
TAU User’s Guide

TAU User’s Guide

version 2.9

Department of Computer and Information Science,
University of Oregon, OR
Advanced Computing Laboratory, LANL, NM
Research Centre Jülich, ZAM, Germany

http://www.acl.lanl.gov/tau

Copyright © 1997-2000

Department of Computer and Information Science, University of Oregon
Advanced Computing Laboratory, LANL, NM
Research Centre Jülich, ZAM, Germany

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
name of University of Oregon (UO) Research Centre Jülich, (ZAM) and Los
Alamos National Laboratory (LANL) not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. The University of Oregon, ZAM and LANL make no
representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

UO, ZAM AND LANL DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
UNIVERSITY OF OREGON, ZAM OR LANL BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 2000.

All rights reserved.

TAU Portable Profiling and Tracing Toolkit User’s Guide

TABLE OF CONTENTS

CHAPTER 1 Installation .1

Installing TAU - - - - - - - - - - - - - - - - - -2
Examples: - - - - - - - - - - - - - - - - - - - -7
Platforms Supported - - - - - - - - - - - - - - -8
Software Requirements- - - - - - - - - - - - -10

CHAPTER 2 Compiling. 11

TAU Stub Makefile- - - - - - - - - - - - - - -12
Enabling and Disabling the Instrumentation - - - 14
Using TAU with MPI- - - - - - - - - - - - - -14
Environment Variable - - - - - - - - - - - - -15
Application Scenarios - - - - - - - - - - - - -15

CHAPTER 3 Instrumentation. 19

Automatic Instrumentation of C++ sources - - - 20
C++ Measurement API- - - - - - - - - - - - -22
TAU Mapping API- - - - - - - - - - - - - - -33
C Measurement API - - - - - - - - - - - - - -38
Fortran90 Measurement API - - - - - - - - - - 39
Summary - - - - - - - - - - - - - - - - - - -46

CHAPTER 4 Profiling 47

Running the application - - - - - - - - - - - -48
Running an application using DynInstAPI- - - - 48
Using Hardware Performance Counters - - - - - 48
Running a JAVA application with TAU - - - - - 55
pprof -56
racy - -57

TABLE OF CONTENTS

TAU Portable Profiling and Tracing Toolkit User’s Guide

CHAPTER 5 Tracing. 66

Generating Event Traces - - - - - - - - - - - -67
Vampir: Visualizing TAU traces- - - - - - - - - 68

CHAPTER 6 Summary . 80

Software Availability - - - - - - - - - - - - - -81
Acknowledgements- - - - - - - - - - - - - - -81

CHAPTER 7 Appendix : Configuration Issues . . 83

Instructions for Installing TAU with POOMA: - - 84
Instructions for Installing TAU under Windows - 87

CHAPTER 8 References 91

URLs -91

TAU Portable Profiling and Tracing Toolkit User’s Guide 1

CHAPTER 1 Installation

TAU (Tuning and Analysis Utilities) is a portable profiling and tracing toolkit for
performance analysis of parallel programs written in Java, C++, C, and Fortran.
The model that TAU uses to profile parallel, multi-threaded programs maintains
performance data for each thread, context, and node in use by an application. The
profiling instrumentation needed to implement the model captures data for func-
tions, methods, basic blocks, and statement execution at these levels. All C++ lan-
guage features are supported in the TAU profiling instrumentation including
templates and namespaces, which is available through an API at the library or
application level. The API also provides selection of profiling groups for organiz-
ing and controlling instrumentation. The instrumentation can be inserted in the
source code using an automatic instrumentor tool based on the Program Database
Toolkit (PDT), dynamically using DyninstAPI, at runtime in the Java virtual
machine, or manually using the instrumentation API.

TAU’s profile visualization tool, Racy, provides graphical displays of all the perfor-
mance analysis results, in aggregate and single node/context/thread forms. The
user can quickly identify sources of performance bottlenecks in the application
using the graphical interface. In addition, TAU can generate event traces that can
be displayed with the Vampir trace visualization tool.

This chapter discusses installation of the TAU portable profiling package.

Installation

2 TAU Portable Profiling and Tracing Toolkit User’s Guide

Installing TAU

After uncompressing and untarring tau, the user needs to configure, compile and
install the package. This is done by invoking:

FIGURE 1. Ar chitecture of TAU

TAU Portable Profiling and Tracing Toolkit User’s Guide 3

Installing T AU

% ./configure
% make install

TAU is configured by running theconfigure script with appropriate options that
select the profiling and tracing components that are used to build the TAU library.
The following command-line options are available to configure:

-prefix=<directory>

Specifies the destination directory where the header, library and binary files are
copied. By default, these are copied to subdirectories <arch>/bin and <arch>/lib in
the TAU root directory.

-arch=<architecture>

Specifies the architecture. If the user does not specify this option, configure deter-
mines the architecture. For SGI, the user can specify either of sgi32, sgin32 or
sgi64 for 32, n32 or 64 bit compilation modes respectively. The files are installed in
the <architecture>/bin and <architecture>/lib directories.

-c++=<C++ compiler>

Specifies the name of the C++ compiler. Supported C++ compilers include KCC
(from KAI), CC (SGI, SUN, Cray), g++ (from GNU), FCC (from Fujitsu), and
pgCC (from PGI).

-cc=<C Compiler>

Specifies the name of the C compiler. Supported C compilers include cc, gcc (from
GNU), pgcc (from PGI), fcc (from Fujitsu) and KCC (from KAI).

-pthr ead

Specifies pthread as the thread package to be used. In the default mode, no thread
package is used.

-tulipthr ead=<directory>

Specifies Tulip threads (HPC++) as the threads package to be used as well as the
location of the root directory where the package is installed. [TULIP-URL]

Installation

4 TAU Portable Profiling and Tracing Toolkit User’s Guide

-tulipthr ead=<directory> -smarts

Specifies SMARTS (Shared Memory Asynchronous Runtime System) as the
threads package to be used. <directory> gives the location of the SMARTS root
directory. [SMARTS-URL]

-openmp

Specifies OpenMP as the threads package to be used.[OPENMP-URL]

-pdt=<dir ectory>

Specifies the location of the installed PDT (Program Database Toolkit) root direc-
tory. PDT is used to build tau_instrumentor, a C++ instrumentation program that
automatically inserts TAU annotations in the source code. [PDT-URL]

-pcl=<directory>

Specifies the location of the installed PCL (Performance Counter Library) root
directory. PCL provides a common interface to access hardware performance
counters on modern microprocessors. The library supports Sun UltraSparc I/II,
PowerPC 604e under AIX, MIPS R10000/12000 under IRIX, Compaq Alpha
21164, 21264 under Tru64Unix and Cray Unicos (T3E) and the Intel Pentium fam-
ily of microprocessors under Linux. This option specifies the use of hardware per-
formance counters for profiling (instead of time). See the section “Using Hardware
Performance Counters” in Chapter 4 for details regarding its usage. [PCL-URL]

-papi=<directory>

Specifies the location of the installed PAPI (Performance Data Standard and API)
root directory. PCL provides a common interface to access hardware performance
counters and timers on modern microprocessors. Most modern CPUs provide on-
chip hardware performance counters that can record several events such as the
number of instructions issued, floating point operations performed, the number of
primary and secondary data and instruction cache misses, etc. This option (by
default) specifies the use of hardware performance counters for profiling (instead
of time). When used in conjunction with -PAPIWALLCLOCK or -PAPIVIRTUAL,
it specifies the use of wallclock or virtual process timers respectively. See the sec-
tion “Using Hardware Performance Counters” in Chapter 4 for details regarding its
usage. [PAPI-URL]

TAU Portable Profiling and Tracing Toolkit User’s Guide 5

Installing T AU

-PAPIWALLCLOCK

When used in conjunctionwith the -papi=<dir> option, this option allows TAU to
use high resolution, low overhead CPU timers for wallclock time based measure-
ments. This can reduce the TAU overhead for accessing wallclock time for profile
and trace measurements. See NOTE below.

-PAPIVIR TUAL

When used in conjunctionwith the -papi=<dir> option, this option allows TAU to
use the process virtual time (time spent in the “user” mode) for profile measure-
ments, instead of the default wall-clock time. (See NOTE below.)

-CPUTIME

Specifies the use of user+ system time (collectively CPU time) for profile measure-
ments, instead of the default wall-clock time. This may be used with multi-threaded
programs only under the LINUX operating system which provides bound threads.
On other platforms, this option may be used for profiling single-threaded programs
only.

NOTE: The default measurement option in TAU is to use the wallclock time, which
is the total time a program takes to execute, inclding the time when it is waiting for
resources. It is the time measured from a real-time clock. The process virtual time
(-PAPIVIRTUAL) is the time spent when the process is actually running. It does
not include the time spent when the process is swapped out waiting for CPU or
other resources and it does not include the time spent on behalf of the operating
system (for executing a system call, for instance). It is the time spent in the “user”
mode. The CPUTIME on the other hand, includes both the time the process is run-
ning (process virtual time) and the time the system is providing services for it (such
as executing a system call). It is the sum of the process virtual (user) time and the
system time (Seeman getrusage()).

-jdk=<dir ectory>

Specifies the location of the installed Java 2 Development Kit (JDK1.2+) root
directory. TAU can profile or trace Java applications without any modifications to
the source code, byte-code or the Java virtual machine.

Installation

6 TAU Portable Profiling and Tracing Toolkit User’s Guide

-dyninst=<dir>

Specifies the directory where DynInst dynamic instrumentation package is
installed. Using DynInst, a user can invoke tau_run to instrument an executable
program at runtime. This represents work in progress [DYNINST-URL][PARA-
DYN-URL].

-mpiinc=<dir>

Specifies the directory where mpi header files reside (such as mpi.h and mpif.h).
This option also generates the TAU MPI wrapper library that instruments MPI rou-
tines using the MPI Profiling Interface. See the examples/NPB2.3/config/make.def
file for its usage with Fortran and MPI programs. [MPI-URL]

-mpilib=<dir>

Specifies the directory where mpi library files reside. This option should be used in
conjunction with the -mpiinc=<dir> option to generate the TAU MPI wrapper
library.

-PROFILE

This is the default option; it specifies summary profile files to be generated at the
end of execution. Profiling generates aggregate statistics (such as the total time
spent in routines and statements), and can be used in conjunction with the profile
browserracy to analyse the performance. Wallclock time is used for profiling pro-
gram entities.

-PROFILESTATS

Specifies the calculation of additional statistics, such as the standard deviation of
the exclusive time/counts spent in each profiled block. This option is an extension
of -PROFILE, the default profiling option.

-PROFILECOUNTERS

Specifies use of hardware performance counters for profiling under IRIX using the
SGI R10000 perfex counter access interface. The use of this option is deprecated in
favor of the -pcl=<dir> and -papi=<dir> options described above.

TAU Portable Profiling and Tracing Toolkit User’s Guide 7

Examples:

-SGITIMERS

Specifies use of the free running nano-second resolution on-chip timer on the
R10000+. This timer has a lower overhead than the default timer on SGI, and is rec-
ommended for SGIs (similar to the -papi=<dir> -PAPIWALLCLOCK options).

-TRACE

Generates event-trace logs, rather than summary profiles. Traces show when and
where an event occurred, in terms of the location in the source code and the process
that executed it. Traces can be merged and converted usingtau_merge and
tau_convert utilities respectively, and visualized using Vampir, a commercial trace
visualization tool. [VAMPIR-URL]

-noex

Specifies that no exceptions be used while compiling the library. This is relevant for
C++.

-useropt=<options-list>

Specifies additional user options such as -g or -I. For multiple options, the options
list should be enclosed in a single quote. For example

%./configure -useropt=’-g -I/usr/local/stl’

-help

Lists all the available configure options and quits.

Examples:

(See Appendix for POOMA & W indows installation instructions)

a) Install TAU using KCC on SGI, with trace and profile options:

%./configure -c++=KCC -SGITIMERS -arch=sgi64 -TRACE
-PROFILE -prefix=/usr/local/packages/tau

Installation

8 TAU Portable Profiling and Tracing Toolkit User’s Guide

b) Installing TAU with Java

% ./configure -c++=g++ -jdk=/usr/local/packages/jdk1.2
% make install
% set path=($path <taudir>/<tauarch>/bin)
% setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:<taudir>/
<tauarch>/lib
% cd examples/java/pi
% java -XrunTAU Pi 200000
% racy

c) Use TAU with KCC, and cc on 64 bit SGI systems and use MPI wrapper libraries
with SGI’s low cost timers and use PDT for automated source code instrumenta-
tion. Enable both profiling and tracing.

% ./configure -c++=KCC -cc=cc -arch=sgi64 -mpiinc=/
local/apps/mpich/include -mpilib=/local/apps/mpich/
lib/IRIX64/ch_p4 -SGITIMERS -pdt=/local/apps/pdt

d) Use OpenMP+MPI using KAI’s Guide compiler suite and use PAPI for access-
ing hardware performance counters for profile based measurements.

% ./configure -c++=guidec++ -cc=guidec -papi=/usr/
local/packages/papi -openmp -mpiinc=/usr/pack-
ages/mpich/include -mpilib=/usr/packages/mpich/lib

e) Use CPUTIME measurements for a multi-threaded application using pthreads
under LINUX.

% configure -pthread -CPUTIME

NOTE: Also see Section “Application Scenarios” in Chapter 2 (Compiling) for an
explanation of simple examples that are included with the TAU distribution.

Platforms Supported

TAU has been tested on the following platforms:

TAU Portable Profiling and Tracing Toolkit User’s Guide 9

Platf orms Suppor ted

1. SGI

On IRIX 6.x based systems, including Indy, Power Challenge, Onyx, Onyx2 and
Origin 200 and 2000 Series, CC 7.2+, KAI [KAI-URL] KCC and g++/egcs [GNU-
URL] compilers are supported.

2. LINUX PCs

On Linux based Intel x86 PC clusters, KAI KCC, g++, egcs (GNU), pgCC (PGI)
[PGI-URL], FCC (Fujitsu) [FUJITSU-URL] compilers have been tested. Versions
of g++ prior to 2.8.1 need an additional -useropt=-fguiding-decls to be added to the
list of configure options. Among the GNU versions, we recommend using gcc-
2.95+ g++.

3. Sun Solaris

Sun Workshop Pro 5.0 compilers (CC, F90), KAI KCC, KAP/Pro and GNU g++
work with TAU.

4. IBM AIX

On IBM SP2 and AIX systems, KAI KCC, KAP/Pro, IBM xlC, xlc, xlf90 and g++
compilers work with TAU.

5. HP HP-UX

On HP PA-RISC systems, g++ can be used.

6. Compaq (DEC Alpha workstations)

On Compaq (DEC) Alpha workstations running Digital Unix, g++ may be used
with TAU.

7. LINUX Compaq (DEC Alpha 21164) clusters

On Linux based Alpha workstation clusters, g++ may be used with TAU.

8. Cray T3E

On Cray, KAI KCC and Cray CC compilers have been tested with TAU.

9. Microsoft Windows

On Windows, Microsoft Visual C++ 5.1 and JDK 1.2+ compilers have been tested
with TAU.

Installation

10 TAU Portable Profiling and Tracing Toolkit User’s Guide

10. IA-64 Linux.

On IA-64 Linux platform, g++ compiler has been tested with TAU.

TAU has been tested with JDK 1.2 on Solaris, Windows and Linux. On Solaris, we
needed to disable support for the JIT compiler by specifying -Djava.compiler= on
the java commandline along with -XrunTAU. On Linux, it worked with or without
the JIT compiler.

TAU may work with minor modifications on other platforms.

Software Requirements

1. Tcl/Tk

TAU’s GUI racy requires Tcl/Tk 7.4/4.0 or better (8.x is recommended). Tcl/Tk is
available from Scriptics [TCLTK-URL] as freeware.

2. Xauth

The display must be secure to run racy, the profile browser. Xauthority -- not
xhost+ should be used for secure (authentication based) interaction between the
X client and the servers. Refer to the TAU FAQ [TAU-SECURITY-URL] for
instructions. Contact your system administrator if your X-server is not configured
for generating Xauth cookies.

TAU Portable Profiling and Tracing Toolkit User’s Guide 11

Software Requirements

CHAPTER 2 Compiling

Source-based instrumentation with TAU measurement code requires compilation.
AT compile time, the TAU system provides several options and configuration alter-
natives. This chapter explains compilation options to enable profiling or tracing.

Compiling

12 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU Stub Makefile

TAU configuration generates a Makefile stub as well as a library. The Makefile
name has the formMakefile.tau-<options> , the library name the form
libtau-<options>.a . For example,

%./configure -TRACE -c++=KCC -arch=sgin32

generates

Makefile.tau-trace-kcc libtau-trace-kcc.a

in tau-2.x/sgin32/lib

Using different configuration options, several modular libraries can be built and
co-exist even in the same architecture. To choose a particular version of the library,
the corresponding Makefile stub must be included in the application Makefile. The
stub Makefile defines the following variables:

• TAU_CXX for the C++ compiler

• TAU_CC for the C compiler

• TAU_INCLUDE for the include directories

• TAU_DEFS for the defines on the command-line

• TAU_LIBS for the TAU library

• TAU_MPI_INCLUDE for the directory where MPI header files reside

• TAU_MPI_LIBS for the TAU MPI library with the mpi libraries for C/C++

• TAU_MPI_FLIBS for the TAU MPI library with mpi libraries for Fortran

• TAU_FORTRANLIBS for additional fortran libraries for linking with C++

• TAU_DISABLE for the default TAU stub library for Fortran, and

• USER_OPT for any user defined options specified during configuration

 A typical makefile that uses these Makefile variables is shown below:

TAU Portable Profiling and Tracing Toolkit User’s Guide 13

TAU Stub Makefile

TAUROOTDIR = /usr/local/packages/tau-2.x
include $(TAUROOTDIR)/sgin32/lib/Makefile.tau-trace-kcc
CXX = $(TAU_CXX)
CC = $(TAU_CC)
CFLAGS = $(TAU_INCLUDE) $(TAU_DEFS)
LIBS = $(TAU_LIBS) -lmpi
LDFLAGS = $(USER_OPT)
MAKEFILE = Makefile
PRINT = pr
RM = /bin/rm -f
TARGET = matrix
EXTRAOBJS =
##
all: $(TARGET)
install: $(TARGET)
$(TARGET): $(TARGET).o
 $(CXX) $(LDFLAGS) $(TARGET).o -o $@ $(LIBS)
$(TARGET).o : $(TARGET).cpp
 $(CXX) $(CFLAGS) -c $(TARGET).cpp
clean:
 $(RM) $(TARGET).o $(TARGET)
##

To use a different configuration, simply change the included makefile to some
other. For example, for

% ./configure -pthread -arch=sgi64

substitute

include $(TAUROOTDIR)/sgi64/lib/Makefile.tau-pthread

in the makefile above. Also,

$(TAUROOTDIR)/include/Makefile

points to the most recently configured version of the library.

Compiling

14 TAU Portable Profiling and Tracing Toolkit User’s Guide

Enabling and Disabling the Instrumentation

Using the TAU stub makefile variableTAU_DEFS while compiling C++ and C
source code enables profiling (or tracing) instrumentation and generates the perfor-
mance data files. To disable the instrumentation,TAU_DEFS should not be used.
In its absence, all the TAU profiling macros defined in the source code for instru-
mentation purposes are automatically defined to null (the default behavior). Thus,
the instrumentation can be retained in the source code, since it has no overhead
when it is disabled.

For Fortran however, the instrumentation can be disabled in the program by using
the TAU stub makefile variableTAU_DISABLE on the link command line. This
points to a library that contains empty TAU instrumentation routines.

Using TAU with MPI

TAU MPI wrapper library (libTauMpi.a) uses the MPI Profiling Interface for instru-
mentation. To use the library,

1. Configure TAU with -mpiinc=<dir> and -mpilib=<dir> command-line options
that specify the location of MPI header files and the directory where MPI librar-
ies reside. For example:

% ./configure -mpiinc=/usr/local/packages/mpich/
include -mpilib=/usr/local/packages/mpich/
lib/LINUX/ch_p4 -c++=KCC -cc=cc

2. Include the TAU stub Makefile generated in the application makefile.
TAUROOTDIR=/usr/local/packages/tau2
include $(TAUROOTDIR)/i386_linux/Makefile.tau-kcc

3. Use the Makefile variables$(TAU_MPI_LIBS) for C/C++ applications and
$(TAU_MPI_FLIBS) for Fortran 90 applications, to specify the TAU MPI
libraries before the$(TAU_LIBS) in the link command line. Also, use
$(TAU_MPI_INCLUDE) in the compiler command line to specifies the MPI
include directory to be used. For example:

CXX = $(TAU_CXX)
CFLAGS = $(TAU_INCLUDE) $(TAU_DEFS) $(TAU_MPI_INCLUDE)
LIBS = $(TAU_MPI_LIBS) $(TAU_LIBS)

4. Compile and run the MPI application as usual to generate the performance data.

TAU Portable Profiling and Tracing Toolkit User’s Guide 15

Envir onment V ariab les

Environment Variables

When the program has been compiled, it can be executed as it normally would be
(for example, using mpirun for an MPI task). TAU generates profile data files or
trace files in the current working directory. One file for each context and thread is
generated. To better manage different experiments, set the environment variables

• PROFILEDIR to name the directory that should contain the profile data files
and

• TRACEDIR the directory where event traces should be stored.

• LD_LIBRARY_PATH should include the <tauroot>/<tauarch>/lib directory if
TAU is used with JAVA 2 (using the -jdk=<dir> configuration option) or dynin-
stAPI (using the -dyninst=<dir> configuration option).

For example:

% make
% setenv TRACEDIR /users/foo/tracedata/experiment1
% mpirun -np 4 matrix

NOTE: TAU also uses the environment variablePCL_EVENT and
PAPI_EVENT to specify the hardware performance counter to be used when -
pcl=<dir> or -papi=<dir> configuration options are used, respectively. See section
“Using Harware Performance Counters” in Chapter 4 for further details.

Application Scenarios

TAU’s examples directory contains programs that illustrate the use of TAU
instrumentation and measurement options.

instrument - This contains a simple C++ example that shows how TAU’s API
can be used for manually instrumenting a C++ program. It high-
lights instrumentation for templates and user defined events.

thr eads - A simple multi-threaded program that shows how the main func-
tion of a thread is instrumented. Performance data is generated for
each thread of execution.

Compiling

16 TAU Portable Profiling and Tracing Toolkit User’s Guide

cthreads - Same as threads above, but for a C program. An instrumented C
program may be compiled with a C compiler, but needs to be
linked with a C++ linker.

pi - An MPI program that calculates the value of pi and e. It high-
lights the use of TAU’s MPI wrapper library. TAU needs to be con-
figured with -mpiinc=<dir> and -mpilib=<dir> to use this.

papi - A matrix multiply example that shows how to use TAU statement
level timers for comparing the performance of two algorithms for
matrix multiplication. When used with PAPI or PCL, this can
highlight the cache behaviors of these algorithms. TAU should be
configured with -papi=<dir> or -pcl=<dir> and the user should set
PAPI_EVENT or PCL_EVENT respective environment variables,
to use this.

papithr eads - Same as papi, except uses threads to highlight how hardware per-
formance counters may be used in a multi-threaded application.
When it is used with PAPI, TAU should be configured with -
papi=<dir> -pthread

autoinstrument - Shows the use of Program Database Toolkit (PDT) for auto-
mating the insertion of TAU macros in the source code. It requires
configuring TAU with the -pdt=<dir> option. The Makefile is
modified to illustrate the use of a source to source translator
(tau_instrumentor).

fortran & f90 - Show how to instrument a simple Fortran 90 (F90) program. A
C++ linker needs to be used when linking the fortran application.

NPB2.3 - The NAS Parallel Benchmark 2.3 [NPB-URL]. It shows how to
use TAU’s MPI wrapper with a manually instrumented Fortran
program. LU and SP are the two benchmarks. LU is instrumented
completely, while only parts of the SP program are instrumented
to contrast the coverage of routines. In both cases MPI level instru-
mentation is complete. TAU needs to be configured with -mpi-
inc=<dir> and -mpilib=<dir> to use this.

dyninst - An example that shows the use of DyninstAPI [DYNINST-URL]
to insert TAU instrumentation. Using Dyninst, no modifications
are needed and tau_run, a runtime instrumentor, inserts TAU calls

TAU Portable Profiling and Tracing Toolkit User’s Guide 17

Application Scenarios

at routine transitions in the program. [This represents work in
progress].

dyninstthr eads - The above example with threads.

java - Shows a java program for calculating the value of pi. It illustrates
the use of the TAU JVMPI layer for instrumenting a Java program
without any modifications to its source code, byte-code or the
JVM. It requires a Java 2 compliant JVM and TAU needs to be
configured with the -jdk=<dir> option to use this.

openmp - Shows how to manually instrument an OpenMP program using
the TAU API. There are subdirectories for C, C++ and F90 to show
 the differences in instrumentation and Makefiles. TAU needs to
be configured with the -openmp option to use this.

openmpi - Illustrates TAU’s support for hybrid exection models in the form
of MPI for message passing and OpenMP threads. TAU needs to
be configured with -mpiinc=<dir> -mpilib=<dir> -openmp
options to use this.

fork - Illustrates how to register a forked process with TAU. TAU pro-
vides two options: TAU_INCLUDE_PARENT_DATA and
TAU_EXCLUDE_PARENT_DATA which allows the child process
to inherit or clear the performance data when the fork takes place.

mapping - Illustrates two examples in the embedded and external subdirecto-
ries. These correspond to profiling at the object level, where the
time spent in a method is displayed for a specific object. There are
two ways to achieve this using an embedded association, that
requires an extension of the class definition with a TAU pointer and
a second scheme of external hash-table lookup that relies on look-
ing at the object address at each method invocation. Both these
examples illustrate the use of the TAU Mapping API.

Compiling

18 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU Portable Profiling and Tracing Toolkit User’s Guide 19

Application Scenarios

CHAPTER 3 Instrumentation

For TAU instrumentation, macros must be added to the source code to identify
routine transitions. It can be done automatically using the C++ instrumentor -
tau_instrumentor, based on the Program Database Toolkit, manually using the
instrumentation API (Application Programmers Interface) or using thetau_run, a
runtime instrumentor, based on the DynInstAPI dynamic instrumentation package.

Instrumentation

20 TAU Portable Profiling and Tracing Toolkit User’s Guide

Automatic Instrumentation of C++ sources

tau_instrumentor inserts TAU instrumention macros in C++ source code using PDT
[PDT-URL].

1. Install pdtoolkit. Refer to the README file in the PDT directory.
 % ./configure -arch=IRIX64 -KCC

2. Install TAU using the -pdt configuration option.
 % ./configure -pdt=/usr/local/packages/pdtoolkit-1.0

-c++=KCC -arch=sgi64 -SGITIMERS
 % make install

3. Modify the makefile to invoke cxxparse from PDT which generates a program
database file (.pdb) that contains program entities (such as routine locations)
and tau_instrumentor that uses the .pdb file and the C++ source code to generate
an instrumented version of the source code. See
examples/autoinstrument/Makefile . For example, the original
makefile

CXX = CC
CFLAGS =
LIBS = -lm
TARGET = klargest
##
Original Rules
##
all: $(TARGET)
$(TARGET): $(TARGET).o
 $(CXX) $(LDFLAGS) $(TARGET).o -o $@ $(LIBS)
$(TARGET).o : $(TARGET).cpp
 $(CXX) $(CFLAGS) -c $(TARGET).cpp
clean:
 $(RM) $(TARGET).o $(TARGET)
##

is modified as follows. Some changes are shown in bold font.

TAUROOTDIR = /usr/local/packages/tau2/
include $(TAUROOTDIR)/sgi64/Makefile.tau
CXX = $(TAU_CXX)
CFLAGS = $(TAU_INCLUDES) $(TAU_DEFS)
LIBS = -lm $(TAU_LIBS)

TAU Portable Profiling and Tracing Toolkit User’s Guide 21

Automatic Instrumentation of C++ sour ces

PDTPARSE =$(PDTDIR)/$(CONFIG_ARCH)/bin/cxxparse
TAUINSTR =$(TAUDIR)/$(CONFIG_ARCH)/bin/tau_instrumentor
##
Modified Rules
##

all: $(TARGET) $(PDTPARSE) $(TAUINSTR)

$(TARGET): $(TARGET).o
 $(CXX) $(LDFLAGS) $(TARGET).o -o $@ $(LIBS)

Use the instrumented source code to generate the
object code
$(TARGET).o : $(TARGET).inst.cpp
 $(CXX) -c $(CFLAGS) $(TARGET).inst.cpp -o $(TAR-
GET).o

Generate the instrumented source from the original
source and the pdb file
$(TARGET).inst.cpp : $(TARGET).pdb $(TARGET).cpp
$(TAUINSTR)

 $(TAUINSTR) $(TARGET).pdb $(TARGET).cpp -o $(TAR-
GET).inst.cpp

Parse the source file to generate the pdb file
$(TARGET).pdb : $(PDTPARSE) $(TARGET).cpp
 $(PDTPARSE) $(TARGET).cpp $(CFLAGS)

clean:
 $(RM) $(TARGET).o $(TARGET).inst.cpp $(TARGET)
$(TARGET).pdb
##
$(PDTPARSE):
 @echo “**”
 @echo “Download and Install Program Database Toolkit “
 @echo “ERROR: Cannot find $(PDTPARSE)”
 @echo “*************************************”
$(TAUINSTR):
 @echo “*************************************”
 @echo “Configure TAU with -pdt=<dir> option to use”
 @echo “C++ instrumentation with PDT”

Instrumentation

22 TAU Portable Profiling and Tracing Toolkit User’s Guide

 @echo “ERROR: Cannot find $(TAUINSTR)”
 @echo “*************************************”

4. Compile and execute the application.

The user may also opt to manually insert TAU macros in the source code using the
C++ instrumentation API. The following section describes this API in detail.

C++ Measurement API

The API is a set of macros that can be inserted in the C++ source code. An exten-
sion of the same API is available to instrument C and Fortran sources. This is dis-
cussed later.

At the beginning of each instrumented source file, include the following header

#include <Profile/Profiler.h>

TAU_PROFILE(function_name, type, group);

Arguments:
char *function_name or string& function_name
char *type_name or string& type
TauGroup_t group

With TAU_PROFILE, the functionfunction_name is profiled.
TAU_PROFILE identifies the function uniquely by the combination of its name
and type parameters. Each function is also associated with the group specified. This
information can selectively enable or disable instrumentation in a set of profile
groups. A function that belongs to theTAU_DEFAULT group is always profiled.
Other user defined groups areTAU_USER, TAU_USER1, TAU_USER2,
TAU_USER3, TAU_USER4. The top level function in any thread must be profiled
using the TAU_DEFAULT group. For details on using selective instrumentation,
please refer to the section “Running the application” in Chapter 4.

Example:

TAU Portable Profiling and Tracing Toolkit User’s Guide 23

C++ Measurement API

int main(int argc, char **argv)
{
TAU_PROFILE(“main()”,“int (int, char **)”,TAU_DEFAULT);

string& CT(v ariable);

Arguments:
<type> variable

TheCT macro returns the runtime type information string of a variable. This is use-
ful in constructing the type parameter of theTAU_PROFILE macro. For templates,
the type information can be constructed using the type of the return and the type of
each of the arguments (parameters) of the template. The example in the following
macro will clarify this.

TAU_TYPE_STRING(variable, type_string);

Arguments:
string & variable;
string & type_string;

This macro assigns the string constructed in type_string to the variable. The+ oper-
ator and theCT macro can be used to construct the type string of an object. This is
useful in identifying templates uniquely, as shown below.

Example:

template<class PLayout>
ostream& operator<<(ostream& out, const Particle-
Base<PLayout>& P) {
 TAU_TYPE_STRING(taustr, “ostream (ostream, “ + CT(P) +

“)”);
 TAU_PROFILE(“operator<<()”, taustr, TAU_PARTICLE |

TAU_IO);
...

Instrumentation

24 TAU Portable Profiling and Tracing Toolkit User’s Guide

}

When PLayout is instantiated with “UniformCartesian<3U, double> ”,
this generates the unique template name :

“operator<<() ostream const ParticleBase<UniformCarte-
sian<3U, double> >)”

The following example illustrates the usage of theCT macro to extract the name of
the class associated with the given object usingCT(*this);

template<class PLayout>
unsigned ParticleBase<PLayout>::GetMessage(Message&

msg, int node) {
 TAU_TYPE_STRING(taustr, CT(*this) + “ unsigned (Mes-

sage, int)”);
 TAU_PROFILE(“ParticleBase::GetMessage()”, taustr,

TAU_PARTICLE);
...
}

When PLayout is instantiated with “UniformCartesian<3U, double> ”,
this generates the unique template name:

“ParticleBase::GetMessage() ParticleBase<UniformCarte-
sian<3U, double> > unsigned (Message, int)”

TAU_PROFILE_TIMER(timer , name, type, group);

Arguments:
Profiler timer;
char *name or string& name;
char *type or string& type;
TauGroup_t group;

With TAU_PROFILE_TIMER, a group of one or more statements is profiled. This
macro has a timer variable as its first argument, and then strings for name and type,
as described earlier. It associates the timer to the profile group specified in the last
parameter.

TAU Portable Profiling and Tracing Toolkit User’s Guide 25

C++ Measurement API

Example:
template< class T, unsigned Dim >
void BareField<T,Dim>::fillGuardCells(bool reallyFill)
{
 // profiling macros
 TAU_TYPE_STRING(taustr, CT(*this) + “ void (bool)”);
 TAU_PROFILE(“BareField::fillGuardCells()”, taustr,

TAU_FIELD);

 TAU_PROFILE_TIMER(sendtimer, “fillGuardCells-send”,
 taustr, TAU_FIELD);
 TAU_PROFILE_TIMER(localstimer, “fillGuardCells-

locals”, taustr, TAU_FIELD);

TAU_PROFILE_START(timer);

Arguments:
Profiler timer;

The macroTAU_PROFILE_START starts the timer associated with the set of
statements that are to be profiled.

TAU_PROFILE_STOP(timer);

Arguments:
Profiler timer;

The macroTAU_PROFILE_STOP stops the timer.

It is important to note that timers can be nested, but not overlapping. TAU detects
programming errors that lead to such overlaps at runtime, and prints a warning mes-
sage.

Instrumentation

26 TAU Portable Profiling and Tracing Toolkit User’s Guide

Example:

template< class T, unsigned Dim >
void BareField<T,Dim>::fillGuardCells(bool reallyFill)
{
 // profiling macros
 TAU_TYPE_STRING(taustr, CT(*this) + “ void (bool)”);
 TAU_PROFILE(“BareField::fillGuardCells()”, taustr,

TAU_FIELD);

 TAU_PROFILE_TIMER(sendtimer, “fillGuardCells-send”,
 taustr, TAU_FIELD);
 TAU_PROFILE_TIMER(localstimer, “fillGuardCells-

locals”, taustr, TAU_FIELD);
// ...

TAU_PROFILE_START(sendtimer);
 // set up messages to be sent
 Message** mess = new Message*[nprocs];
 int iproc;
 for (iproc=0; iproc<nprocs; ++iproc) {
 mess[iproc] = NULL;
 recvmsg[iproc] = false; }//... other code

TAU_PROFILE_STOP(sendtimer);
 ...
}

TAU_PROFILE_STMT(statement);

Arguments:
statement;

TAU_PROFILE_STMT declares a variable that is used only during profiling or for
execution of a statement that takes place only when the instrumentation is active.
When instrumentation is inactive (i.e., when profiling and tracing are turned off as
described in Chapter 2), all macros are defined as null.

Example:

TAU Portable Profiling and Tracing Toolkit User’s Guide 27

C++ Measurement API

TAU_PROFILE_STMT(T obj;); // T is a template parameter)
TAU_TYPE_STRING(str, “void () ” + CT(obj));

 TAU_PROFILE_INIT(ar gc, argv);

Arguments:
int argc;
char **argv;

TAU_PROFILE_INIT parses the command-line arguments for the names of pro-
file groups that are to be selectively enabled for instrumentation. By default, if this
macro is not used, functions belonging to all profile groups are enabled.

Example:

int main(int argc, char **argv){
 TAU_PROFILE(“main()”, “int (int, char **)”,

TAU_DEFAULT);
TAU_PROFILE_INIT(argc, argv);

...
}

TAU_PROFILE_SET_NODE(myNode);

Arguments:
int myNode;

The TAU_PROFILE_SET_NODE macro sets the node identifier of the executing
task for profiling and tracing. Tasks are identified using node, context and thread
ids. The profile data files generated will accordingly be named
profile.<node>.<context>.<thread> .

Instrumentation

28 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_PROFILE_SET_CONTEXT(myContext);

Argument:
int myContext;

TAU_PROFILE_SET_CONTEXT sets the context parameter of the executing task
for profiling and tracing purposes. This is similar to setting the node parameter with
TAU_PROFILE_SET_NODE.

TAU_REGISTER_THREAD();

To register a thread with the profiling system, invoke the
TAU_REGISTER_THREAD macro in the run method of the thread prior to execut-
ing any other TAU macro. This sets up thread identifiers that are later used by the
instrumentation system.

TAU_REGISTER_FORK(nodeid, option);

Arguments:
int nodeid;
enum TauFork_t option;
/* TAU_INCLUDE_PARENT_DATA or TAU_EXCLUDE_PARENT_DATA*/

To register a child process obtained from the fork() syscall, invoke the
TAU_REGISTER_FORK macro. It takes two parameters, the first is the node id of
the child process (typically the process id returned by the fork call or any 0..N-1
range integer). The second parameter specifies whether the performance data for
the child process should be derived from the parent at the time of fork
(TAU_INCLUDE_PARENT_DATA) or should be independent of its parent at the
time of fork (TAU_EXCLUDE_PARENT_DATA). If the process id is used as the
node id, before any analysis is done, all profile files should be converted to contigu-
ous node numbers (from 0..N-1). It is highly recommended to use flat contiguous
node numbers in this call for profiling and tracing.

Example:

TAU Portable Profiling and Tracing Toolkit User’s Guide 29

C++ Measurement API

 pID = fork();
 if (pID == 0)
 {
 printf(“Parent : pid returned %d\n”, pID);
 }
 else
 {
// If we’d used the TAU_INCLUDE_PARENT_DATA, we’d get
// the performance data from the parent in this process
// as well.

 TAU_REGISTER_FORK(pID, TAU_EXCLUDE_PARENT_DATA);
 printf(“Child : pid = %d”, pID);
 }

 TAU_PROFILE_EXIT(message);

Argument:
const char * message;

TAU_PROFILE_EXIT should be called prior to an error exit from the program so
that any profiles or event traces can be dumped to disk before quitting.

Example:

if ((ret = open(...)) < 0) {
 TAU_PROFILE_EXIT(“ERROR in opening a file”);
 perror(“open() failed”);
 exit(1);
}

Instrumentation

30 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_DISABLE_INSTRUMENTATION();

TAU_DISABLE_INSTRUMENTATION macro disables all entry/exit instrumenta-
tion within all threads of a context. This allows the user to selectively enable and
disable instrumentation in parts of his/her code. It is important to re-enable the
instrumentation within the same basic block and scope.

TAU_ENABLE_INSTRUMENTATION();

TAU_ENABLE_INSTRUMENTATION macro re-enables all TAU instrumentation.
All instances of functions and statements that occur between the disable/enable sec-
tion are ignored by TAU. This allows a user to limit the trace size, if the macros are
used to disable recording of a set of iterations that have the same characteristics as
(say) the first recorded instance.

Example:

main() {
 foo();

TAU_DISABLE_INSTRUMENTATION();
 for (int i =0; i < N; i++) {
 bar(); // not recorded
 }

TAU_ENABLE_INSTRUMENTATION();
 bar(); // recorded
}

TAU_REGISTER_EVENT(variable, event_name);

Arguments:
TauUserEvent & variable;
char * event_name;

TAU can profile user-defined events usingTAU_REGISTER_EVENT. The meaning
of the event is determined by the user.

TAU Portable Profiling and Tracing Toolkit User’s Guide 31

C++ Measurement API

TAU_EVENT(variable, value);

Arguments: TauUserEvent & variable;
double value;

TAU_EVENT associates a value with some user-defined event. When the event is
triggered and this macro is executed, TAU maintains statistics, such as maximum,
minimum values, standard deviation, number of samples, etc. for tracking this
event.

Example:

int ArraySend(int arrayid)
{
 TAU_REGISTER_EVENT(taumsgsize, “Size of message asso-

ciated with Arrays”);
 int size = GetArraySize(arrayid);
 TAU_EVENT(size);
// ...
}

TAU_REPORT_STATISTICS();

TAU_REPORT_STATISTICS prints the aggregate statistics of user events across
all threads in each node. Typically, this should be called just before the main thread
exits.

TAU_REPORT_THREAD_STATISTICS();

TAU_REPORT_THREAD_STATISTICS prints the aggregate, as well as per
thread user event statistics. Typically, this should be called just before the main
thread exits.

Instrumentation

32 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_TRACE_SENDMSG(tag, destination, length);

Arguments:
int tag;
int destination;
int length;

TAU_TRACE_SENDMSG traces an inter-process message commu-
nication when a tagged message is sent to a destination
process.

TAU_TRACE_RECVMSG(tag, source, length);

Arguments:
int tag;
int source;
int length;

TAU_TRACE_RECVMSG traces a receive operation where tag represents the type
of the message received from the source process.

Example:

if (pid == 0){
 TAU_TRACE_SENDMSG(currCol, sender, ncols * sizeof(T));
 MPI_Send(vctr2, ncols * sizeof(T), MPI_BYTE, sender,

currCol, MPI_COMM_WORLD);
} else {
 MPI_Recv(&ans, sizeof(T), MPI_BYTE, MPI_ANY_SOURCE,

MPI_ANY_TAG,MPI_COMM_WORLD, &stat);
 MPI_Get_count(&stat, MPI_BYTE, &recvcount);
 TAU_TRACE_RECVMSG(stat.MPI_TAG, stat.MPI_SOURCE,

recvcount);
}

TAU Portable Profiling and Tracing Toolkit User’s Guide 33

TAU Mapping API

TAU Mapping API

TAU allows the user to map performance data of entities from one layer to another
in multi-layered software. Mapping is used in profiling (and tracing) both synchro-
nous and asynchronous models of computation. For mapping, the following macros
are used. First locate and identify the higher-level statement using the
TAU_MAPPING macro. Then, associate a function identifier with it using the
TAU_MAPPING_OBJECT. Associate the high level statement to a FunctionInfo
object that will be visible to lower level code, usingTAU_MAPPING_LINK, and
then profile entire blocks usingTAU_MAPPING_PROFILE. Independent sets of
statements can be profiled usingTAU_MAPPING_PROFILE_TIMER and
TAU_MAPPING_PROFILE_START andTAU_MAPPING_PROFILE_STOP
macros using the FunctionInfo object. The TAU examples/mapping directory
has two examples (embedded andexternal) that illustrate the use of this map-
ping API for generating object-oriented profiles.

TAU_MAPPING(statement, key);

Arguments:
statement ; // any C++ statement
TauGroup_t key; // TAU group/unique key associated

TAU_MAPPING is used to encapsulate the C++ statement that we want to map to
some other layer. The other layer can execute synchronously or asynchronously
with respect to this statement. The key corresponds to a number that the lower layer
will use to refer to this statement. For example,

int main()
{
 Array <2> A(N, N), B(N, N), C(N,N), D(N, N);
 //Original statement:
 A = B + C + D;
 //Instrumented statement:

TAU_MAPPING(A = B + C + D; , TAU_USER);
...
}

Instrumentation

34 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_MAPPING_CREATE(name, type, key,
groupname, tid);

Arguments:
char *name, type, groupname;
TauGroup_t key; // TAU group/unique key associated
int tid; // Thread id

TAU_MAPPING_CREATE is similar toTAU_MAPPING but it requires the name,
type and group name parameters (as character strings) to be specified. It creates a
mapping and associates it with the key that is specified. Later, this key may be spec-
ified to retrieve the FunctionInfo object associated with this key for timing pur-
poses. The thread identifier is specified in thetid parameter.

For example:

TAU_MAPPING_CREATE(“foo()”, “void ()”,
function_id,”USER”, tid);

TAU_MAPPING_OBJECT(FuncIdVar);

Arguments: FunctionInfo *FuncIdVar;

To create storage for an identifier associated with a higher level statement that is
mapped usingTAU_MAPPING, we use theTAU_MAPPING_OBJECT macro. For
example, in theTAU_MAPPING example, the array expressions are created into
objects of a class ExpressionKernel, and each statement is an object that is an
instance of this class. To embed the identity of the statement we store the mapping
object in a data field in this class. This is shown below:

 template<class LHS,class Op,class RHS,class EvalTag>
class ExpressionKernel : public Pooma::Iterate_t
{
public:

 typedef ExpressionKernel<LHS,Op,RHS,EvalTag> This_t;
 //
 // Construct from an Expr.

TAU Portable Profiling and Tracing Toolkit User’s Guide 35

TAU Mapping API

 // Build the kernel that will evaluate the expression
on the given domain.
 // Acquire locks on the data referred to by the
expression.
 //
 ExpressionKernel(const LHS&,const Op&,const
RHS&,Pooma::Scheduler_t&);

 virtual ~ExpressionKernel();

 //
 // Do the loop.
 //
 virtual void run();

private:

 // The expression we will evaluate.
 LHS lhs_m;
 Op op_m;
 RHS rhs_m;

 TAU_MAPPING_OBJECT(TauMapFI)
};

TAU_MAPPING_LINK(FuncIdV ar, Key);

Arguments: FunctionInfo *FuncIdVar;
TauGroup_t Key;

TAU_MAPPING_LINK creates a link between the object defined in
TAU_MAPPING_OBJECT (that identifies a statement) and the actual higher-level
statement that is mapped withTAU_MAPPING. The Key argument represents a
profile group to which the statement belongs, as specified in theTAU_MAPPING
macro argument. For the example of array statements, this link should be created in
the constructor of the class that represents the expression.TAU_MAPPING_LINK
should be executed before any measurement takes place. It assigns the identifier of
the statement to the object to which FuncIdVar refers. For example

Instrumentation

36 TAU Portable Profiling and Tracing Toolkit User’s Guide

//
// Constructor
// Input an expression and record it for later use.
//
template<class LHS,class Op,class RHS,class EvalTag>
ExpressionKernel<LHS,Op,RHS,EvalTag>::
ExpressionKernel(const LHS& lhs,const Op& op,const

RHS& rhs, Pooma::Scheduler_t& scheduler) :
Pooma::Iterate_t(scheduler, forEachTag(Make-
Expression<LHS>::make(lhs), DataBlockTag<Count-
Blocks>(),SumCombineTag()) +
forEachTag(MakeExpression<RHS>::make(rhs), Dat-
aBlockTag<CountBlocks>(),SumCombineTag()), -1),

 lhs_m(lhs), op_m(op), rhs_m(rhs)
{

 TAU_MAPPING_LINK(TauMapFI, TAU_USER)
// .. rest of the constructor
}

TAU_MAPPING_PROFILE (FuncIdV ar);

Arguments; FunctionInfo *FuncIdVar;

TheTAU_MAPPING_PROFILE macro measures the time and attributes it to the
statement mapped inTAU_MAPPING macro. It takes as its argument the identifier
of the higher level statement that is stored usingTAU_MAPPING_OBJECT and
linked to the statement usingTAU_MAPPING_LINK macros.
TAU_MAPPING_PROFILE measures the time spent in the entire block in which it
is invoked. For example, if the time spent in the run method of the class does work
that must be associated with the higher-level array expression, then, we can instru-
ment it as follows:

//
// Evaluate the kernel
// Just tell an InlineEvaluator to do it.
//

template<class LHS,class Op,class RHS,class EvalTag>
void

TAU Portable Profiling and Tracing Toolkit User’s Guide 37

TAU Mapping API

ExpressionKernel<LHS,Op,RHS,EvalTag>::run()
{

 TAU_MAPPING_PROFILE(TauMapFI)

 // Just evaluate the expression.
 KernelEvaluator<EvalTag>().evalate(lhs_m,op_m,rhs_m);
 // we could release the locks here or in dtor
}

TAU_MAPPING_PROFILE_TIMER(timer ,
FuncIdVar);

Arguments: Profiler timer;
FunctionInfo * FuncIdVar;

TAU_MAPPING_PROFILE_TIMER enables timing of individual statements,
instead of complete blocks. It will attribute the time to a higher-level statement. The
second argument is the identifier of the statement that is obtained after
TAU_MAPPING_OBJECT andTAU_MAPPING_LINK have executed. The timer
argument in this macro is any variable that is used subsequently to start and stop
the timer.

TAU_MAPPING_PROFILE_START(timer, tid);

Argument:
Profiler timer;
int tid;

TAU_MAPPING_PROFILE_START starts the timer that is created using
TAU_MAPPING_PROFILE_TIMER. This will measure the elapsed time in groups
of statements, instead of the entire block. A corresponding stop statement stops the
timer as described next. The thread identifier is specified in the tid parameter.

Instrumentation

38 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU_MAPPING_PROFILE_STOP(tid);

Arguments:
int tid;

TAU_MAPPING_PROFILE_STOP stops the timer associated with the mapped
lower-level statements. This is used in conjunction with
TAU_MAPPING_PROFILE_TIMER andTAU_MAPPING_PROFILE_START
macros. For example:

template<class LHS,class Op,class RHS,class EvalTag>
void
ExpressionKernel<LHS,Op,RHS,EvalTag>::run()
{

TAU_MAPPING_PROFILE_TIMER(timer, TauMapFI);
 printf(“ExpressionKernel::run() this = %x\n”, this);
 // Just evaluate the expression.

TAU_MAPPING_PROFILE_START(timer);
 KernelEvaluator<EvalTag>().evaluate(lhs_m, op_m,

rhs_m);
TAU_MAPPING_PROFILE_STOP();

 // we could release the locks here instead of in the
dtor.
}

This concludes our Mapping section.

C Measurement API

The API for instrumenting C source code is similar to the C++ API. The difference
is that the TAU_PROFILE() macro is not available for identifying an entire
block of code or function. Instead, routine transitions are explicitly specified using
TAU_PROFILE_TIMER() macro with TAU_PROFILE_START() and
TAU_PROFILE_STOP() macros to indicate the entry and exit from a routine.

TAU Portable Profiling and Tracing Toolkit User’s Guide 39

For tran90 Measurement API

Note that,TAU_TYPE_STRING() andCT() macros are not applicable for C. It is
important to declare theTAU_PROFILE_TIMER() macro after all the variables
have been declared in the function and before the execution of the first C statement.

Example:

int main (int argc, char **argv)
{
 int ret;
 pthread_attr_t attr;
 pthread_t tid;

TAU_PROFILE_TIMER(tautimer,”main()”, “int (int, char
**)”, TAU_DEFAULT);

 TAU_PROFILE_START(tautimer);
 TAU_PROFILE_INIT(argc, argv);
 TAU_PROFILE_SET_NODE(0);

 pthread_attr_init(&attr);
 printf(“Started Main...\n”);
 // other statements
 TAU_PROFILE_STOP(tautimer);
 return 0;
}

Fortran90 Measurement API

The Fortran90 TAU API allows source code written in Fortran to be instrumented
for TAU. This API is comprised of Fortran routines. As explained in Chapter 2, the
instrumentation can be disabled in the program by using on the link command line,
the TAU stub makefile variable TAU_DISABLE. This points to a library that con-
tains empty TAU instrumentation routines.

TAU_PROFILE_INIT()

TAU_PROFILE_INIT routine must be called before any other TAU instrumentation
routines. It is called once, in the top level routine (program). It initializes the TAU
library.

Instrumentation

40 TAU Portable Profiling and Tracing Toolkit User’s Guide

For example:

 PROGRAM SUM_OF_CUBES
 integer profiler(2)
 save profiler

 call TAU_PROFILE_INIT()

TAU_PROFILE_TIMER(pr ofiler, name)

Arguments:
integer profiler(2)
character name(size)

To profile a block of Fortran code, such as a function, subroutine, loop etc., the user
must first declare a profiler, which is an integer array of two elements (pointer) with
the save attribute, and pass it as the first parameter to theTAU_PROFILE_TIMER
subroutine. The second parameter must contain the name of the routine, which is
enclosed in a single quote.TAU_PROFILE_TIMER declares the profiler that must
be used to profile a block of code. The profiler is used to profile the statements
usingTAU_PROFILE_START andTAU_PROFILE_STOP as explained later.
For example:

subroutine bcast_inputs
implicit none
integer profiler(2)
save profiler

include ‘mpinpb.h’
include ‘applu.incl’

integer IERR

call TAU_PROFILE_TIMER(profiler, ‘bcast_inputs’)

TAU_PROFILE_START(pr ofiler)

Arguments:

TAU Portable Profiling and Tracing Toolkit User’s Guide 41

For tran90 Measurement API

integer profiler(2)

TAU_PROFILE_START starts the timer for profiling a set of statements. The timer
(or the profiler) must be declared usingTAU_PROFILE_TIMER routine, prior to
usingTAU_PROFILE_START.

TAU_PROFILE_STOP(profiler)

Arguments:
integer profiler(2)

TAU_PROFILE_STOP stops the timer used to profile a set of statements. It is
used in conjunction withTAU_PROFILE_TIMER and TAU_PROFILE_START
subroutines.

For example:

subroutine setbv
implicit none

include ‘applu.incl’
c--
c local variables
c--
integer profiler(2)
save profiler
integer i, j, k
integer iglob, jglob

call TAU_PROFILE_TIMER(profiler, ‘setbv’)
call TAU_PROFILE_START(profiler)

c set the dependent variable values along the top and
c bottom faces
 do j = 1, ny
 jglob = jpt + j
 do i = 1, nx
 iglob = ipt + i

Instrumentation

42 TAU Portable Profiling and Tracing Toolkit User’s Guide

 call exact(iglob, jglob, 1, u(1, i, j, 1)
)
 call exact(iglob, jglob, nz, u(1, i, j, nz
))
 end do
 end do

call TAU_PROFILE_STOP(profiler)
 return
 end

TAU_PROFILE_SET_NODE(myNode)

Arguments:
integer myNode

The TAU_PROFILE_SET_NODE macro sets the node identifier of the executing
task for profiling and tracing. Tasks are identified using node, context and thread
ids. The profile data files generated will accordingly be named
profile.<node>.<context>.<thread> .

TAU_PROFILE_SET_CONTEXT(myContext)

Argument:
integer myContext

TAU_PROFILE_SET_CONTEXT sets the context parameter of the executing task
for profiling and tracing purposes. This is similar to setting the node parameter with
TAU_PROFILE_SET_NODE.

TAU_PROFILE_REGISTER_THREAD()

To register a thread with the profiling system, invoke the
TAU_PROFILE_REGISTER_THREAD routine in the run method of the thread

TAU Portable Profiling and Tracing Toolkit User’s Guide 43

For tran90 Measurement API

prior to executing any other TAU routine. This sets up thread identifiers that are
later used by the instrumentation system.

TAU_DISABLE_INSTRUMENTATION()

TAU_DISABLE_INSTRUMENTATION macro disables all entry/exit instrumenta-
tion within all threads of a context. This allows the user to selectively enable and
disable instrumentation in parts of his/her code. It is important to re-enable the
instrumentation within the same basic block.

TAU_ENABLE_INSTRUMENTATION()

TAU_ENABLE_INSTRUMENTATION macro re-enables all TAU instrumentation.
All instances of functions and statements that occur between the disable/enable sec-
tion are ignored by TAU. This allows a user to limit the trace size, if the macros are
used to disable recording of a set of iterations that have the same characteristics as
(say) the first recorded instance.

Example:

call TAU_DISABLE_INSTRUMENTATION()
...
call TAU_ENABLE_INSTRUMENTATION()

 TAU_PROFILE_EXIT(message)

Argument:
character message(size)

TAU_PROFILE_EXIT should be called prior to an error exit from the program so
that any profiles or event traces can be dumped to disk before quitting.

Example:

Instrumentation

44 TAU Portable Profiling and Tracing Toolkit User’s Guide

call TAU_PROFILE_EXIT(‘abort called’)

TAU_REGISTER_EVENT(variable, event_name)

Arguments:
int variable(2)
character event_name(size)

TAU can profile user-defined events usingTAU_REGISTER_EVENT. The meaning
of the event is determined by the user. The first argument to
TAU_REGISTER_EVENT is the pointer to an integer array. This array is declared
with a save attribute as shown below.

Example:

integer eventid(2)
save eventid
call TAU_REGISTER_EVENT(eventid, ‘Error in Iteration’)

TAU_EVENT(variable, value)

Arguments:
integer variable(2)
real value

TAU_EVENT associates a value with some user-defined event. When the event is
triggered and this macro is executed, TAU maintains statistics, such as maximum,
minimum values, standard deviation, number of samples, etc. for tracking this
event.

Example:

 call TAU_REGISTER_EVENT(taumsgsize, ‘Message size’)
 call TAU_EVENT(size)

TAU Portable Profiling and Tracing Toolkit User’s Guide 45

For tran90 Measurement API

TAU_REPORT_STATISTICS()

TAU_REPORT_STATISTICS prints the aggregate statistics of user events across
all threads in each node. Typically, this should be called just before the main thread
exits.

TAU_REPORT_THREAD_STATISTICS()

TAU_REPORT_THREAD_STATISTICS prints the aggregate, as well as per
thread user event statistics. Typically, this should be called just before the main
thread exits.

TAU_TRACE_SENDMSG(tag, destination, length)

Arguments:
integer tag
integer destination
integer length

TAU_TRACE_SENDMSG traces an inter-process message communication when a
tagged message is sent to a destination process.

TAU_TRACE_RECVMSG(tag, source, length)

Arguments:
integer tag
integer source
integer length

TAU_TRACE_RECVMSG traces a receive operation where tag represents the type
of the message received from the source process.

Instrumentation

46 TAU Portable Profiling and Tracing Toolkit User’s Guide

Summary

In C++, a single macroTAU_PROFILE, is sufficient to profile a block of state-
ments. In C and Fortran, the user must use statement level timers to achieve this,
usingTAU_PROFILE_TIMER, TAU_PROFILE_START and
TAU_PROFILE_STOP. Instrumentation of C++ source code can be done manually
or by using tau_instrumentor, a tool that can automatically insert TAU annotations
in the source code. Implementation of a Fortran 90 instrumentor is in progress.

TAU Portable Profiling and Tracing Toolkit User’s Guide 47

Summar y

CHAPTER 4 Profiling

This chapter describes running of an instrumented application and generation and
subsequent analysis of profile data. Profiling shows the summary statistics of per-
formance metrics that characterize application performance behavior. Examples of
performance metrics are the CPU time associated with a routine, the count of the
secondary data cache misses associated with a group of statements, the number of
times a routine executes, etc.

Profiling

48 TAU Portable Profiling and Tracing Toolkit User’s Guide

Running the application

After instrumentation and compilation are completed, the profiled application is run
to generate the profile data files. These files can be stored in a directory specified by
the environment variable PROFILEDIR as explained in Chapter 2. By default, all
instrumented routines and statements are measured. To selectively measure groups
of routines and statements, we can use the command-line parameter--profile
to specify the statements to be profiled. For example:

% setenv PROFILEDIR /home/sameer/profiledata/
experiment55
% mpirun -np 4 matrix

This profiles all routines

% mpirun -np 4 matrix --profile io+field+2

The above profiles routines belonging toTAU_IO, TAU_FIELD andTAU_USER2
profile groups. For a detailed list of groups, please refer to
[TAU-PGROUPS-URL]

Running an application using DynInstAPI

Install DynInstAPI package and refer to the installed directory while configuring
TAU. Usetau_run, a tool that instruments the application at runtime.

% configure -dyninst=/usr/local/packages/dyninstAPI
% make install
% cd tau/examples/dyninst
% make install
% tau_run klargest 2500 23
% pprof; racy

Using Hardware Performance Counters

Performance counters exist on modern microprocessors. These count hardware per-
formance events such as cache misses, floating point operations, etc. while the pro-
gram executes on the processor. The Performance Data Standard and API (PAPI,

TAU Portable Profiling and Tracing Toolkit User’s Guide 49

Using Har dware Performance Counter s

[PAPI-URL]) and Performance Counter Library (PCL, [PCL-URL]) packages pro-
vides a uniform interface to access these performance counters. TAU can use either
PAPI or PCL to access these hardware performance counters. To do so, download
and install PAPI or PCL. Then, configure TAU using the -pcl=<dir> or -papi=<dir>
configuration command-line option to specify the location of PCL or PAPI. Build
TAU and applications as you normally would (as described in Chapters 2 and 3).
While running the application, set the environment variablePCL_EVENT or
PAPI_EVENT respectively, to specify which hardware performance counter TAU
should use while profiling the application. For example to measure the floating
point operations in routines using PCL,

% ./configure -pcl=/usr/local/packages/pcl-1.2
% setenv PCL_EVENT PCL_FP_INSTR
% mpirun -np 8 application

TABLE 1. Events measured by setting the envir onment variable
PCL_EVENT in TAU

PCL_EVENT Event Measured

PCL_L1CACHE_READ L1 (Level one) cache reads

PCL_L1CACHE_WRITE L1 cache writes

PCL_L1CACHE_READWRITE L1 cache reads and writes

PCL_L1CACHE_HIT L1 cache hits

PCL_L1CACHE_MISS L1 cache misses

PCL_L1DCACHE_READ L1 data cache reads

PCL_L1DCACHE_WRITE L1 data cache writes

PCL_L1DCACHE_READWRITE L1 data cache reads and writes

PCL_L1DCACHE_HIT L1 data cache hits

PCL_L1DCACHE_MISS L1 data cache misses

PCL_L1ICACHE_READ L1 instruction cache reads

PCL_L1ICACHE_WRITE L1 instruction cache writes

PCL_L1ICACHE_READWRITE L1 instruction cache reads and writes

PCL_L1ICACHE_HIT L1 instruction cache hits

PCL_L1ICACHE_MISS L1 instruction cache misses

PCL_L2CACHE_READ L2 (Level two) cache reads

PCL_L2CACHE_WRITE L2 cache writes

PCL_L2CACHE_READWRITE L2 cache reads and writes

Profiling

50 TAU Portable Profiling and Tracing Toolkit User’s Guide

PCL_L2CACHE_HIT L2 cache hits

PCL_L2CACHE_MISS L2 cache misses

PCL_L2DCACHE_READ L2 data cache reads

PCL_L2DCACHE_WRITE L2 data cache writes

PCL_L2DCACHE_READWRITE L2 data cache reads and writes

PCL_L2DCACHE_HIT L2 data cache hits

PCL_L2DCACHE_MISS L2 data cache misses

PCL_L2ICACHE_READ L2 instruction cache reads

PCL_L2ICACHE_WRITE L2 instruction cache writes

PCL_L2ICACHE_READWRITE L2 instruction cache reads and writes

PCL_L2ICACHE_HIT L2 instruction cache hits

PCL_L2ICACHE_MISS L2 instruction cache misses

PCL_TLB_HIT TLB (Translation Lookaside Buffer) hits

PCL_TLB_MISS TLB misses

PCL_ITLB_HIT Instruction TLB hits

PCL_ITLB_MISS Instruction TLB misses

PCL_DTLB_HIT Data TLB hits

PCL_DTLB_MISS Data TLB misses

PCL_CYCLES Cycles

PCL_ELAPSED_CYCLES Cycles elapsed

PCL_INTEGER_INSTR Integer instructions executed

PCL_FP_INSTR Floating point (FP) instructions executed

PCL_LOAD_INSTR Load instructions executed

PCL_STORE_INSTR Store instructions executed

PCL_LOADSTORE_INSTR Loads and stores executed

PCL_INSTR Instructions executed

PCL_JUMP_SUCCESS Successful jumps executed

PCL_JUMP_UNSUCCESS Unsuccessful jumps executed

PCL_JUMP Jumps executed

TABLE 1. Events measured by setting the envir onment variable
PCL_EVENT in TAU

PCL_EVENT Event Measured

TAU Portable Profiling and Tracing Toolkit User’s Guide 51

Using Har dware Performance Counter s

To select floating point instructions for profiling using PAPI, you would:

% configure -papi=/usr/local/packages/papi-1.1
% make clean install
% cd examples/papi
% setenv PAPI_EVENT PAPI_FP_INS
% a.out

PCL_ATOMIC_SUCCESS Successful atomic instructions executed

PCL_ATOMIC_UNSUCCESS Unsuccessful atomic instructions executed

PCL_ATOMIC Atomic instructions executed

PCL_STALL_INTEGER Integer stalls

PCL_STALL_FP Floating point stalls

PCL_STALL_JUMP Jump stalls

PCL_STALL_LOAD Load stalls

PCL_STALL_STORE Store Stalls

PCL_STALL Stalls

PCL_MFLOPS Milions of floating point operations/second

PCL_IPC Instructions executed per cycle

PCL_L1DCACHE_MISSRATE Level 1 data cache miss rate

PCL_L2DCACHE_MISSRATE Level 2 data cache miss rate

PCL_MEM_FP_RATIO Ratio of memory accesses to FP operations

TABLE 2. Events measured by setting the envir onment variable
PAPI_EVENT in TAU

PAPI_EVENT Event Measured

PAPI_L1_DCM Level 1 data cache misses

PAPI_L1_ICM Level 1 instruction cache misses

TABLE 1. Events measured by setting the envir onment variable
PCL_EVENT in TAU

PCL_EVENT Event Measured

Profiling

52 TAU Portable Profiling and Tracing Toolkit User’s Guide

PAPI_L2_DCM Level 2 data cache misses

PAPI_L2_ICM Level 2 instruction cache misses

PAPI_L3_DCM Level 3 data cache misses

PAPI_L3_ICM Level 3 instruction cache misses

PAPI_L1_TCM Level 1 total cache misses

PAPI_L2_TCM Level 2 total cache misses

PAPI_L3_TCM Level 3 total cache misses

PAPI_CA_SNP Snoops

PAPI_CA_SHR Request for access to shared cache line (SMP)

PAPI_CA_CLN Request for access to clean cache line (SMP)

PAPI_CA_INV Cache Line Invalidation (SMP)

PAPI_CA_ITV Cache Line Intervention (SMP)

PAPI_L3_LDM Level 3 load misses

PAPI_L3_STM Level 3 store misses

PAPI_BRU_IDL Cycles branch units are idle

PAPI_FXU_IDL Cycles integer units are idle

PAPI_FPU_IDL Cycles floating point units are idle

PAPI_LSU_IDL Cycles load/store units are idle

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_TLB_IM Instruction translation lookaside buffer misses

PAPI_TLB_TL Total translation lookaside buffer misses

PAPI_L1_LDM Level 1 load misses

PAPI_L1_STM Level 1 store misses

PAPI_L2_LDM Level 2 load misses

PAPI_L2_STM Level 2 store misses

PAPI_BTAC_M BTAC miss

PAPI_PRF_DM Prefetch data instruction caused a miss

PAPI_L3_DCH Level 3 Data Cache Hit

PAPI_TLB_SD Translation lookaside buffer shootdowns (SMP)

TABLE 2. Events measured by setting the envir onment variable
PAPI_EVENT in TAU

PAPI_EVENT Event Measured

TAU Portable Profiling and Tracing Toolkit User’s Guide 53

Using Har dware Performance Counter s

PAPI_CSR_FAL Failed store conditional instructions

PAPI_CSR_SUC Successful store conditional instructions

PAPI_CSR_TOT Total store conditional instructions

PAPI_MEM_SCY Cycles Stalled Waiting for Memory Access

PAPI_MEM_RCY Cycles Stalled Waiting for Memory Read

PAPI_MEM_WCY Cycles Stalled Waiting for Memory Write

PAPI_STL_ICY Cycles with No Instruction Issue

PAPI_FUL_ICY Cycles with Maximum Instruction Issue

PAPI_STL_CCY Cycles with No Instruction Completion

PAPI_FUL_CCY Cycles with Maximum Instruction Completion

PAPI_HW_INT Hardware interrupts

PAPI_BR_UCN Unconditional branch instructions executed

PAPI_BR_CN Conditional branch instructions executed

PAPI_BR_TKN Conditional branch instructions taken

PAPI_BR_NTK Conditional branch instructions not taken

PAPI_BR_MSP Conditional branch instructions mispredicted

PAPI_BR_PRC Conditional branch instructions correctly predicted

PAPI_FMA_INS FMA instructions completed

PAPI_TOT_IIS Total instructions issued

PAPI_TOT_INS Total instructions executed

PAPI_INT_INS Integer instructions executed

PAPI_FP_INS Floating point instructions executed

PAPI_LD_INS Load instructions executed

PAPI_SR_INS Store instructions executed

PAPI_BR_INS Total branch instructions executed

PAPI_VEC_INS Vector/SIMD instructions executed

PAPI_FLOPS Floating Point Instructions executed per second

PAPI_RES_STL Cycles processor is stalled on resource

PAPI_FP_STAL FP units are stalled

TABLE 2. Events measured by setting the envir onment variable
PAPI_EVENT in TAU

PAPI_EVENT Event Measured

Profiling

54 TAU Portable Profiling and Tracing Toolkit User’s Guide

PAPI_TOT_CYC Total cycles

PAPI_IPS Instructions executed per second

PAPI_LST_INS Total load/store inst. executed

PAPI_SYC_INS Sync. inst. executed

PAPI_L1_DCH L1 D Cache Hit

PAPI_L2_DCH L2 D Cache Hit

PAPI_L1_DCA L1 D Cache Access

PAPI_L2_DCA L2 D Cache Access

PAPI_L3_DCA L3 D Cache Access

PAPI_L1_DCR L1 D Cache Read

PAPI_L2_DCR L2 D Cache Read

PAPI_L3_DCR L3 D Cache Read

PAPI_L1_DCW L1 D Cache Write

PAPI_L2_DCW L2 D Cache Write

PAPI_L3_DCW L3 D Cache Write

PAPI_L1_ICH L1 instruction cache hits

PAPI_L2_ICH L2 instruction cache hits

PAPI_L3_ICH L3 instruction cache hits

PAPI_L1_ICA L1 instruction cache accesses

PAPI_L2_ICA L2 instruction cache accesses

PAPI_L3_ICA L3 instruction cache accesses

PAPI_L1_ICR L1 instruction cache reads

PAPI_L2_ICR L2 instruction cache reads

PAPI_L3_ICR L3 instruction cache reads

PAPI_L1_ICW L1 instruction cache writes

PAPI_L2_ICW L2 instruction cache writes

PAPI_L3_ICW L3 instruction cache writes

PAPI_L1_TCH L1 total cache hits

PAPI_L2_TCH L2 total cache hits

TABLE 2. Events measured by setting the envir onment variable
PAPI_EVENT in TAU

PAPI_EVENT Event Measured

TAU Portable Profiling and Tracing Toolkit User’s Guide 55

Running a J AVA application with T AU

Running a JAVA application with TAU

Java applications are profiled/traced using the-XrunTAU command-line parame-
ter as shown below:

% cd tau/examples/java/pi
% setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/home/tau/
solaris2/lib
% java -XrunTAU Pi

On Solaris, you will need to disable the JIT compiler while using TAU. This is done
using the-Djava.compiler= option

% java -XrunTAU -Djava.compiler= Pi

PAPI_L3_TCH L3 total cache hits

PAPI_L1_TCA L1 total cache accesses

PAPI_L2_TCA L2 total cache accesses

PAPI_L3_TCA L3 total cache accesses

PAPI_L1_TCR L1 total cache reads

PAPI_L2_TCR L2 total cache reads

PAPI_L3_TCR L3 total cache reads

PAPI_L1_TCW L1 total cache writes

PAPI_L2_TCW L2 total cache writes

PAPI_L3_TCW L3 total cache writes

PAPI_FML_INS FM ins

PAPI_FAD_INS FA ins

PAPI_FDV_INS FD ins

PAPI_FSQ_INS FSq ins

PAPI_FNV_INS Finv ins

TABLE 2. Events measured by setting the envir onment variable
PAPI_EVENT in TAU

PAPI_EVENT Event Measured

Profiling

56 TAU Portable Profiling and Tracing Toolkit User’s Guide

To disable the JIT compiler. If you’re using JAVA HotSpot JVM, you may need the
-classic flag too.

% java -classic -XrunTAU -Djava.compiler= Pi

(java -version shows the version of JVM. TAU has been tested with JDK
1.2.2 and 1.3 but should work with any release of JDK after 1.2).

Running the application generates profile files with names having the form pro-
file.<node>.<context>.<thread>. These files can be analyzed usingpprof or racy
(see below).

pprof

pprof sorts and displays profile data generated by TAU. To view the profile, merely
execute pprof in the directory where profile files are located (or set thePRO-
FILEDIR environment variable).

% pprof

Its usage is explained below:

usage: pprof [-c|-b|-m|-t|-e|-i] [-r] [-s] [-n num] [-f
filename] [-l] [node numbers]
 -c : Sort by number of Calls
 -b : Sort by number of su Broutines called by a func-

tion
 -m : Sort by Milliseconds (exclusive time total)
 -t : Sort by Total milliseconds (inclusive time total)

(DEFAULT)
 -e : Sort by Exclusive time per call (msec/call)
 -i : Sort by I nclusive time per call (total msec/call)
 -v : Sort by standard de Viation (excl usec)
 -r : Reverse sorting order
 -s : print only Summary profile information
 -n num : print only first num functions

TAU Portable Profiling and Tracing Toolkit User’s Guide 57

racy

 -f filename : specify full path and Filename without
node ids

 -l : List all functions and exit
 node numbers : prints information about all contexts/

threads for specified nodes

racy

Racy is the graphical interface to pprof. It shows the profile data in terms of histo-
grams and text displays. Invoke racy in the directory that contains the profile files.

% racy

FIGURE 2. pprof in an xemacs window

Profiling

58 TAU Portable Profiling and Tracing Toolkit User’s Guide

In the project management window, select a project by typing in a project file name
with a .pmf extension (e.g.,matrix.pmf), and clicking (the first mouse button)
on the “Create ” button.

NOTE: If the project window does not appear, it is probably due to problems with
the security of the X-display. You may not usexhost + while using racy. You
may need to explicitly turn off xhost by invoking xhost - and using Xauthenti-
cation. The cookies are generated and stored in the~/.Xauthority file. If your
server is not configured to generate these cookies, please contact your system
administrator for configuring the X display to make it secure. Users may also want

FIGURE 3. Create a project by creating or choosing an existing project

TAU Portable Profiling and Tracing Toolkit User’s Guide 59

racy

to usessh , rather than telnet/rlogin to login to a remote node where racy is
invoked. If this is done, the cookies need not be copied to the remote node explicitly
by the user. For more information please refer to [TAU-SECURITY-URL].

After the project is created or selected, the main racy window appears.

This shows the relative time spent in each function as a horizontal bargraph. Each
node, context, thread is represented as a horizontal bar with each function assigned
a color. In this main racy window, click middle mouse button overn,c,t 0,0,0to see
the textual profile of node 0, context 0, thread 0.

FIGURE 4. Main racy window showing the profile of functions on
differ ent <node>,<context>,<thread>s and the mean profile.

Profiling

60 TAU Portable Profiling and Tracing Toolkit User’s Guide

Next, selectShow Function Legendon the main racy window File menu to see the
list of functions.

FIGURE 5. Text shows the detailed profile on n,c,t 0,0,0.

TAU Portable Profiling and Tracing Toolkit User’s Guide 61

racy

Click the third mouse button over a function to highlight it in the currently open
windows. To see the relative function profile on one node, click first mouse button
on a node in the racy main window.

FIGURE 6. The Function Legend window shows the color assigned to each
function.

Profiling

62 TAU Portable Profiling and Tracing Toolkit User’s Guide

FIGURE 7. The above node profile shows the relative contribution of the
functions on the node 0, context 0, thread 0 .

TAU Portable Profiling and Tracing Toolkit User’s Guide 63

racy

Click, using the first or the third mouse button, on the name of a function to bring
up the function window that shows the profile of the function over all nodes, con-
texts and threads.

If user-defined events are profiled in addition to routines, then an event window
appears with the function profile window. Navigation of user event profiles is iden-
tical to the navigation of function profiles as described above. The following figure
demonstrates the use of user-defined event profiles from the PaRP project [PARP-
URL]

FIGURE 8. The function window shows the profile of the function over all
nodes, contexts and threads.

Profiling

64 TAU Portable Profiling and Tracing Toolkit User’s Guide

FIGURE 9. Racy displays user defined event profiles as well.

TAU Portable Profiling and Tracing Toolkit User’s Guide 65

racy

User defined events are also measured and displayed on each node, context and
thread

FIGURE 10. User defined events may be used to track memory bugs.

Tracing

66 TAU Portable Profiling and Tracing Toolkit User’s Guide

CHAPTER 5 Tracing

Typically, profiling shows the distribution of execution time across routines. It can
show the code locations associated with specific bottlenecks, but it does not show
the temporal aspect of performance variations. Tracing the execution of a parallel
program shows when and where an event occured, in terms of the process that exe-
cuted it and the location in the source code. This chapter discusses how TAU can be
used to generate event traces.

TAU Portable Profiling and Tracing Toolkit User’s Guide 67

Generating Event T races

Generating Event Traces

TAU must be configured with the -TRACE option to generate event traces. This can
be used in conjunction with -PROFILE to generate both profiles and traces. The
traces are stored in a directory specified by the environment variableTRACEDIR,
or the current directory, by default. For example:

% ./configure -SGITIMERS -arch=sgi64 -TRACE -c++=KCC
% make clean; make install
% setenv TRACEDIR /users/sameer/tracedata/experiment56
% mpirun -np 4 matrix

This generates files named

tautrace.<node>.<context>.<thread>.trc and
events.<node>.edf

Using the utilitytau_merge , these traces are then merged as shown below:

% tau_merge
usage: tau_merge [-a] [-r] inputtraces* (outputtrace|-)
Note: tau_merge assumes edf files are named
events.<nodeid>.edf, and generates a merged edf file
tau.edf
% tau_merge tautrace*.trc matrix.trc

This generates matrix.trc as the merged trace file and tau.edf as the merged event
description file.

To convert merged or per-thread traces to another trace format, the utility
tau_convert is used as shown below:

% tau_convert
usage: tau_convert [-alog | -SDDF | -dump | -pv |

-vampir [-compact] [-user|-class|-all]
[-nocomm]] inputtrc edffile [outputtrc]

Note: -vampir option assumes multiple threads/node

To view the dump of the trace in text form, use

% tau_convert -dump matrix.trc tau.edf

Tracing

68 TAU Portable Profiling and Tracing Toolkit User’s Guide

tau_convert can also be used to convert traces to the Vampir trace format [VAM-
PIR-URL]. For single-threaded applications (such as the MPI application above),
the-pv option is used to generate Vampir traces as follows:

% tau_convert -pv matrix.trc tau.edf matrix.pv
% vampir matrix.pv &

To convert TAU traces to SDDF or ALOG trace formats,-SDDF and-alog
options may be used. When multiple threads are used on a node (as with-jdk , -
pthread or -tulipthread options duringconfigure), the-vampir
option is used to convert the traces to the vampir trace format, as shown below:

% tau_convert -vampir smartsapp.trc tau.edf smartsapp.pv
% vampir smartsapp.pv &

NOTE: To ensure that inter-process communication events are recorded in the
traces, in addition to the routine transitions, it is necessary to insert
TAU_TRACE_SENDMSG and TAU_TRACE_RECVMSG macro calls in the
source code during instrumentation. This is not needed when the TAU MPI Wrap-
per library is used.

Vampir: Visualizing TAU traces

Vampir is a robust parallel trace visualization tool sold by Pallas GmbH [PALLAS-
URL]. It provides a convenient way to graphically analyze the performance charac-
teristics of a parallel application. A variety of graphical displays present important
aspects of the application runtime behavior:

• detailed timeline views of events and communication

• statistical analysis of program execution

• statistical analysis of communication operations

• system snapshot and animation

• dynamic calling tree

TAU Portable Profiling and Tracing Toolkit User’s Guide 69

Vampir: Visualizing T AU traces

When interprocess communication is recorded, it shows up as directed line-seg-
ments connecting the sending and receiving processes. The details of a message can
be obtained by clicking on it.

FIGURE 11. Vampir displays space-time diagrams and pie-charts

Tracing

70 TAU Portable Profiling and Tracing Toolkit User’s Guide

In Figure13, “Scheduling work packets in SMARTS,” on page71, we show how
Vampir can be used to display scheduling of work packets or iterates in the Shared
Memory Asynchronous Runtime System (SMARTS) [SMARTS-URL]

FIGURE 12. Vampir Space-time diagram shows inter-process
communication

TAU Portable Profiling and Tracing Toolkit User’s Guide 71

Vampir: Visualizing T AU traces

FIGURE 13. Scheduling work packets in SMARTS

Tracing

72 TAU Portable Profiling and Tracing Toolkit User’s Guide

In the next figure, we see the symbol legend and the dynamic call tree views pro-
vided by Vampir.
.

FIGURE 14. Vampir symbol legend and calltree display

TAU Portable Profiling and Tracing Toolkit User’s Guide 73

Vampir: Visualizing T AU traces

Vampir has been used to compare the scheduling policies of the SMARTS package.

The following figures illustrate the use of Vampir with Java applications. After con-
verting the traces and invoking Vampir, choose appropriate colors for groups of
methods usingPreferences->Colors->Activities menu in Vampir.

FIGURE 15. Comparing scheduling policies in SMARTS

Tracing

74 TAU Portable Profiling and Tracing Toolkit User’s Guide

Clicking on a process(thread) selects it. Then the user can see the dynamic call tree
of the process by choosing theProcess Displays->Call Tree menu item as shown
below.

FIGURE 16. Timeline display in Vampir shows the activity (method) that
each thread is in wrt time.

TAU Portable Profiling and Tracing Toolkit User’s Guide 75

Vampir: Visualizing T AU traces

Vampir has a rich set of global displays. By choosing theGlobal Displays ->Paral-
lelism View the user can see how many threads participate in an activity belonging
to a group at any point in time. All timeline displays support a zoom option where
the user can zoom into or out of a section of the trace.

FIGURE 17. Call tr ee display of a thread shows the dynamic
call tree annotated with performance metrics.

Tracing

76 TAU Portable Profiling and Tracing Toolkit User’s Guide

By choosing other global displays such asSummaric chart or Activity chart , the
user can see a global summary of the time spent in different groups of methods as
shown in the following figure.

FIGURE 18. Parallelism view

TAU Portable Profiling and Tracing Toolkit User’s Guide 77

Vampir: Visualizing T AU traces

Hybrid execution models can be traced in TAU by enabling support for the appro-
priate message passing model and thread package. One example of such a mixed

FIGURE 19. Summaric chart and activity chart global displays highlight
the groups that take the most time using pie charts and histograms
respectively.

Tracing

78 TAU Portable Profiling and Tracing Toolkit User’s Guide

model program is shown in the following figure. It shows a trace of an
OpenMP+MPI (OpenMPI) program that uses OpenMP threads for loop-level paral-
lelism and MPI for inter-context message communication. The figure shows a time-
line display.

Another example of mixed model programming is shown below. It shows an mpi-
Java [MPIJAVA-URL] program that uses the message passing interface (MPI) for
inter-node communication and uses Java threads within each node for computation.

FIGURE 20. Tracing an OpenMPI application with TAU

TAU Portable Profiling and Tracing Toolkit User’s Guide 79

Vampir: Visualizing T AU traces

FIGURE 21. Tracing hybrid (mixed-model) execution models with MPI
and Java.

Summar y

80 TAU Portable Profiling and Tracing Toolkit User’s Guide

CHAPTER 6 Summary

The TAU performance framework and toolkit is an ongoing research and develop-
ment project. The TAU Portable Profiling and Tracing Toolkit described in this doc-
ument represents functionality present in the current software release. All available
software should be considered research software available to the community under
the BSD style license.

TAU Portable Profiling and Tracing Toolkit User’s Guide 81

Software A vailability

Software Availability

TAU Portable Profiling and Tracing Toolkit may be downloaded as freeware from
the following website [TAU-URL]:

http://www.acl.lanl.gov/tau

TAU was also released on the ACL Fall 1998 and 1999 CD-ROMs available from
[ACL-SW-URL]:

http://www.acl.lanl.gov/software

For more information, please refer to the documentation section at the above URL.
Bug reports and comments may be sent to :

tau-bugs@cs.uoregon.edu

Technical papers about TAU can be downloaded from the TAU Publications home-
page at [TAU-PUBS-URL]

Acknowledgements

The TAU development team wishes to thank the U.S. Government, Department of
Energy for their support of the TAU project under the DOE-2000 and ASCI Level 3
grants.

Los Alamos
NATIONAL LABORA TORY

University of Oregon

Forschungszentrum
Jülich GmbH

Summar y

82 TAU Portable Profiling and Tracing Toolkit User’s Guide

TAU Portable Profiling and Tracing Toolkit User’s Guide 83

Ackno wledg ements

CHAPTER 7 Appendix :
Configuration Issues

Appendix : Configuration Issues

84 TAU Portable Profiling and Tracing Toolkit User’s Guide

Instructions for Installing TAU with POOMA:

POOMA (Parallel Object Oriented Methods and Applications) is an object-oriented
framework for building high-performance computational science applications.
[POOMA-URL]

SMARTS (Scalable Multithreaded Asynchronous Runtime System) is a run-time
thread system for parallel execution on SMP systems[SMARTS-URL].

To build the POOMA library with pr ofiling (using TAU and PDT), but
no parallelism.

1. First make sure you have already installed the PDT package (Program Data-
base Toolkit is a source code analysis package). PDT is available on the ACL
CD-ROM in the pdtoolkit-1.1 directory, or from the ACL software web page
[ACL-SW-URL]. Install the version of PDT. See the PDT INSTALL instruc-
tions for information on how to install PDT.

2. Then make sure you have already built and installed the TAU package. TAU is
available on the ACL CD-ROM in the tau-2.7 directory, or from the ACL soft-
ware web page [ACL-SW-URL]. Build the version of TAU without SMARTS
or any other threads, and install it. POOMA can be built with profiling for all
platforms where TAU can be compiled. See the TAU INSTALL instructions
for information on how to build and install TAU.

3. Set the TAUDIR environment variable to the location of the top- level of the
TAU installation, and the PDTDIR environment variable to the location of the
PDT installation.

4. Follow the instructions above for building POOMA, but make sure you
include the --profile flag when you run configure. You do not need to change
the settings for the location of TAU in the config/arch/*.conf files if you set
TAUDIR and PDTDIR; the configure script will use the config/arch/*.conf
settings only if they are not set. A typical configure line that builds an opti-
mized POOMA with profiling is

 configure <basic option list> --opt --profile

5. Then, set the POOMASUITE variable, and do ‘gmake; gmake install’ as nor-
mal.

TAU Portable Profiling and Tracing Toolkit User’s Guide 85

Instructions f or Installing T AU with POOMA:

6. To build POOMA applications in the examples/ subdirectories, follow the
same steps as explained above when just compiling POOMA, except instead
of using Makefile.user, compile with Makefile.profile. The TAU profiling
mechanism requires extra steps to pre-process the the source files to automati-
cally insert profiling code. Makefile.profile includes these extra steps.

7. If you follow these steps, then when a POOMA application it should produce
a file or set of files profile.N.N.N. You can use the ‘pprof’ or ‘racy’ tools from
the TAU installation to print and browse the profiling information.

To build the POOMA library with parallelism (using SMAR TS), and
profiling (using TAU):

WARNING: MIGHT NOT WORK EXCEPT UNDER IRIX 6.X AND KCC 3.3d
OR LATER

Using both SMARTS and TAU together is a little bit more complicated that just
building POOMA with one or the other of these packages, due to the fact that there
is a slight circular dependency between SMARTS and TAU: TAU uses the thread
capability from SMARTS, and SMARTS uses the profiling capability from TAU.
So to build POOMA with both SMARTS and TAU, you should follow these steps
exactly in the order they are given.

1. The first step is to unpack or copy the SMARTS, TAU and PDT packages to
locations where they can be built and installed. For illustrative purposes, we’ll
say these packages are unpacked to /usr/local/smarts-1.0.1 , /
usr/local/tau-2.7 and /usr/local/pdtoolkit-1.1 respec-
tively.

2. Next, install PDT. For example, on 64-bit SGI machines, you would cd to/
usr/local/pdtoolkit-1.1 and say:

% ./configure -KCC -arch=IRIX64

 If you were building the packages with GNU or SGI CC, you would substitute
-KCC with -GNU or -CC respectively. If you were building for SGI N32 or
O32 architectures, you would substitute -arch=IRIX64 with -arch=IRIXN32 or
-arch=IRIXO32 respectively. See the PDT installation instructions included in
its INSTALL file for further details. Linux does not need any -arch configura-
tion parameter to be specified. TAU uses PDT to build a source code instru-
mentor to instrument POOMA sources for profiling.

3. Next, configure, build, and install TAU. For example, on 64-bit SGI
machines, you would cd to /usr/local/tau-2.7 and say:

Appendix : Configuration Issues

86 TAU Portable Profiling and Tracing Toolkit User’s Guide

 % ./configure -arch=sgi64 -c++=KCC -cc=cc -SGITIM-
ERS -smarts -tulipthread=/usr/local/smarts-1.0.1
\
-pdt=/usr/local/pdtoolkit-1.1

 on Linux machines, you would say:

 % ./configure -arch=linux -c++=KCC -cc=cc -smarts
\ -tulipthread=/usr/local/smarts-1.0.1 \
-pdt=/usr/local/pdtoolkit-1.1

 to configure TAU for the specified architecture. To build and install TAU, you
would say :

 % gmake install

 Here, the -arch flag selects the architecture (use -arch=linux for Linux builds),
the -c++ and -cc flags select the compiler to use, -SGITIMERS is an sgi-spe-
cific flag to use fast sgi-only timer routines, and the -smarts and -tulipthread
flags are used to indicate where to find the SMARTS headers. Then, this
builds and installs TAU. Since no -prefix=<dir> flag was given, this
installs TAU in the default location, which is the current directory (/usr/
local/tau-2.7). See the TAU installation instructions in its INSTALL file for
further details.

4. Now, configure, build, and install SMARTS. cd to the smarts-1.0.1 directory,
and do the following (this example is for building SMARTS on a 64-bit SGI
platform):

 % ./configure --with-arch=iris4d --prefix \
/usr/local/smarts-1.0.1 --with-taudir=/usr/
local/tau-2.7 --enable-64bit --enable-profile

 % gmake
 % gmake install

 Here, the --with-arch flag select the architecture to build for (use --with-
arch=i386-linux for Linux), the --prefix flag selects where to install
SMARTS after it has been built (in this case, it is in the same build directory),
and the --with-taudir and --enable-profile flags indicate that the library
should use TAU from the given location. --enable-64bit is only needed for
64-bit compilation on SGI’s.

5. After TAU and SMARTS are built and installed, you can compile POOMA.
Go to the pooma-2.2.0 directory, and do the following:

TAU Portable Profiling and Tracing Toolkit User’s Guide 87

Instructions f or Installing T AU under Windo ws

% setenv TAUDIR /usr/local/tau-2.7 (or where it was
installed)

% setenv PDTDIR /usr/local/pdtoolkit-1.1 (or where
it was installed)

% setenv SMARTSDIR /usr/local/smarts-1.0.1 (or
where it was installed)

% ./configure --arch SGI64KCC --parallel --profile
--suite PP --ex <other opts>

% setenv POOMASUITE PP
% gmake

 Here, TAUDIR and PDT indicate where to find installed TAU and PDT com-
ponents, and SMARTSDIR indicates where to find the installed SMARTS
library. When these are set, run the POOMA configuration script as
described for the basic case, but make sure to include the --parallel and --pro-
file flags. After this, you set the POOMASUITE variable as is done in the
previous descriptions of building the POOMA library, and run make.

6. To build POOMA applications in the examples/ subdirectories, follow the
same steps as explained above when just compiling POOMA, except instead
of using Makefile.user, compile with Makefile.profile. The TAU profiling
mechanism requires extra steps to preprocess the the source files to automati-
cally insert profiling code. Makefile.profile includes these extra steps.

7. If you follow these steps, then when a POOMA application it should produce
a file or set of files profile.N.N.N. You can use the ‘pprof’ or ‘racy’ tools from
the TAU installation to print and browse the profiling information. TAU can
profile multithreaded runs as well as serial runs, and keeps track of what code
was executed in what thread.

Instructions for Installing TAU under Windows

Supported Systems: Windows9x/NT.

Compiler: Microsoft Visual C++ Version 5.0 - Service Pack 3, or above.

 NOTE: Service Pack 3 MUST be installed ... it contains required bug fixes.

Appendix : Configuration Issues

88 TAU Portable Profiling and Tracing Toolkit User’s Guide

Section1.

The following steps detail how to build TAU libraries on Windows9x/NT.

For illustrative purposes, we assmue that the TAU root directory is: “C:\TAU-
SOURCE-DIR”.

1. Download TAU. TAU is distributed as source and prebuilt libraries forWin-
dows. If you wish to use the prebuilt libraries, skip to steps 25 and 26.

2. Open Microsoft Visual C++ ... henceforth referred to as VC++.

3. i) If you wish to create a dynamic library proceed to step 4.
ii) If you wish to create a static library proceed to step 12.

4. Creating a dynamic library allows you to profile Java code using Sun’s
JDK1.2+.

5. From the “File” menu in VC++, select “New”.

6. Click on the “Projects” tab.

7. Select “Win32 Dynamic-Linked Library”.

8. Type in a name for your new library.

9. Make sure that the radio button on the right of the new project window is set to
“Create a new workspace”.

10. Click “OK”

11. Please skip to step 18 below.

12. From the “File” menu in VC++, select “New”.

13. Click on the “Projects” tab.

14. Select “Win32 Static Library”.

15. Type in a name for your new library.

16. Make sure that the radio button on the right of the new project window is set to
“Create a new workspace”.

17. Click “OK”

18. Open Windows Explorer, and, from the TAU source you downloaded, copy
the C:\TAU-SOURCE-DIR\include\Profile and C:\TAU-SOURCE-DIR\src\Pro-
file directories to your new project directory. For example, if you new
project was located in “C:\Program Files\DevStudio\MyProjects\New-
TauLib”, you would now have two new subdirectories of “C:\Program
Files\DevStudio\MyProject\NewTauLib” named, “include\Profile” and
“src\Profile”.

TAU Portable Profiling and Tracing Toolkit User’s Guide 89

Instructions f or Installing T AU under Windo ws

19. Now, back in VC++, from the “Project” menu, select “Add To Project” and click
on “Files”. Move to your new “src\Profile” directory and select the following
list of files: (holding down the control key whilst clicking so that you can
select more than one file)
FunctionInfo.cpp
Profiler.cpp
RtsLayer.cpp
RtsThread.cpp
TauJava.cpp
TauMapping.cpp
UserEvent.cpp
WindowsThreadLayer.cpp

Now click OK.

20. From the “Project” again, select “Settings” and then click on the “C/C++” tab.

21. Make sure that the Category in “General” and in the “Preprocessor definitions:”
box, add the following defines: (separated by commas)
TAU_WINDOWS TAU_DOT_H_LESS_HEADERSPROFILING_ON

If you want to profile a Java application, also add:
JAVA

Click “OK”

22. From the “Tools” menu, select “Options”. Click on the “Directories” tab. Make
sure that the “Show directories for:” field has “Include files” selected. Now add
a new include directory named
“C:\YOUR_PROJECT_DIRECTORY\include”. Thus, our above example
would be: “C:\Program Files\DevStudio\MyProjects \NewTauLib\include”.
Also add the include directories for jvmpi.h and jni_md.h. These are typi-
cally in “C:\JAVA_ROOT_DIR\include” and
“C:\JAVA_ROOT_DIR\include\win32”. Thus, when done, you should have
three new include directories listed. Now click “OK”.

23. Now, from the “Build” menu, select “Build PROJECT_NAME.dll (or .lib)”

24. Ignoring warnings, you should now have a library file in your project debug
directory.

25. If you created a dll for use with Java, you only need to make sure that the dll is
in a location that can be found by Java when it is running. The command to pro-
file your Java application is: java -XrunTAU “Java Application Name”
“Application parameters”. The default TAU.dll for use with a Java app. is

Appendix : Configuration Issues

90 TAU Portable Profiling and Tracing Toolkit User’s Guide

provided in: “C:\TAU-SOURCE-DIR\windows\lib”. If, when building your
dll from the source, you named it something other than TAU.dll, you can
either rename it, or replace “TAU” in “java -XrunTAU” with your dll name.

26. If you created a static library, you will need to include a reference to it in when
you build your application. You can do this by adding the library file to you
list of libraries in “Project -> Settings -> Link” inside VC++. You must then
make sure that the library is in a location know to VC++. You can do this in
your “Tools ->Options->Directories->Library files” section of VC++

Section 2.

The Windows port ships with a prebuilt version of pprof which can be used to view
your profiling data (See the TAU documentation for more details). Make sure that
pprof.exe is in your current path. It can be found in C:\TAU-SOURCE-DIR\win-
dows\bin. Currently, there is no version of Racy for Windows, however, we are re-
writing Racy in Java and will soon have it running on the Windows platform.

For information on how to profile your C/C++ and Java code, please see the TAU
documentation.

For more information on the Windows port of TAU please send mail to
tau-bugs@cs.uoregon.edu .

TAU Portable Profiling and Tracing Toolkit User’s Guide 91

URLs

CHAPTER 8 References

URLs

[TAU-URL] http://www .acl.lanl.go v/tau

[TAU-PUBS-URL] http://www .cs.uoregon.edu/resear ch/
paracomp/tau/paper s.html

[TAU-PGROUPS-URL] http://www .acl.lanl.go v/tau/docs/selec-
tive .html

[TAU-SECURITY-URL] http://www .acl.lanl.go v/tau/docs/
faq.html#security

[KAI-URL] http://www .kai.com

[GNU-URL] http://www .gnu.or g

[PGI-URL] http://www .pgr oup.com

[FUJITSU-URL] http://www .tools.fujitsu.com/lin ux/
inde x.shtml

[TCLTK-URL] http://www .scriptics.com

[NPB-URL] http://www .nas.nasa.go v/Software/
NPB/

References

92 TAU Portable Profiling and Tracing Toolkit User’s Guide

[DYNINST-URL] http://www .cs.umd.edu/pr ojects/d ynin-
stAPI/

[PARADYN-URL] http://www .cs.wisc.edu/~parad yn/

[PAPI-URL] http://ic l.cs.utk.edu/pr ojects/papi/

[PCL-URL] http://www .fz-juelic h.de/zam/PCL/

[PARP-URL] http://www .csi.uoregon.edu/pr ojects/
parp/

[VAMPIR-URL] http://www .pallas.de/pa ges/vampir .htm

[PALLAS-URL] http://www .pallas.de

[POOMA-URL] http://www .acl.lanl.go v/pooma

[SMARTS-URL] http://www .acl.lanl.go v/smar ts

[TULIP-URL] http://www .acl.lanl.go v/tulip

[ACL-SW-URL] http://www .acl.lanl.go v/software/

[OPENMP-URL] http://www .openmp.or g

[PDT-URL] http://www .acl.lanl.go v/pdtoolkit

[MPI-URL] http://www-unix.mcs.anl.go v/mpi/

[MPIJAVA-URL] http://www .npac.syr .edu/pr ojects/pcr c/
HPJava/mpiJa va.html

