVENT NAMES, TAU_GET_EVENT_VALS

162

Name
TAU_EVENT -- Triggers a user event

C/C++:

TAU _EVENT(vari abl e, val ue);
TauUser Event vari abl e;
doubl e val ue;

Fortran:

TAU _EVENT(vari abl e, val ue);
i nteger variable(2);
real val ue;

Description

Triggers an event that was registered with TAU_REG STER_EVENT.

Example

CIC++:

i nt user_square(int count) {
TAU _REG STER EVENT(uel, "UserSquare Event");
TAU_EVENT(uel, count * count);
return O;

Fortran :

i nteger eventid(2)

save eventid

cal | TAU REG STER EVENT(eventid, 'Error in Iteration')
call TAU EVENT(eventid, count)

See Also

TAU_REGISTER_EVENT

163

Name
TAU_REGISTER_CONTEXT_EVENT -- Registers a context event

C/C++:

TAU REGQ STER CONTEXT_EVENT(vari abl e, event_ nane);
TauUser Event vari abl e;
char *event nane;

Fortran:

TAU _REG STER_CONTEXT_EVENT(vari abl e, event _nane);
int variable(2);
character event_name(size);

Description

Creates a context event with name. A context event appends the names of routines executing on the call-
stack to the name specified by the user. Whenver a context event is triggered, the callstack is examined
to determine the context of execution. Starting from the parent function where the event is triggered,
TAU waks up the callstack to a depth specified by the user in the environment variable
TAU_CALLPATH DEPTH . If this environment variable is not specified, TAU uses 2 as the default
depth. For e.g., if the user registers a context event with the name "memory used" and specifies 3 as the
callpath depth, and if the event is triggered in two locations (in routine a, when it was called by b, when
it was called by c, and in routine h, when it was called by g, when it was called by i), then, we'd see the
user defined event information for "memory used: c() => b() => a()" and "memory used: i() => g() =>

h()".
Example

C/C++:

int f2(void)

static int count = O;

count ++;

TAU PROFILE("f2()", "(sleeps 2 sec, calls f3)", TAU USER);

TAU REGQ STER CONTEXT_EVENT(event, "lteration count");
/*

if (count ==

TAU_DI SABLE_CONTEXT_EVENT(event);

*/

printf("Inside f2: sleeps 2 sec, calls f3\n");

TAU_CONTEXT_EVENT(event, 232+count);

sl eep(2);

f3();
return O;

Fortran :

164

TAU_REGISTER_CONTEXT_EVENT

subroutine foo(id)
i nteger id
i nteger profile / 0, 0/
i nteger maev(2) / /
i nteger ndev(2) / /
save profiler, nme e

r(2)
0, O
0, O
v, mdev
integer :: ierr

integer :: h, t, u

| NTEGER, ALLOCATABLE :: STORAGEARY(:)
DOUBLEPRECI SION edat a

cal | TAU PROFI LE_TI MER(profiler, 'FOO)
cal | TAU PROFI LE_START(profiler)
cal I TAU_PROFI LE_SET_NODE(0)

call TAU REGQ STER CONTEXT_EVENT(rmaev, "STORAGEARY Alloc [cubes.f:20]")
call TAU REGQ STER CONTEXT_EVENT(ndev, " STORAGEARY Deal | oc [cubes.f:37]")

al | ocat e(STORAGEARY(1: 999), STAT=I ERR)
edata = S| ZE(STORAGEARY) *si zeof (1 NTEGER)
cal | TAU CONTEXT_EVENT(maev, edat a)

deal | ocat e(STORAGEARY)

edata = S| ZE(STORAGEARY) *si zeof (1 NTEGER)
cal |l TAU CONTEXT_EVENT(ndev, edata)

cal | TAU PROFI LE_STOP(profiler)

end subroutine foo

See Also

TAU_CONTEXT_EVENT, TAU_ENABLE_CONTEXT_EVENT,
TAU_DISABLE_CONTEXT_EVENT, TAU_REGISTER EVENT, TAU_REPORT_STATISTICS,
TAU_REPORT_THREAD_STATISTICS, TAU_GET_EVENT_NAMES, TAU_GET_EVENT_VALS

165

Name
TAU_CONTEXT_EVENT -- Triggers a context event

C/C++:

TAU_CONTEXT_EVENT(vari abl e, val ue);
TauUser Event vari abl e;
doubl e val ue;

Fortran:

TAU_CONTEXT_EVENT(vari abl e, val ue);
i nteger variable(2);
real val ue;

Description

Triggers a context event. A context event associates the name with the list of routines along the call-
stack. A context event tracks information like a user defined event and TAU records the maxima, min-
ima, mean, std. deviation and the number of samples for each context event. A context event helps dis-
tinguish the data supplied by the user based on the location where an event occurs and the sequence of
actions (routine/timer invocations) that preceeded the event. The depth of the the callstack embedded in
the context event's name is specified by the user in the environment variable TAU_CALLPATH DEPTH.
If thisvariableis not specified, TAU uses adefault depth of 2.

Example

CIC++:

i{nt f2(voi d)

static int count = O;
count ++;
TAU PROFI LE("f2()", "(sleeps 2 sec, calls f3)", TAU USER);
TAU_REG STER_CONTEXT_EVENT(event, "lteration count");
/*
if (count == 2)
TAU_DI SABLE_CONTEXT_EVENT(event) ;
*/
printf("lInside f2: sleeps 2 sec, calls f3\n");

TAU_CONTEXT_EVENT(event, 232+count);

Fortran :

i nteger nenevent(2) / 0, 0/
save nenevent
call TAU REGQ STER CONTEXT_EVENT(rmenevent, "STORAGEARY nem al | ocated')

166

TAU_CONTEXT_EVENT

cal | TAU_CONTEXT_ EVENT(nenevent, S| ZEOF(STORAGEARY) *si zeof (| NTEGER))

See Also

TAU_REGISTER_CONTEXT_EVENT

167

Name
TAU_ENABLE_CONTEXT_EVENT -- Enable a context event

C/C++:
TAU_ENABLE_CONTEXT_EVENT(event);

TauUser Event event;

Description

Enables a context event.

Example

CIC++:

int f2(void) {
static int count = O;
count ++;
TAU PROFILE("f2()", "(sleeps 2 sec, calls f3)", TAU USER);
TAU_REG STER CONTEXT_EVENT(event, "lteration count");

if (count == 2)
TAU_DI SABLE_CONTEXT_EVENT(event) ;
el se

TAU_ENABLE_CONTEXT_EVENT(event);
printf("lInside f2: sleeps 2 sec, calls f3\n");
TAU_CONTEXT_EVENT(event, 232+count);
sl eep(2);

£3();
return O;

See Also

TAU_REGISTER_CONTEXT_EVENT, TAU_DISABLE_CONTEXT_EVENT

168

Name
TAU_DISABLE_CONTEXT_EVENT -- Disable a context event

C/C++:
TAU_DI SABLE_CONTEXT_EVENT(event);

TauUser Event event;

Description

Disables a context event.

Example

CIC++:

int f2(void) {
static int count = O;
count ++;
TAU PROFILE("f2()", "(sleeps 2 sec, calls f3)", TAU USER);
TAU_REG STER CONTEXT_EVENT(event, "lteration count");

if (count == 2)
TAU_DI SABLE_CONTEXT_EVENT(event) ;
el se

TAU_ENABLE_CONTEXT_EVENT(event);
printf("lInside f2: sleeps 2 sec, calls f3\n");
TAU_CONTEXT_EVENT(event, 232+count);
sl eep(2);

£3();
return O;

See Also

TAU_REGISTER_CONTEXT_EVENT, TAU_ENABLE_CONTEXT_EVENT

169

Name
TAU_EVENT_SET_NAME -- Setsthe name of an event

C/C++:

TAU_EVENT_SET NAME(event, nane);
TauUser Event event;
const char *nane;

Description

Changes the name of an event.

Example

CIC++:

TAU _EVENT_SET NAME(event, "new nanme");

See Also

TAU_REGISTER_EVENT

170

Name
TAU_EVENT_DISABLE_MAX -- Disables tracking of maximum statistic for a given event

C/C++:

TAU_EVENT_DI SABLE_MAX(event) ;
TauUser Event event;

Description

Disables tracking of maximum statistic for a given event

Example

CIC++:

TAU_EVENT_DI SABLE_MAX(event) ;

See Also

TAU_REGISTER_EVENT

171

Name
TAU_EVENT_DISABLE_MEAN -- Disables tracking of mean statistic for a given event

C/C++:

TAU_EVENT_ DI SABLE_MEAN(event) ;
TauUser Event event;

Description

Disables tracking of mean statistic for agiven event

Example

CIC++:

TAU_EVENT DI SABLE_MEAN(event) ;

See Also

TAU_REGISTER_EVENT

172

Name
TAU_EVENT_DISABLE_MIN -- Disables tracking of minimum statistic for agiven event

C/C++:

TAU_EVENT_DI SABLE M N(event) ;
TauUser Event event;

Description

Disables tracking of minimum statistic for a given event

Example

CIC++:

TAU_EVENT_DI SABLE_M N(event) ;

See Also

TAU_REGISTER_EVENT

173

Name

TAU_EVENT_DISABLE _STDDEV -- Disables tracking of standard deviation statistic for a given
event

C/C++:

TAU_EVENT_DI SABLE_STDDEV(event) ;
TauUser Event event;

Description

Disables tracking of standard deviation statistic for a given event

Example

CIC++:

TAU_EVENT DI SABLE_STDDEV(event) ;

See Also

TAU_REGISTER_EVENT

174

Name
TAU_REPORT_STATISTICS -- Outputs statistics

C/C++:
TAU_REPORT_STATI STI CS() ;

Fortran:

TAU_REPORT_STATI STI CS() ;

Description

TAU_REPORT_STATI STI CS prints the aggregate statistics of user events across all threads in each
node. Typically, this should be called just before the main thread exits.

Example

C/C++:

TAU_REPORT_STATI STI CS() ;

Fortran :

cal | TAU_REPORT_STATI STI CS()

See Also

TAU_REGISTER_EVENT,
TAU_REPORT_THREAD_STATISTICS

TAU_REGISTER_CONTEXT_EVENT,

175

Name
TAU_REPORT_THREAD_STATISTICS -- Outputs statistics, plus thread stetistics

C/C++:
TAU_REPORT_THREAD STATI STI CS() ;

Fortran:

TAU_REPORT_THREAD_STATI STI CS() ;

Description

TAU_REPORT_THREAD_STATI STI CS prints the aggregate, as well as per thread user event statistics.
Typically, this should be called just before the main thread exits.

Example

C/C++:

TAU_REPORT_THREAD_STATI STI CS() ;

Fortran :

cal | TAU_REPORT_THREAD STATI STI CS()

See Also

TAU_REGISTER_EVENT, TAU_REGISTER_CONTEXT_EVENT, TAU_REPORT_STATISTICS

176

Name
TAU_ENABLE_INSTRUMENTATION -- Enables instrumentation

C/C++:
TAU_ENABLE_| NSTRUVENTATI ON() ;

Fortran:

TAU_ENABLE_| NSTRUVENTATI ON() ;

Description

TAU_ENABLE | NSTRUVENTATI ON macro re-enables all TAU instrumentation. All instances of func-
tions and statements that occur between the disable/enable section are ignored by TAU. This allows a
user to limit the trace size, if the macros are used to disable recording of a set of iterations that have the
same characteristics as, for example, the first recorded instance.

Example

CIC++:

int main(int argc, char **argv) {
foo();
TAU_DI SABLE_| NSTRUMVENTATI ON() ;
for (int i =0; i < N i++) {
bar(); // not recorded

}
TAU_ENABLE_| NSTRUVENTATI ON() ;
bar(); // recorded

Fortran :

cal | TAU_DI SABLE_| NSTRUVENTATI ON()
cal | TAU ENABLE_| NSTRUVENTATI ON()

See Also

TAU_DISABLE_INSTRUMENTATION, TAU_ENABLE_GROUP, TAU_DISABLE_GROUP,
TAU_INIT, TAU_PROFILE_INIT

177

Name
TAU_DISABLE_INSTRUMENTATION -- Disables instrumentation

C/C++:
TAU_DI SABLE_| NSTRUMVENTATI ON() ;

Fortran:

TAU_DI SABLE_| NSTRUVENTATI ON() ;

Description

TAU_DI SABLE | NSTRUMENTATI ON macro disables al entry/exit instrumentation within all threads
of a context. This alows the user to selectively enable and disable instrumentation in parts of his/her
code. It isimportant to re-enabl e the instrumentation within the same basic block and scope.

Example

C/C++:

int main(int argc, char **argv) ({
foo();
TAU_DI SABLE | NSTRUVENTATI ON() ;
for (int i =0; i < N i++) {
bar(); // not recorded

}
TAU DI SABLE_| NSTRUVENTATI ON() :
bar(); // recorded

Fortran :

cal | TAU_ DI SABLE_| NSTRUVENTATI ON()
cal | TAU DI SABLE_| NSTRUVENTATI ON()

See Also

TAU_ENABLE_INSTRUMENTATION, TAU_ENABLE_GROUP, TAU_DISABLE_GROUP,
TAU_INIT, TAU_PROFILE_INIT

178

Name
TAU_ENABLE_GROUP -- Enables tracking of a given group

C/C++:

TAU_ENABLE_GROUP(gr oup) ;
TauG oup_t group;

Fortran:

TAU_ENABLE_GROUP(gr oup) ;
i nt eger group;

Description
Enables the instrumentation for a given group. By default, it is already on.

Example

CIC++:

void foo()
TAU_PRCFI LE("foo()", " ", TAU_USER);

TAU_ENABLE_GROUP(TAU_USER) ;
}

Fortran :

i ncl ude 'Profil e/ TauFAPI . h'
call TAU ENABLE GROUP(TAU_USER)

See Also

TAU_ENABLE_INSTRUMENTATION, TAU_DISABLE_INSTRUMENTATION,
TAU_DISABLE_GROUP, TAU_INIT, TAU_PROFILE_INIT

179

Name
TAU_DISABLE_GROUP -- Disables tracking of a given group

C/C++:

TAU_DI SABLE_GROUP(gr oup) ;
TauG oup_t group;

Fortran:

TAU_DI SABLE_GROUP(gr oup) ;
i nt eger group;

Description
Disables the instrumentation for a given group. By default, it is on.

Example

CIC++:

void foo()
TAU_PRCFI LE("foo()", " ", TAU_USER);

TAU_DI SABLE_GROUP(TAU_USER) ;
}

Fortran :

i ncl ude 'Profil e/ TauFAPI . h'
call TAU DI SABLE GROUP(TAU_USER)

See Also

TAU_ENABLE_INSTRUMENTATION, TAU_DISABLE_INSTRUMENTATION,
TAU_ENABLE_GROUP, TAU_INIT, TAU_PROFILE_INIT

180

Name
TAU_PROFILE_TIMER_SET_GROUP -- Change the group of atimer

C/C++:

TAU_PROFI LE_TI MER_SET_GROUP(ti nmer, group);
Profiler tinmer;
TauG oup_t group;

Description
TAU_PROFI LE_TI MER_SET_GROUP changes the group associated with atimer.
Example
C/C++:
void foo()
TAU_PROFI LE_TI MER(t, "foo loop timer", ™ ", TAU USER1);

TAU_PROFI LE_TI MER_SET_GROUP(t, TAU USER3);

See Also

TAU_PROFILE_TIMER, TAU_PROFILE_TIMER_SET_GROUP_NAME

181

Name
TAU_PROFILE_TIMER_SET_GROUP_NAME -- Changes the group name for atimer

C/C++:

TAU _PROFI LE_TI MER_SET_GROUP_NAME(ti ner, groupnane);
Profiler tinmer;
char *groupnane;

Description
TAU_PROFI LE_TI MER_SET_GROUP_NAME changes the group name associated with a given timer.
Example
C/C++:
void foo() {
TAU_PROFI LE_TI MER(| oopti mer, "foo: loopl", " ", TAU USER);
TAU_PROFI LE_START(| oopti ner);
for (int i =0; i <N i++) { /* do something */ }

TAU_PROFI LE_STOP(| oopti mer) ;
TAU_PROFI LE_TI MER_SET_GROUP_NAME(" Fi el d") ;

See Also

TAU_PROFILE_TIMER, TAU_PROFILE_TIMER_SET_GROUP

182

Name
TAU_PROFILE_TIMER_SET_NAME -- Changes the name of atimer

C/C++:

TAU_PROFI LE_TI MER_SET_NAME(ti ner, newnane);
Profiler tinmer;
string newnane;

Description

TAU_PROFI LE_TI MER_SET_NAME macro changes the name associated with a timer to the newname
argument.

Example

CIC++:

void foo()
TAU_PROFI LE_TI MER(tinerl, "foo:loopl", " ", TAU USER);

TAU_PROFI LE_TI MER SET _NAME(tirmerl, "foo:lines 21-34");
}

See Also

TAU_PROFILE_TIMER

183

Name
TAU_PROFILE_TIMER_SET_TY PE -- Changes the type of atimer

C/C++:

TAU_PROFI LE_TI MER_SET_TYPE(ti ner, newnane);
Profiler tinmer;
string newnane;

Description

TAU_PROFI LE_TI MER_SET_TYPE macro changes the type associated with a timer to the newname
argument.

Example

CIC++:

void foo()
TAU_PROFI LE_TI MER(tinerl, "foo", "int", TAU_USER);

TAU_PROFI LE_TI MER SET TYPE(tirmerl, "long"):
}

See Also

TAU_PROFILE_TIMER

184

Name
TAU_PROFILE_SET_GROUP_NAME -- Changes the group name of a profiled section

C/C++:
TAU_PROFI LE_SET_GROUP_NAME(gr oupnane) ;

char *groupnane;
Description

TAU_PROFI LE_SET_GROUP_NAME macro allows the user to change the group name associated with
the instrumented routine. This macro must be called within the instrumented routine.

Example

CIC++:

void foo()
TAU_PROFI LE("foo()", "void ()", TAU_USER);
TAU_PROFI LE_SET_GROUP_NAME("Particle");
/* gives a nore neani ngful group name */

}

See Also

TAU_PROFILE

185

Name

TAU_INIT -- Processes command-line arguments for selective instrumentation

CIC++:
TAU I NI T(argc, argv);

int *argc;
char ***argv;

Description

TAU_|I NI T parses and removes the command-line arguments for the names of profile groups that are to
be selectively enabled for instrumentation. By default, if this macro is not used, functions belonging to
all profile groups are enabled. TAU_| NI T differs from TAU_PROFI LE_I NI T only in the argument

types.

Example

C/C++:

int main(int argc, char **argv) {
TAU_PROFI LE("main()", "int (int, char **)", TAU GROUP_12);
TAU_I NI T(&ar gc, &argv);

}
% ./a.out --profile 12+14

See Also

TAU_PROFILE_INIT

186

Name

TAU_PROFILE_INIT -- Processes command-line arguments for selective instrumentation

CIC++:

TAU PROFILE I NI T(argc, argv);
i nt argc;

char **argv;

Fortran:

TAU_PROFI LE_I NI T() ;

Description

TAU_PROFI LE_|I NI T parses the command-line arguments for the names of profile groups that are to
be selectively enabled for instrumentation. By default, if this macro is not used, functions belonging to
al profile groups are enabled. TAU | NI T differs from TAU_PROFI LE | NI T only in the argument

types.

Example

C/C++:

int main(int argc, char **argv) {
TAU_PROFI LE("nmain()", "int (int,
TAU_PROFI LE_I NI T(argc, argv);

}
% ./a.out --profile 12+14

Fortran :

PROGRAM SUM_OF CUBES
i nteger profiler(2)
save profiler

cal | TAU PROFI LE_I NI T()

See Also

TAU_INIT

char **)", TAU_DEFAULT);

187

Name
TAU_GET_PROFILE_GROUP -- Creates groups based on names

C/C++:

TAU_GET_PROFI LE_GROUP(gr oupnarne) ;
char *groupnane;

Description

TAU_GET_PROFI LE_GROUP alows the user to dynamically create groups based on strings, rather
than use predefined, statically assigned groups such as TAU_USER1, TAU USER2 etc. This allows
names to be associated in creating unique groups that are more meaningful, using names of files or dir-
ectories for instance.

Example

C/C++:

#def i ne PARTI CLES TAU GET_PROFI LE_GROUP(" PARTI CLES")

voi d foo()
TAU_PROFI LE("foo()", " ", PARTICLES);
}

void bar() {
} TAU_PROFI LE("bar ()", " ", PARTICLES);

See Also

TAU_ENABLE_GROUP_NAME, TAU_DISABLE_GROUP_NAME,
TAU_ENABLE_ALL_GROUPS, TAU_DISABLE_ALL_GROUPS

188

Name
TAU_ENABLE_GROUP_NAME -- Enables a group based on name

CIC++:

TAU_ENABLE_GROUP_NAME(gr oupnarne) ;
char *groupnane;

Fortran:

TAU_ENABLE_GROUP_NAME(gr oupnarne) ;
character groupnane(size);

Description

TAU_ENABLE_GROUP_NANME macro can turn on the instrumentation associated with routines based on
a dynamic group assigned to them. It is important to note that this and the
TAU DI SABLE GROUP_NAME macros apply to groups created dynamicaly using
TAU_GET_PROFI LE_GROUP.

Example

C/C++:

/* tau_instrunentor was invoked with -g DTMfor a set of files */
TAU_DI SABLE_GROUP_NAME(" DTM') ;

dtmroutines();

/* disable and then re-enable the group with the name DTM */
TAU_ENABLE_CGROUP_NAME(" DTM') ;

Fortran:

I tau_instrunmentor was invoked with -g DTIMfor this file
call TAU PRCFILE TI MER(profiler, "I TERATE>DTM')
cal | TAU DI SABLE_GROUP_NAME(" DTM')

I Disable, then re-enable DIM group
call TAU ENABLE_GROUP_NAME(" DTM')

See Also

TAU_GET_PROFILE_GROUP, TAU_DISABLE_GROUP _NAME, TAU_ENABLE_ALL_GROUPS,
TAU_DISABLE_ALL_GROUPS

189

Name
TAU_DISABLE_GROUP_NAME -- Disables a group based on name

CIC++:

TAU_DI SABLE_GROUP_NAME(gr oupnan®) ;
char *groupnane;

Fortran:

TAU_DI SABLE _GROUP_NAME(gr oupnan®) ;
character groupnane(size);

Description

Similar to TAU_ENABLE_GROUP_NAME , this macro turns off the instrumentation in all routines asso-
ciated with the dynamic group created using the tau_instrumentor -g <group_name> argument.

Example

CIC++:

/* tau_instrunentor was invoked with -g DTMfor a set of files */
TAU_DI SABLE_GROUP_NAME(" DTM') ;

dtmroutines();

/* disable and then re-enable the group with the nanme DTM */
TAU_ENABLE_GROUP_NAME(" DTM') ;

Fortran :

I tau_instrumentor was invoked with -g DIMfor this file
cal | TAU PROFI LE_TI MER(profiler, "ITERATE>DIM)
cal | TAU DI SABLE_CGROUP_NAME(" DTM')

I Disable, then re-enable DTM group
cal | TAU_ENABLE GROUP_NAME("DTM')

See Also

TAU_GET_PROFILE_GROUP, TAU_ENABLE_GROUP_NAME, TAU_ENABLE_ALL_GROUPS,
TAU_DISABLE_ALL_GROUPS

190

Name
TAU_ENABLE_ALL_GROUPS -- Enablesinstrumentation in all groups

C/C++:
TAU_ENABLE_ALL_GROUPS() ;

Fortran:

TAU_ENABLE_ALL_GROUPS() ;

Description

This macro turns on instrumentation in all groups

Example

CIC++:

TAU_ENABLE_ALL_GROUPS() ;

Fortran :

cal | TAU ENABLE_ALL_GROUPS();

See Also

TAU_GET_PROFILE_GROUP, TAU_ENABLE_GROUP_NAME,
TAU_DISABLE_GROUP_NAME, TAU_DISABLE_ALL_GROUPS

191

Name
TAU_DISABLE_ALL_GROUPS -- Disables instrumentation in all groups

C/C++:
TAU DI SABLE_ALL_GROUPS() ;

Fortran:

TAU_DI SABLE_ALL_GROUPS() ;

Description

This macro turns off instrumentation in all groups.

Example

CIC++:

voi d foo()
TAU_DI SABLE_ALL_GROUPS() ;
TAU_ENABLE_GROUP_NAME(" PARTI CLES") ;

}

Fortran :

cal | TAU DI SABLE_ALL_GROUPS();

See Also

TAU_GET_PROFILE_GROUP, TAU_ENABLE_GROUP NAME,
TAU_DISABLE_GROUP_NAME, TAU_ENABLE_ALL_GROUPS

192

Name
TAU_GET_EVENT_NAMES -- Getsthe registered user events.

C/C++:

TAU_GET_EVENT_NAMES(event Li st, nunEvents);
const char ***eventLi st;
i nt *nunBEvents;

Description
Retrieves user event names for all user-defined events

Example

CIC++:

const char **eventLi st;
i nt nunBEvents;

TAU_GET_EVENT_NAMES(event Li st, nunEvents);

cout << "nunEvents: " << nunEvents << endl;

See Also

TAU_REGISTER_EVENT, TAU_REGISTER_CONTEXT_EVENT, TAU_GET_EVENT_VALS

193

Name

TAU_GET_EVENT_VALS -- Gets user event data for given user events.

C/C++:

TAU _GET_EVENT _VALS(i nUser Events, nunlJser Events, nunEvents,

mean, sunge) ;

const char **inUser Events;
i nt nunmJser Event s;

i nt **nunEvents;

doubl e **max;

doubl e **m n;

doubl e **nean;

doubl e **sunftqge;

Description

max,

mn,

Retrieves user defined event data for the specified user defined events. The list of events are specified by
the first parameter (eventList) and the user specifies the number of events in the second parameter
(numUserEvents). TAU returns the number of times the event was invoked in the numUserEvents. The
max, min, mean values are returned in the following parameters. TAU computes the sum of squares of

the given event and returns this value in the next argument (sumSqge).

Example

CIC++:

const char **eventList;
i nt nunEvents;

TAU_GET_EVENT_NAMES(event Li st, nunEvents);

cout << "nunEvents: << nunEvents << endl
if (nunEvents > 0) {

i nt *nunBanpl es;

doubl e *max;

doubl e *m n;

doubl e *nean;

doubl e *sunBqr;

TAU _GET_EVENT_VALS(eventLi st, nunEvents, nunSanples,
mex, mn, mean, sunsqr);
for (int i=0; i<nunBEvents; i++) {

COUt << Mmoo e e a oo \n";
cout << "User Event:

cout << "Number of Sanples: " << nunBanples[i] << endl;
cout << "Maxi mum Val ue: " << max[i] << endl;
cout << "M ni num Val ue: " << mn[i] << endl;
cout << "Mean Val ue: " << mean[i] << endl;

cout << "Sum Squar ed: " << sunBSqr[i] << endl;

" << eventList[i] << endl;

194

TAU_GET_EVENT_VALS

See Also

TAU_REGISTER EVENT, TAU_REGISTER_CONTEXT_EVENT, TAU_GET_EVENT_NAMES

195

Name

TAU_GET_COUNTER_NAMES -- Gets the counter names

C/C++:

TAU_GET_COUNTER _NAMES(count er Li st, numCounters);
char **counterlLi st;
i nt nunCount ers;

Description

TAU_GET_COUNTER_NAMES returns the list of counter names and the number of counters used for
measurement. When wallclock timeis used, the counter name of "default” is returned.

Example

CIC++:

i nt nunf Count er s;
const char ** counterlList;

TAU_GET_COUNTER _NAMES(count er Li st, nunTf Counters);
for(int j=0;j<numX Counters;j++){
cout << "The counter nanmes so far are:

}

<< counterlList[j] << endl;

See Also

TAU_GET_FUNC_NAMES, TAU_GET_FUNC_VALS

196

Name
TAU_GET_FUNC_NAMES -- Gets the function names

CIC++:
TAU_GET_FUNC _NAMES(functionLi st, nunfFuncs);

char **functionLi st;
i nt nunfFuncs;

Description

This macro fills the funcList argument with the list of timer and routine names. It aso records the num-
ber of routines active in the numFuncs argument.

Example

CIC++:

const char ** functionList;
i nt nunOf Functi ons;

TAU_GET_FUNC _NAMES(functi onLi st, nunCOf Functi ons);
for(int i=0;i<numX Functions;i++)({
cout << "This function nanes so far are:

}

<< functionList[i] << endl;

See Also

TAU_GET_COUNTER NAMES, TAU_GET_FUNC VALS, TAU_DUMP_FUNC_NAMES,
TAU_DUMP_FUNC_VALS

197

Name
TAU_GET_FUNC_VALS -- Gets detailed performance data for given functions

C/C++:

TAU_GET_FUNC VALS(i nFuncs, nuntX Funcs, counterExcl usiveVal ues, coun-
terlnclusiveVal ues, nuntOCalls, nunf SubRouti nes, counterNanes, nuntf-
Counters, tid);

const char **inFuncs;

i nt nunOf Funcs;

doubl e ***count er Excl usi veVal ues;

doubl e ***count er | ncl usi veVal ues;

int **nuntk Cal | s;

i nt **numOf SubRout i nes;

const char ***count er Nanes;

i nt *nunCF Count ers;

int tid;

Description

It gets detailed performance data for the list of routines. The user specifies inFuncs and the number of
routines;, TAU then returns the other arguments with the performance data. counterExclusiveVaues and
counterlnclusiveValues are two dimensional arrays: the first dimension is the routine id and the second
is counter id. The value is indexed by these two dimensions. numCalls and numSubrs (or child routines)
are one dimensional arrays.

Example

CIC++:

const char **i nFuncs;

/* The first dinmension is functions, and the
second di nension is counters */

doubl e **count er Excl usi veVal ues;

doubl e **count er | ncl usi veVal ues;

int *nunt Cal | s;

i nt *nunOF SubRout i nes;

const char **count er Nanes;

i nt nunOf Couns;

TAU_GET_FUNC _NAMES(f unctionLi st, nuntf Functi ons);

/* W are only interested in the first two routines
that are executing in this context. So, we allocate
space for two routine nanes and get the performance
data for these two routines at runtine. */
i f (nunmOf Functions >=2)
i nFuncs = (const char **) mall oc(sizeof(const char *) * 2);

i nFuncs[0] = functionList[O0];
i nFuncs[1] = functionList[1];

/1 Just to show consi stency.
TAU_DB_DUMP() ;

TAU_GET_FUNC_VALS(i nFuncs, 2,
count er Excl usi veVal ues,

198

TAU_GET_FUNC_VALS

count er | ncl usi veVal ues,
numcf Cal | s,

numOf SubRout i nes,

count er Names,

nuntf Couns) ;

TAU_DUMP_FUNC VALS | NCR(i nFuncs, 2);
cout << << endl;

cout << "The nunber of counters is: " << nuntfCouns << endl;
cout << "The first counter is: " << counterNames[0] << endl;

cout << "The Exclusive value of: << inFuncs[0]

<< " is: " << counterExclusiveVal ues[0][0] << endl;
cout << "The nunt¥ SubRoutines of: " << I nFuncs[O0]
<< " is: " << nunOf SubRouti nes[0]

<< endl;

cout << "The Inclusive value of: "

<< i nFuncs[1]

<< " is: << counterl ncl usiveVal ues[1] [0]
<< endl;

cout << "The nunOfCalls of: " << inFuncs[1]
<< " is: " << nunXCalls[1]

<< endl;

cout << " << endl;

}
TAU DB _DUMP_| NCR() :

See Also

TAU_GET_COUNTER NAMES, TAU_GET_FUNC _NAMES, TAU_DUMP_FUNC_NAMES,
TAU_DUMP_FUNC_VALS

199

Name
TAU_ENABLE_TRACKING_MEMORY -- Enables memory tracking

C/C++:
TAU_ENABLE_TRACKI NG MEMORY() ;

Fortran:

TAU_ENABLE_TRACKI NG_MEMORY() ;

Description

Enables tracking of the heap memory utilization in the program. TAU takes a sample of the heap
memory utilized (as reported by the mallinfo system call) and associates it with a single global user
defined event. An interrupt is generated every 10 seconds and the value of the heap memory used is re-
corded in the user defined event. The inter-interrupt interval (default of 10 seconds) may be set by the
user using the call TAU_SET_| NTERRUPT_| NTERVAL.

Example

CIC++:

TAU_ENABLE_TRACKI NG_MEMORY() ;

Fortran :

cal | TAU_ENABLE_TRACKI NG_MEMORY()

See Also

TAU_DISABLE_TRACKING MEMORY, TAU_SET_INTERRUPT_INTERVAL,
TAU_TRACK_MEMORY, TAU_TRACK_MEMORY_HERE

200

Name
TAU_DISABLE_TRACKING_MEMORY -- Disables memory tracking

C/C++:
TAU_DI SABLE_TRACKI NG_MEMORY() ;

Fortran:

TAU_DI SABLE_TRACKI NG_MEMORY() ;

Description

Disables tracking of heap memory utilization. This call may be used in sections of code where TAU
should not interrupt the execution to periodically track the heap memory utilization.

Example

C/C++:

TAU DI SABLE_TRACKI NG_VEMORY() ;

Fortran :

cal | TAU_DI SABLE_TRACKI NG_MEMORY()

See Also

TAU_ENABLE_TRACKING_MEMORY, TAU_SET_INTERRUPT_INTERVAL,
TAU_TRACK_MEMORY, TAU_TRACK_MEMORY_HERE

201

Name
TAU_TRACK_MEMORY -- Initializes memory tracking system

C/C++:
TAU_TRACK_MEMORY() ;

Fortran:

TAU_TRACK_MEMORY() ;

Description

For memory profiling, there are two modes of operation: 1) the user explicitly inserts
TAU_TRACK_MEMORY_HERE() calsin the source code and the memory event is triggered at those
locations, and 2) the user enables tracking memory by calling TAU_TRACK_MEMORY () and an inter-
rupt is generated every 10 seconds and the memory event is triggered with the current value. Also, this
interrupt interval can be changed by calling TAU_SET_INTERRUPT_INTERVAL (value). The tracking
of memory events in both cases can be explictly enabled or disabled by calling the macros
TAU_ENABLE_TRACKING_MEMORY() or TAU_DISABLE_TRACKING_MEMORY() respect-

ively.

Example

C/C++:

TAU_TRACK_MEMORY() ;

Fortran :

cal | TAU_TRACK_MEMORY()

See Also
TAU_ENABLE_TRACKING_MEMORY, TAU_DISABLE_TRACKING_MEMORY,
TAU_SET_INTERRUPT_INTERVAL, TAU_TRACK_MEMORY_HERE,

TAU_TRACK_MEMORY_HEADROOM

202

Name
TAU_TRACK_MEMORY_HERE -- Triggers memory tracking at a given execution point

C/C++:
TAU_TRACK_MEMORY HERE() ;

Fortran:

TAU_TRACK_MEMORY_HERE() ;

Description

Triggers memory tracking at a given execution point

Example

CIC++:

int main(int argc, char **argv) {
TAU_PROFI LE("main()", " ", TAU_DEFAULT);
TAU_PROFI LE_SET_NODE(0) ;
TAU_TRACK_MEMORY_HERE() ;
int *x = new int[5*1024*1024] ;

TAU_TRACK_MEMORY_HERE() ;
return O;

Fortran :

| NTEGER, ALLOCATABLE :: STORAGEARY(:)
al | ocat e(STORAGEARY(1: 999), STAT=I ERR)
I if we wish to record a sanple of the heap nenory

I utilization at this point, invoke the follow ng call:
call TAU TRACK_MEMORY_HERE()

See Also

TAU_TRACK_MEMORY

203

Name

TAU_ENABLE_TRACKING_MEMORY_HEADROOM -- Enables memory headroom tracking

C/C++:
TAU_ENABLE_TRACKI NG_MEMORY_HEADROOM) ;

Fortran:

TAU_ENABLE_TRACKI NG_MEMORY_HEADROOM) ;

Description

TAU_ENABLE_TRACKI NG_MEMORY_HEADROOM) enables memory headroom tracking after a
TAU_DI SABLE_TRACKI NG_MEMORY_HEADROOM) .

Example

C/C++:
TAU_DI SABLE_TRACKI NG_MEMORY_HEADROOM) ;
/* do some work */

/* re-enabl e tracki ng nmenory headroom */
TAU_ENABLE_TRACKI NG_MEMORY_HEADROOM) ;

Fortran :

cal | TAU_ENABLE_TRACKI NG_MEMORY_HEADROOM) ;

See Also

TAU_TRACK_MEMORY_HEADROOM, TAU_DISABLE_TRACKING_MEMORY_HEADROOM,
TAU_TRACK_MEMORY_HEADROOM_HERE, TAU_SET_INTERRUPT_INTERVAL

204

Name
TAU_DISABLE_TRACKING_MEMORY_HEADROOM -- Disables memory headroom tracking

C/C++:
TAU_DI SABLE_TRACKI NG_MEMORY _HEADROOM) ;

Fortran:

TAU_DI SABLE_TRACKI NG_MEMORY_HEADROOM) ;

Description

TAU_DI SABLE_TRACKI NG_MEMORY_HEADROOM) disables memory headroom tracking.

Example

CIC++:

TAU_DI SABLE_TRACKI NG_MEMORY_HEADROOM) ;

Fortran :

cal | TAU DI SABLE_TRACKI NG_MEMORY_HEADROOM)

See Also

TAU_TRACK_MEMORY_HEADROOM, TAU_ENABLE_TRACKING_MEMORY_HEADROOM,
TAU_TRACK_MEMORY_HEADROOM_HERE, TAU_SET_INTERRUPT_INTERVAL

205

Name

TAU_TRACK_MEMORY_HEADROOM -- Track the headroom (amount of memory for a process to
grow) by periodically interrupting the program

C/C++:
TAU_TRACK_MEMORY _HEADROOM) ;

Fortran:

TAU_TRACK_MEMORY_HEADROOM) ;

Description

Tracks the amount of memory available for the process before it runs out of free memory on the heap.
This call sets up a signal handler that is invoked every 10 seconds by an interrupt (this interval may be
altered by using the TAU_SET | NTERRUPT _|I NTERVAL call). Inside the interrupt handler, TAU eval-
uates how much memory it can alocate and associates it with the callstack using the TAU context
events (See TAU_REGISTER_CONTEXT_EVENT). The user can vary the size of the callstack by set-
ting the environment variable TAU_CALLPATH_DEPTH (default is 2). This call is useful on machines
like IBM BG/L where no virtual memory (or paging using the swap space) is present. The amount of
heap memory available to the program is limited by the amount of available physical memory. TAU ex-
ecutes a series of malloc calls with a granularity of IMB and determines the amount of memory avail-
able for the program to grow.

Example

CIC++:

TAU_TRACK_MEMORY_HEADROOM) ;

Fortran :

cal | TAU_TRACK_MEMORY_HEADROOM)

See Also

TAU_TRACK_MEMORY, TAU_SET_INTERRUPT_INTERVAL,
TAU_ENABLE_TRACKING_MEMORY_HEADROOM,
TAU_DISABLE_TRACKING_MEMORY_HEADROOM,
TAU_TRACK_MEMORY_HEADROOM_HERE

206

Name
TAU_TRACK_MEMORY_HEADROOM_HERE -- Takes a sample of the amount of memory available
at agiven point.

C/C++:
TAU_TRACK_MEMORY _HEADROOM HERE() ;

Fortran:

TAU_TRACK_MEMORY_HEADROOM HERE() ;

Description

Instead of relying on a periodic interrupt to track the amount of memory available to grow, this call may
be used to take a sample at a given location in the source code. Context events are used to track the
amount of memory headroom.

Example

CIC++:

ary = new doubl e [1024*1024*50];
TAU_TRACK_MEMORY_HEADROOM HERE() ;

Fortran :

| NTEGER, ALLOCATABLE :: STORAGEARY(:)
al | ocat e(STORAGEARY(1: 999), STAT=I ERR)
TAU_TRACK_MEMORY HEADROOM HERE() ;

See Also

TAU_TRACK_MEMORY_HEADROOM

207

Name

TAU_SET_INTERRUPT_INTERVAL -- Change the inter-interrupt interval for tracking memory and
headroom

C/C++:

TAU_SET | NTERRUPT _| NTERVAL(val ue) ;
i nt val ue;

Fortran:

TAU_SET_| NTERRUPT_I NTERVAL(val ue) ;
i nteger val ue;

Description

Set the interrupt interval for tracking memory and headroom (See TAU_TRACK_MEMORY and
TAU_TRACK_MEMORY_HEADROOM). By default an inter-interrupt interval of 10 seconds is used
in TAU. This call allows the user to set it to a different value specified by the argument value.

Example

C/C++:

TAU_SET | NTERRUPT _| NTERVAL(2)
/* invokes the interrupt handler for nenory every 2s */

Fortran :

cal | TAU_SET_I NTERRUPT | NTERVAL(2)

See Also

TAU_TRACK_MEMORY, TAU_TRACK_MEMORY_HEADROOM

208

Name

CT -- Returns the type information for avariable

C/C++:

CT(vari abl e);
<type> vari abl e;

Description

The CT macro returns the runtime type information string of avariable. Thisis useful in constructing the
type parameter of the TAU_PROFI LE macro. For templates, the type information can be constructed us-
ing the type of the return and the type of each of the arguments (parameters) of the template. The ex-
ample in the following macro will clarify this.

Example

C/C++:

TAU_PROFI LE("f oo: : nenberfunc()", CT(*this), TAU DEFAULT);

See Also

TAU_PROFILE, TAU_PROFILE_TIMER, TAU_TYPE_STRING

209

Name

Descr

TAU_TYPE_STRING -- Creates atype string

C++:

TAU TYPE _STRI NG vari abl e, type_string);
string &vari abl e;
string & ype_string;

iption

This macro assigns the string constructed in type string to the variable. The + operator and the CT
macro can be used to construct the type string of an object. This is useful in identifying templates
uniquely, as shown below.

Example

C++:

t enpl at e<cl ass PLayout >

ost ream& oper at or <<(ostream& out, const Particl eBase<PLayout>& P) {
TAU TYPE _STRI NGtaustr, "ostream (ostream " + CT(P) + ")");
TAU_PROFI LE(" operat or<<()"taustr, TAU PARTICLE | TAU IO;

}

When PLayout is instantiated with " Uni f or nCart esi an<3U, doubl e> " this generates the
unique template name:

operat or<<() ostream const
Parti cl eBase<Uni f or nCart esi an<3U, doubl e> >)

The following example illustrates the usage of the CT macro to extract the name of the class associated
with the given object using CT(*this);

t enpl at e<cl ass PLayout >

unsi gned Particl eBase<PLayout 7>: : Get Message(Message& nsg, int node) {
TAU TYPE_STRI NG taustr, CT(*this) + "unsigned (Message, int)");
TAU _PROFI LE(" Particl eBase: : Get Message()", taustr, TAU PARTI CLE);

}

When PLayout is instantiated with " Uni f or nCart esi an<3U, doubl e> " this generates the
unique template name:

Particl eBase: : Get Message() Particl eBase<Uni fornCartesi an<3U,
doubl e> > unsi gned (Message, int)

210

TAU_TYPE_STRING

See Also

CT, TAU_PROFILE, TAU_PROFILE_TIMER

211

Name
TAU_DB_DUMP -- Dumps the profile database to disk

C/C++:
TAU_DB_DUMP() ;

Fortran:

TAU_DB_DUMP() ;

Description

Dumps the profile database to disk. The format of the files is the same as regular profiles, they are
simply prefixed with "dump" instead of "profile".

Example

C/C++:

TAU DB _DUMP() ;

Fortran :

call TAU DB DUMP()

See Also
TAU_DB_DUMP_PREFIX, TAU_DB_DUMP_INCR, TAU_DUMP_FUNC_NAMES,
TAU_DUMP_FUNC VALS, TAU_DUMP_FUNC_VALS INCR, TAU_DB_PURGE,

TAU_PROFILE_EXIT

212

Name
TAU_DB_DUMP_INCR -- Dumps profile database into timestamped profiles on disk

C/C++:
TAU_DB_DUMP_| NCR() ;

Description

Thisis similar to the TAU_DB_DUMP macro but it produces dump files that have a timestamp in their
names. This allows the user to record timestamped incremental dumps as the application executes.

Example

C/C++:

TAU DB _DUMP_I NCR() ;

See Also
TAU_DB_DUMP, TAU_DB_DUMP_PREFIX, TAU_DUMP_FUNC_NAMES,
TAU_DUMP_FUNC _VALS, TAU_DUMP_FUNC_VALS INCR, TAU_DB_PURGE,

TAU_PROFILE_EXIT

213

Name
TAU_DB_DUMP_PREFIX -- Dumps the profile database into profile files with a given prefix

C/C++:

TAU_DB_DUMP_PREFI X(prefi x);
char *prefix;

Fortran:

TAU_DB_DUMP_PREFI X(prefi x);
character prefix(size);

Description

The TAU_DB_DUMP_PREFI X macro dumps all profile data to disk and records a checkpoint or a snap-
shot of the profile dsatistics a that instant. The dump files ae named
<prefix>.<node>.<context>.<thread>. If prefix is "profile”, the files are named profile.0.0.0, etc. and
may be read by paraprof/pprof tools as the application executes.

Example

C/C++:

TAU_DB_DUMP_PREFI X(" prefix");

Fortran :

cal | TAU DB _DUMP_PREFI X("prefix")

See Also

TAU_DB_DUMP

214

Name
TAU_DB_PURGE -- Purges the performance data.

C/C++:
TAU DB_PURGE() ;

Description

Purges the performance data collected so far.

Example

CIC++:

TAU_DB_PURGE() ;

See Also

TAU_DB_DUMP

215

Name
TAU_DUMP_FUNC_NAMES -- Dumps function names to disk

C/C++:
TAU_DUMP_FUNC_NAMES() ;

Description

This macro writes the names of active functions to a
dump_functionnames_<node>.<context>.

Example

C/C++:

TAU_DUMP_FUNC NAMES() ;

See Also

TAU_DB_DUMP, TAU_DUMP_FUNC_VALS, TAU_DUMP_FUNC_VALS INCR

file

named

216

Name
TAU_DUMP_FUNC_VALS-- Dumps performance data for given functions to disk.

C/C++:

TAU_DUMP_FUNC_VALS(i nFuncs, nunfuncs);
char **i nFuncs;
i nt nunfFuncs;

Description

TAU_DUMP_FUNC_VALS writes the data associated with the routines listed in inFuncs to disk. The
number of routinesis specified by the user in numFuncs.

Example

CIC++:

See Also

TAU_DB_DUMP, TAU_DUMP_FUNC_NAMES, TAU_DUMP_FUNC_VALS INCR

217

Name
TAU_DUMP_FUNC_VALS INCR -- Dumps function values with atimestamp

C/C++:

TAU _DUMP_FUNC VALS | NCR(i nFuncs, nunfuncs);
char **i nFuncs;
i nt nunfFuncs;

Description

Similar to TAU_DUMP_FUNC_VALS. This macro creates an incremental selective dump and dumps the
results with a date stamp to the filename such as sel_dump__ Thu-Mar-28-16:30:48-2002__.0.0.0. In this
manner the previous TAU DUMP_FUNC VALS | NCR(...) are not overwritten (unless they occur
within a second).

Example

C/C++:

const char **i nFuncs;

/* The first dinmension is functions, and the second di mension is counters */
doubl e **count er Excl usi veVal ues;

doubl e **count er | ncl usi veVal ues;

int *nunOf Cal | s;

i nt *nunOfF SubRout i nes;

const char **count er Nanes;

i nt nunOf Couns;

TAU_GET_FUNC_VALS(i nFuncs, 2,
count er Excl usi veVal ues,
count er | ncl usi veVal ues,
numcf Cal | s,
numOf SubRout i nes,
count er Names,
nuntf Couns) ;

TAU_DUMP_FUNC VALS(i nFuncs, 2);

See Also

TAU_DB_DUMP, TAU_DUMP_FUNC_NAMES, TAU_DUMP_FUNC_VALS

218

Name
TAU_PROFILE_STMT -- Executes a statement only when TAU is used.

C/C++:

TAU_PROFI LE_STMI(st at enent) ;
statenent statenent;

Description

TAU_PROFI LE_STMT executes a statement, or declares a variable that is used only during profiling or
for execution of a statement that takes place only when the instrumentation is active. When instrumenta-
tion isinactive (i.e., when profiling and tracing are turned off as described in Chapter 2), all macros are
defined as null.

Example

C/C++:

TAU _PROFI LE_STMI(T obj;); // Tis a

) tenpl at e paraneter)
TAU TYPE_STRING(str, "void () " + CT(obj));

219

Name
TAU_PROFILE_CALLSTACK -- Generates a callstack trace at a given location.

C/C++:
TAU_PROFI LE_CALLSTACK() ;

Description

When TAU is configured with - PROFI LECALLSTACK configuration option, and this call isinvoked, a
callpath trace is generated. A GUI for viewing this trace is included in TAU's utils/csUl directory. This
option is deprecated.

Example

C/C++:

TAU_PROFI LE_CALLSTACK() ;

220

Name
TAU_TRACE_RECVMSG -- Traces areceive operation

C/C++:

TAU TRACE RECVMSQ(tag, source, |length);
int tag;

i nt source;

int length;

Fortran:

TAU_TRACE_RECVMS((t ag, source, |ength);
i nteger tag;

i nt eger source;

i nteger | ength;

Description

TAU_TRACE_RECVMSG traces a receive operation where tag represents the type of the message re-
ceived from the source process.

NOTE: When TAU is configured to use MPI (-mpiinc=<dir> -mpilib=<dir>), the
TAU_TRACE_RECVMSGand TAU_TRACE_SENDMSG macros are not required. The wrapper interposi-
tionlibrary in

$(TAU_MPI _LI BS)

uses these macros internally for logging messages.

Example

C/C++:

if _(pid == 0) {
TAU_TRACE_SENDVSQ curr Col , sender, ncols * sizeof (T));
MPI _Send(vctr2, ncols * sizeof(T), MPI_BYTE, sender,
currCol, MPI _COWM WORLD) ;
} else {
MPI _Recv(&ans, sizeof (T), MPI_BYTE, MPI _ANY_ SOURCE,
MPl _ANY_TAG, MPl _COVW WORLD, &stat);
MPI _Get _count (&stat, MPI_BYTE, &recvcount);
TAU_TRACE_RECVMSQ st at. MPl _TAG stat.MPl _SOURCE, recvcount);

Fortran :

call TAU TRACE RECVMSEtag, source, |ength)
cal I TAU TRACE_SENDVSG(t ag, destination, |ength)

221

TAU_TRACE_RECVMSG

See Also

TAU_TRACE_SENDMSG

222

Name
TAU_TRACE_SENDMSG -- Traces areceive operation

C/C++:

TAU TRACE _SENDVMSG(tag, source, |ength);
int tag;

i nt source;

int length;

Fortran:

TAU_TRACE_SENDVSG(t ag, source, |ength);
i nteger tag;

i nt eger source;

i nteger | ength;

Description

TAU_TRACE_SENDMSG traces an inter-process message communication when a tagged message is sent
to a destination process.

NOTE: When TAU is configured to use MPI (-mpiinc=<dir> -mpilib=<dir>), the
TAU_TRACE_SENDMSGand TAU_TRACE_SENDMSG macros are not required. The wrapper interposi-
tionlibrary in

$(TAU_MPI _LI BS)

uses these macros internally for logging messages.

Example

C/C++:

if _(pid == 0) {
TAU_TRACE_SENDVSQ curr Col , sender, ncols * sizeof (T));
MPI _Send(vctr2, ncols * sizeof(T), MPI_BYTE, sender,
currCol, MPI _COWM WORLD) ;
} else {
MPI _Recv(&ans, sizeof (T), MPI_BYTE, MPI _ANY_ SOURCE,
MPl _ANY_TAG, MPl _COVW WORLD, &stat);
MPI _Get _count (&stat, MPI_BYTE, &recvcount);
TAU_TRACE_RECVMSQ st at. MPl _TAG stat.MPl _SOURCE, recvcount);

Fortran :

call TAU TRACE RECVMSEtag, source, |ength)
cal I TAU TRACE_SENDVSG(t ag, destination, |ength)

223

TAU_TRACE_SENDMSG

See Also

TAU_TRACE_RECVMSG

224

TAU Mapping API

Introduction

TAU allows the user to map performance data of entities from one layer to another in multi-layered soft-
ware. Mapping is used in profiling (and tracing) both synchronous and asynchronous models of compu-
tation.

For mapping, the following macros are used. First locate and identify the higher-level statement using
the TAU _MAPPING macro. Then, associate a function identifier with it using the
TAU_MAPPING_OBJECT. Associate the high level statement to a Functionlinfo object that will be vis-
ible to lower level code, using TAU MAPPING LINK, and then profile entire blocks using
TAU_MAPPING_PROFILE. Independent sets of statements can be profiled using
TAU_MAPPING_PROFILE TIMER, TAU_MAPPING_PROFILE_START, and
TAU_MAPPING_PROFILE_STOP macros using the Functionlnfo object.

The TAU exanpl es/ mappi ng directory has two examples (embedded and externa) that illustrate
the use of this mapping API for generating object-oriented profiles.

225

Name
TAU_MAPPING -- Encapsul ates a C++ statement for profiling

C/C++:

TAU_MAPPI N& st at enent, key);
statenent statenent;
TauG oup_t key;

Description

TAU_MAPPI NGis used to encapsulate a C++ statement as atimer. A timer will be made, named by the
statment, and will profile the statement. The key given can be used with TAU_MAPPING_LINK to re-
trieve the timer.

Example

C/C++:

int main(int argc, char **argv) {
Array <2> A(N, N, B(N, N), C(N, N, DN, N);
/1 Original statenent:
/I A=B+ C+ D
[/l nstrunmented statenent:
AU MAPPING(A =B + C+ D, , TAU USER);

See Also

TAU_MAPPING_CREATE, TAU_MAPPING_LINK

226

Name
TAU_MAPPING_CREATE -- Creates amapping

C/C++:

TAU_MAPPI NG _CREATE(nanme, type, groupnane, key, tid);
char *nanme;

char *type;

char *groupnane;

unsi gned | ong key;

int tid;

Description

TAU_MAPPI NG _CREATE creates a mapping and associates it with the key that is specified. Later, this
key may be used to retrieve the Functioninfo object associated with this key for timing purposes. The
thread identifier is specified inthet i d parameter.

Example

CIC++:

class Myd ass {
public:

Myd ass() {
TAU_MAPPI NG LI NK(runtinmer, TAU USER);

}
~Wdass() {}

voi d Run(voi d)
TAU_MAPPI NG_PROFI LE(runtl rrer) /1 For one object

TAU_PROFI LE("Wd ass::Run()", " void (void)", TAU USER1);
cout <<"Sleeping for 2 secs..."<<endl;
sl eep(2);

private:

TAU_MAPPI NG OBJECT(runtimer) // EVBEDDED ASSOCI ATI ON
s

int main(int argc, char **argv) {
TAU_PROFI LE_I NI T(ar gc argv);

TAU_PROFI LE(" mau n()", "int (int, char **)", TAU DEFAULT);
Wd ass x, v,
TAU_MAPPI NG CREATE(MyC ass:: Run() for object a", " " , TAU USER,

"TAU_ USER" , 0);
M/ d ass a;

TAU _PROFI LE_SET _NODE(0) ;
cout <<"Inside main"<<endl;

a. Run();
x. Run();
y-Run();

227

TAU_MAPPING_CREATE

See Also

TAU_MAPPING_LINK, TAU_MAPPING_OBJECT, TAU_MAPPING_PROFILE

228

Name

TAU_MAPPING_LINK -- Creates a mapping link

C/C++:

TAU_MAPPI NG LI NK(Funcl dVvar, Key);
Functi onl nfo Funcl dVar;
unsi gned | ong Key;

Description

TAU_MAPPI NG _LI NK creates a link between the object defined in TAU_MAPPI NG_OBJECT (that
identifies a statement) and the actual higher-level statement that is mapped with TAU_MAPPI NG. The
Key argument represents a profile group to which the statement belongs, as specified in the
TAU_MAPPI NG macro argument. For the example of array statements, this link should be created in the
constructor of the class that represents the expression. TAU_MAPPI NG LI NK should be executed be-
fore any measurement takes place. It assigns the identifier of the statement to the object to which Fun-

cldVar refers. For example

Example

CIC++:

class Myd ass {

s

publ i c:
MWd ass() { }
~MWQass() { }

voi d Run(void)
TAU_MAPPI NG _OBJECT(runti nmer)
TAU_MAPPI NG LI NK(runtinmer, (unsigned long) this);
TAU _MAPPI NG PROFI LE(runtimer); // For one object
TAU PROFI LE("Myd ass::Run()", " void (void)", TAU USER1);

[* .00

int main(int argc, char **argv) {

TAU_PROFI LE_ I NI T(argc, argv);

TAU PROFI LE("main()", "int (int, char **)", TAU DEFAULT);
MW d ass x, vy, z;
My d ass a;

TAU_MAPPI NG _CREATE(" My ass:: Run() for object a", " " ,
(TauGroup_t) &a, "TAU USER', 0);

TAU_MAPPI NG _CREATE(" MyCl ass:: Run() for object x", " " ,
(TauGroup_t) &, "TAU USER', 0);

TAU_PROFI LE_SET_NODE(0) ;

cout <<"Ilnside main"<<endl;

a. Run();
x. Run();
y-Run();

229

TAU_MAPPING_LINK

See Also

TAU_MAPPING_CREATE, TAU_MAPPING_OBJECT, TAU_MAPPING_PROFILE

230

Name
TAU_MAPPING_OBJECT -- Declares a mapping object

C/C++:

TAU_MAPPI NG_OBJECT(Funcl dVar) ;
Functi onl nfo Funcl dVar;

Description

To create storage for an identifier associated with a higher level statement that is mapped using
TAU_MAPPI NG, we use the TAU_MAPPI NG_OBJECT macro. For example, in the TAU_MAPPI NG ex-
ample, the array expressions are created into objects of a class ExpressionKernel, and each statement is
an object that is an instance of this class. To embed the identity of the statement we store the mapping
object in adatafield in this class. Thisis shown below:

Example

CIC++:

t enpl at e<cl ass LHS, cl ass Op, cl ass RHS, cl ass Eval Tag>
cl ass Expressi onKernel : public Pooma::lterate_t ({
public:

t ypedef Expressi onKer nel <LHS, Op, RHS, Eval Tag> This_t;

/1

/1 Construct froman Expr.

/1 Build the kernel that will evaluate the expression on the
/1 given donain.

/1 Acquire locks on the data referred to by the expression.
/1

Expr essi onKer nel (const LHS&, const Op&, const RHS&,
Pooma: : Schedul er _t&);
virtual ~ExpressionKernel ();

/1 Do the | oop.
virtual void run();

private:

/1l The expression we wll eval uate.
LHS I hs_m

O op_m
RHS rhs_m
TAU_MAPPI NG_OBJECT(TauMapFl)

See Also

TAU_MAPPING_CREATE, TAU_MAPPING_LINK, TAU_MAPPING_PROFILE

231

Name
TAU_MAPPING_PROFILE -- Profiles ablock based on a mapping

C/C++:

TAU_MAPPI NG_PROFI LE(Funcl dVar) ;
Functi onl nfo *Funcl dVar ;

Description

The TAU_MAPPI NG_PRCFI LE macro measures the time and attributes it to the statement mapped in
TAU_MAPPI NG macro. It takes as its argument the identifier of the higher level statement that is stored
using TAU_MAPPI NG_OBJECT and linked to the statement using TAU_MAPPI NG LI NK macros.
TAU_MAPPI NG_PROFI LE measures the time spent in the entire block in which it is invoked. For ex-
ample, if the time spent in the run method of the class does work that must be associated with the high-
er-level array expression, then, we can instrument it as follows:

Example

CIC++:

/1 Eval uate the kernel
// Just tell an InlineEBvaluator to do it.

t enpl at e<cl ass LHS, cl ass Op, cl ass RHS, cl ass Eval Tag>

voi d

Expr essi onKer nel <LHS, Op, RHS, Eval Tag>: : run() {
TAU_MAPPI NG_PROFI LE(TauMapFl)

/1 Just eval uate the expression.

Ker nel Eval uat or <Eval Tag>() . eval ate(l hs_mop_mrhs_m;
/1 we could rel ease the I ocks here or in dtor
}
See Also

TAU_MAPPING_CREATE, TAU_MAPPING_LINK, TAU_MAPPING_OBJECT

232

Name

TAU_MAPPING_PROFILE_START -- Starts amapping timer

C/C++:

TAU_MAPPI NG PROFI LE_START(tiner, tid);
Profiler tiner;
int tid;

Description

Exam

TAU_MAPPI NG_PROFI LE_START starts the timer that is created using
TAU_MAPPI NG_PROFI LE_TI MER. This will measure the elapsed time in groups of statements, in-
stead of the entire block. A corresponding stop statement stops the timer as described next. The thread
identifier is specified in the tid parameter.

ple

C/C++:

tenpl at e<cl ass LHS, cl ass Op, cl ass RHS, cl ass Eval Tag>

voi d

Expr essi onKer nel <LHS, Op, RHS, Eval Tag>: : run() {
TAU_MAPPI NG PROFI LE_TI MER(ti mer, TauMapFl);
printf("ExpressionKernel::run() this = 4854\n", this);
/1 Just eval uate the expression.

TAU_MAPPI NG _PROFI LE_START(ti ner);

Ker nel Eval uat or <Eval Tag>() . eval uate(lhs_m op_m rhs_m;
TAU_MAPPI NG_PROFI LE_STOP() ;

/Il we could release the | ocks here instead of in the dtor.

See Also

TAU_MAPPING_PROFILE_TIMER, TAU_MAPPING_PROFILE_STOP

233

Name

TAU_MAPPING_PROFILE_STOP -- Stops a mapping timer

C/C++:

TAU_MAPPI NG PROFI LE_STOP(tiner, tid);
Profiler tiner;
int tid;

Description

Exam

TAU_MAPPI NG_PROFI LE_STOP stops the timer that is created using
TAU_MAPPI NG_PROFI LE_TI MER. This will measure the elapsed time in groups of statements, in-
stead of the entire block. A corresponding stop statement stops the timer as described next. The thread
identifier is specified in the tid parameter.

ple

C/C++:

tenpl at e<cl ass LHS, cl ass Op, cl ass RHS, cl ass Eval Tag>

voi d

Expr essi onKer nel <LHS, Op, RHS, Eval Tag>: : run() {
TAU_MAPPI NG PROFI LE_TI MER(ti mer, TauMapFl);
printf("ExpressionKernel::run() this = 4854\n", this);
/1 Just eval uate the expression.

TAU_MAPPI NG _PROFI LE_START(ti ner);

Ker nel Eval uat or <Eval Tag>() . eval uate(lhs_m op_m rhs_m;
TAU_MAPPI NG_PROFI LE_STOP() ;

/Il we could release the | ocks here instead of in the dtor.

See Also

TAU_MAPPING_PROFILE_TIMER, TAU_MAPPING_PROFILE_START

234

Name
TAU_MAPPING_PROFILE_TIMER -- Declares a mapping timer

C/C++:

TAU_MAPPI NG _PROFI LE_TI MER(ti nmer, Funcl dVar);
Profiler tiner;
Functi onl nfo *Funcl dVar ;

Description

TAU_MAPPI NG_PROFI LE_TI MER enables timing of individual statements, instead of complete
blocks. It will attribute the time to a higher-level statement. The second argument is the identifier of the
statement that is obtained after TAU_MAPPI NG_OBJECT and TAU_MAPPI NG_LI NK have executed.
The timer argument in this macro is any variable that is used subsequently to start and stop the timer.

Example

C/C++:

tenpl at e<cl ass LHS, cl ass Op, cl ass RHS, cl ass Eval Tag>

voi d

Expr essi onKer nel <LHS, Op, RHS, Eval Tag>: : run() {
TAU_MAPPI NG PROFI LE_TI MER(ti mer, TauMapFl);
printf("ExpressionKernel::run() this = 4854\n", this);
/1 Just eval uate the expression.

TAU_MAPPI NG _PROFI LE_START(ti ner);

Ker nel Eval uat or <Eval Tag>() . eval uate(lhs_m op_m rhs_m;
TAU_MAPPI NG_PROFI LE_STOP() ;

/Il we could release the | ocks here instead of in the dtor.

See Also

TAU_MAPPING_LINK, TAU_MAPPING_OBJECT, TAU_MAPPING_PROFILE_START,
TAU_MAPPING_PROFILE_STOP

235

Appendix A. Environment Variables

TableA.1. TAU Environment Variables

VARIABLE NAME DESCRIPTION

PAPI_EVENT Sets the hardware counter to use when TAU is
configured with -PAPI. See Section 4.4, “Using
Hardware Performance Counters’

PCL_EVENT Sets the hardware counter to use when TAU is
configured with -PCL. See Section 4.4, “Using
Hardware Performance Counters’

PROFILEDIR Selectively measure groups of routines and state-
ments. Use with -profile command line option. See
Chapter 4, Profiling

TAU_CALLPATH_DEPTH Sets the depth of the callpath profiling. Use with -
PROFILECALLPATH TAU configuration option.
See Section 1.1, “Installing TAU”

TAU_COMPENSATE_ITERATIONS Set the number of iterations TAU uses to estimate
the mesurment overhead. A larger number of itera-
tion will increases profiling precision (default
1000).

TAU_KEEP _TRACEFILES Retains the intermediate trace files. Use with -
TRACE TAU configuration option. See Sec-
tion 6.1, “Generating Event Traces’

TAU_MUSE _PACKAGE Sets the MAGNET/MUSE package name. Use
with the -muse TAU configuration option. See
Section 4.5, “Using Multiple Hardware Counters
for Measurement”

TAU_THROTTLE Enables the runtime throttling of events that are
lightweight. See Section 4.2, “ Selectivly Profiling
an Application”

TAU_THROTTLE_NUMCALLS Set the maximum number of callsthat will be pro-

filed for any function when TAU_THROTTLE is
enabled. See Section 4.2, “ Selectivly Profiling an
Application”

TAU_THROTTLE_PERCALL Set the minimum inclusive time (in milliseconds) a
fuction has to have to be instrumented when
TAU_THROTTLE is enabled. See Section 4.2,
“Selectivly Profiling an Application”

TAU_TRACEFILE Specifies the name of Vampir trace file. Use with -
TRACE TAU configuration option. See Sec-
tion 6.1, “Generating Event Traces’

TRACEDIR Specifies the directory where trace file are to be
stored. See Section 6.1, “ Generating Event Traces”

236

	TAU User's Guide
	Table of Contents
	Part Preface. TAU Tutorial
	TAU Tutorial
	1. Gather information
	2. Installing PDT
	3. Installing TAU
	4. Automatic instrumentation using TAU Compiler
	5. TAU throttle
	6. ParaProf

	Part I. Generating Performance Data
	Chapter 1. Installation
	1.1. Installing TAU
	1.1.1. Available configuration options
	1.1.2. tau_setup
	1.1.3. installtau script
	1.1.4. Examples:

	1.2. Platforms Supported
	1.3. Software Requirements

	Chapter 2. Compiling
	2.1. TAU Stub Makefile
	2.2. Enabling and Disabling the Instrumentation
	2.3. Using TAU with MPI
	2.4. Environment Variables
	2.5. Application Scenarios

	Chapter 3. Tau Compiler
	3.1. Introduction
	3.2. Installing TAU Compiler
	3.3. Instrumenting with TAU Compiler
	3.4. Using tau_compiler.sh
	3.5. TAU scripted compilation
	3.5.1. Usage

	Chapter 4. Profiling
	4.1. Running the application
	4.2. Selectivly Profiling an Application
	4.3. Running an application using DynInstAPI
	4.4. Using Hardware Performance Counters
	4.5. Using Multiple Hardware Counters for Measurement
	4.6. Running a Python application with TAU
	4.7. pprof
	4.8. Running a JAVA application with TAU

	Chapter 5. Eclipse Tau Java System
	5.1. Installation
	5.2. Instrumentation
	5.3. Uninstrumentation
	5.4. Running Java with TAU
	5.5. Options

	Chapter 6. Tracing
	6.1. Generating Event Traces
	6.2. TAU Trace Format Reader Library
	6.2.1. Tau Reader Usage
	6.2.1.1. SYNOPSIS
	6.2.1.2. DESCRIPTION

	6.2.2. Callback API
	6.2.2.1. int Ttf_DefClkPeriodT(userData, clkPeriod);
	6.2.2.2. int Ttf_EndTraceT(userData,nodeToken,threadToken);
	6.2.2.3. int Ttf_DefStateGroupT(userData, stateGroupToken, stateGroupName);
	6.2.2.4. int Ttf_DefStateT(userData, stateToken, stateName, stateGroupToken);
	6.2.2.5. int Ttf_DefUserEvent(userData, userEventToken, userEventName, monotonicallyIncreasing);
	6.2.2.6. int Ttf_EnterStateT(userData, time, nodeToken, threadToken, stateToken);
	6.2.2.7. int Ttf_LeaveStateT(userData, time, nodeToken, threadToken);
	6.2.2.8. int Ttf_SendMessageT(userData, time, sourceNodeToken, sourceThreadToken, destinationNodeToken, destinationThreadToken, messageSize, int messageTag);
	6.2.2.9. int Ttf_RecvMessageT(userData, time, sourceNodeToken, sourceThreadToken, destinationNodeToken, destinationThreadToken, messageSize, int messageTag);
	6.2.2.10. int Ttf_EventTrigger(userData, time, nodeToken, threadToken, userEventToken, userEventValue);

	6.2.3. TauReader API
	6.2.3.1. Ttf_FileHandleT TtfOpenFileForInput(name, edf);
	6.2.3.2. int Ttf_AbsSeek(handle, eventPosition);
	6.2.3.3. int Ttf_RelSeek(handle, plusMinusNumEvents);
	6.2.3.4. int Ttf_ReadNumEvents(fileHandle,callbacks, numberOfEvents);
	6.2.3.5. Ttf_FileHandleT Ttf_CloseFile(fileHandle);

	Chapter 7. Tools
	vtf2profile
	tau2vtf
	tau2elg
	tau2slog2
	tau2otf
	tau_merge
	tau_convert
	tau_reduce

	Part II. ParaProf
	Chapter 8. Introduction
	8.1. Using ParaProf from the command line
	8.2. Supported Formats
	8.3. Command line options

	Chapter 9. Profile Data Management
	9.1. ParaProf Manager Window
	9.2. Loading Profiles
	9.3. Database Interaction
	9.4. Creating Derived Metrics
	9.5. Main Data Window

	Chapter 10. 3-D Visualization
	10.1. Triangle Mesh Plot
	10.2. 3-D Bar Plot
	10.3. 3-D Scatter Plot

	Chapter 11. Thread Based Displays
	11.1. Thread Bar Graph
	11.2. Thread Statistics Text Window
	11.3. Thread Statistics Table
	11.4. Call Graph Window
	11.5. Thread Call Path Relations Window
	11.6. User Event Statistics Window
	11.7. User Event Thread Bar Chart

	Chapter 12. Function Based Displays
	12.1. Function Bar Graph
	12.2. Function Histogram

	Chapter 13. Phase Based Displays
	13.1. Using Phase Based Displays

	Chapter 14. Comparative Analysis
	14.1. Using Comparitive Analysis

	Chapter 15. Miscellaneous Displays
	15.1. User Event Bar Graph
	15.2. Ledgers
	15.2.1. Function Ledger
	15.2.2. Group Ledger
	15.2.3. User Event Ledger

	Chapter 16. Preferences
	16.1. Preferences Window
	16.2. Default Colors
	16.3. Color Map

	Part III. PerfDMF
	Chapter 17. Introduction
	17.1. Prerequisites
	17.2. Installation

	Chapter 18. Using PerfDMF
	18.1. perfdmf_createapp
	18.2. perfdmf_createapp
	18.3. perfdmf_loadtrial

	Part IV. PerfExplorer
	Chapter 19. Introduction
	Chapter 20. Installation and Configuration
	20.1. Available configuration options

	Chapter 21. Running PerfExplorer
	Chapter 22. Cluster Analysis
	22.1. Dimension Reduction
	22.2. Max Number of Clusters
	22.3. Performing Cluster Analysis

	Chapter 23. Charts
	23.1. Setting Parameters
	23.1.1. Group of Interest
	23.1.2. Metric of Interest
	23.1.3. Event of Interest
	23.1.4. Total Number of Timesteps

	23.2. Standard Chart Types
	23.2.1. Timesteps Per Second
	23.2.2. Relative Efficiency
	23.2.3. Relative Efficiency by Event
	23.2.4. Relative Efficiency for One Event
	23.2.5. Relative Speedup
	23.2.6. Relative Speedup by Event
	23.2.7. Relative Speedup for One Event
	23.2.8. Group % of Total Runtime
	23.2.9. Runtime Breakdown

	23.3. Phase Chart Types
	23.3.1. Relative Efficiency per Phase
	23.3.2. Relative Speedup per Phase
	23.3.3. Phase Fraction of Total Runtime

	Summary
	1. Software Availability
	2. Acknowledgments

	Part V. appendices
	TAU Instrumentation API
	TAU_PROFILE
	TAU_PROFILE_TIMER
	TAU_PROFILE_START
	TAU_PROFILE_STOP
	TAU_PROFILE_TIMER_DYNAMIC
	TAU_PROFILE_DECLARE_TIMER
	TAU_PROFILE_CREATE_TIMER
	TAU_GLOBAL_TIMER
	TAU_GLOBAL_TIMER_EXTERNAL
	TAU_GLOBAL_TIMER_START
	TAU_GLOBAL_TIMER_STOP
	TAU_PHASE
	TAU_PHASE_CREATE_DYNAMIC
	TAU_PHASE_CREATE_STATIC
	TAU_PHASE_START
	TAU_PHASE_STOP
	TAU_GLOBAL_PHASE
	TAU_GLOBAL_PHASE_EXTERNAL
	TAU_GLOBAL_PHASE_START
	TAU_GLOBAL_PHASE_STOP
	TAU_PROFILE_EXIT
	TAU_REGISTER_THREAD
	TAU_PROFILE_SET_NODE
	TAU_PROFILE_SET_CONTEXT
	TAU_REGISTER_FORK
	TAU_REGISTER_EVENT
	TAU_EVENT
	TAU_REGISTER_CONTEXT_EVENT
	TAU_CONTEXT_EVENT
	TAU_ENABLE_CONTEXT_EVENT
	TAU_DISABLE_CONTEXT_EVENT
	TAU_EVENT_SET_NAME
	TAU_EVENT_DISABLE_MAX
	TAU_EVENT_DISABLE_MEAN
	TAU_EVENT_DISABLE_MIN
	TAU_EVENT_DISABLE_STDDEV
	TAU_REPORT_STATISTICS
	TAU_REPORT_THREAD_STATISTICS
	TAU_ENABLE_INSTRUMENTATION
	TAU_DISABLE_INSTRUMENTATION
	TAU_ENABLE_GROUP
	TAU_DISABLE_GROUP
	TAU_PROFILE_TIMER_SET_GROUP
	TAU_PROFILE_TIMER_SET_GROUP_NAME
	TAU_PROFILE_TIMER_SET_NAME
	TAU_PROFILE_TIMER_SET_TYPE
	TAU_PROFILE_SET_GROUP_NAME
	TAU_INIT
	TAU_PROFILE_INIT
	TAU_GET_PROFILE_GROUP
	TAU_ENABLE_GROUP_NAME
	TAU_DISABLE_GROUP_NAME
	TAU_ENABLE_ALL_GROUPS
	TAU_DISABLE_ALL_GROUPS
	TAU_GET_EVENT_NAMES
	TAU_GET_EVENT_VALS
	TAU_GET_COUNTER_NAMES
	TAU_GET_FUNC_NAMES
	TAU_GET_FUNC_VALS
	TAU_ENABLE_TRACKING_MEMORY
	TAU_DISABLE_TRACKING_MEMORY
	TAU_TRACK_MEMORY
	TAU_TRACK_MEMORY_HERE
	TAU_ENABLE_TRACKING_MEMORY_HEADROOM
	TAU_DISABLE_TRACKING_MEMORY_HEADROOM
	TAU_TRACK_MEMORY_HEADROOM
	TAU_TRACK_MEMORY_HEADROOM_HERE
	TAU_SET_INTERRUPT_INTERVAL
	CT
	TAU_TYPE_STRING
	TAU_DB_DUMP
	TAU_DB_DUMP_INCR
	TAU_DB_DUMP_PREFIX
	TAU_DB_PURGE
	TAU_DUMP_FUNC_NAMES
	TAU_DUMP_FUNC_VALS
	TAU_DUMP_FUNC_VALS_INCR
	TAU_PROFILE_STMT
	TAU_PROFILE_CALLSTACK
	TAU_TRACE_RECVMSG
	TAU_TRACE_SENDMSG

	TAU Mapping API
	TAU_MAPPING
	TAU_MAPPING_CREATE
	TAU_MAPPING_LINK
	TAU_MAPPING_OBJECT
	TAU_MAPPING_PROFILE
	TAU_MAPPING_PROFILE_START
	TAU_MAPPING_PROFILE_STOP
	TAU_MAPPING_PROFILE_TIMER

	Appendix A. Environment Variables

