
A Component Infrastructure for Performance and Power
Modeling of Parallel Scientific Applications

Van Bui
∗

University of Houston
501 Phillip G. Hoffman Hall
Houston, TX 77204, USA

vbui@uh.edu

Boyana Norris
Argonne National Laboratory

9700 S. Cass Ave.
Argonne, IL 60439, USA
norris@mcs.anl.gov

Kevin Huck
University of Oregon
120 Deschutes Hall

Eugene, OR 97405, USA
khuck@cs.uoregon.edu

Lois Curfman McInnes
Argonne National Laboratory

9700 S. Cass Ave.
Argonne, IL 60439, USA

curfman@mcs.anl.gov

Li Li
Argonne National Laboratory

9700 S. Cass Ave.
Argonne, IL 60439, USA

likli@mcs.anl.gov

Oscar Hernandez
University of Houston

501 Phillip G. Hoffman Hall
Houston, TX 77204, USA

oscar@cs.uh.edu

Barbara Chapman
University of Houston

501 Phillip G. Hoffman Hall
Houston, TX 77204, USA
chapman@cs.uh.edu

ABSTRACT
Characterizing the performance of scientific applications is
essential for effective code optimization, both by compil-
ers and by high-level adaptive numerical algorithms. While
maximizing power efficiency is becoming increasingly im-
portant in current high-performance architectures, little or
no hardware or software support exists for detailed power
measurements. Hardware counter-based power models are a
promising method for guiding software-based techniques for
reducing power. We present a component-based infrastruc-
ture for performance and power modeling of parallel scien-
tific applications. The power model leverages on-chip per-
formance hardware counters and is designed to model power
consumption for modern multiprocessor and multicore sys-
tems. Our tool infrastructure includes application compo-
nents as well as performance and power measurement and
analysis components. We collect performance data using the
TAU performance component and apply the power model in
the performance and power analysis of a PETSc-based par-
allel fluid dynamics application by using the PerfExplorer
component.

∗Correspondence should be directed to vbui@uh.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBHPC 2008,October 14–17, 2008, Karlsruhe, Germany.
Copyright 2008 ACM 978-1-60558-311-2/08/10 ...$5.00.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—do-
main engineering ; J.2 [Physical Sciences and Engineer-
ing]: Physics

General Terms
Design, Performance, Components, Standardization

Keywords
power modeling, performance modeling, Common Compo-
nent Architecture, CCA

1. INTRODUCTION
Performance analysis of scientific applications is still more

of an art form than a science. While the number of tools
and experts in performance analysis is growing, evaluating
and improving performance of parallel applications remain
difficult, time-consuming, manual processes, often requiring
detailed knowledge of different architectures and tools. If in
addition to performance one wishes to estimate the power
used by an application, the options are even more limited.
Cycle-accurate simulation is a popular approach to estimat-
ing the power and energy use of computations, but only
small benchmarks can be simulated [3, 69]. Furthermore,
hardware for direct power measurements is largely nonexis-
tent. Component-based software engineering enables auto-
mated code generation for various purposes based on well-
defined component interfaces. This has been leveraged to
provide performance measurement and analysis capabilities
to component-based applications with a much better degree
of automation. We make the following contributions towards
this effort:



• Present a component-based framework for automated
performance and power measurement and analysis.

• Design performance and power models based on per-
formance hardware counter information.

• Implement components that provide commonly needed
functionality, such as database access and manipula-
tion.

• Describe how the performance analysis infrastructure
based on PerfExplorer and the OpenUH compiler can
be extended with power models to estimate power and
energy consumption based on hardware counter infor-
mation.

• Apply our framework and models to measure and an-
alyze the performance and power characteristics of a
PETSc-based parallel fluid dynamics application on a
distributed-shared memory system.

1.1 The Common Component Architecture
Computational scientists face numerous software develop-

ment challenges in parallel and distributed high-performance
computing (HPC). Rapid advances and increasing diversity
in high-performance hardware platforms continue to spur
the growing complexity of scientific simulations. The result-
ing environment presents ever-increasing productivity chal-
lenges associated with creating, managing, and applying
simulation software to scientific discovery. Component tech-
nology (see, e.g., [53]), which is now widely used in main-
stream computing but has only recently begun to make in-
roads in HPC, extends the benefits of object-oriented de-
sign by providing coding methodologies and supporting in-
frastructure to improve software extensibility, maintainabil-
ity, and reliability. The Common Component Architecture
(CCA) Forum [14] is thus developing a component stan-
dard [7] for scientific computing, which includes capabilities
for language-neutral specification of common component in-
terfaces, interoperability for software written in program-
ming languages important to scientific computing, and dy-
namic composability, all with minimal runtime overhead.

In addition to aiding software development, the compo-
nent environment can facilitate the deployment of new com-
putational capabilities to benefit the entire lifecycle of sci-
entific simulation software. As components introduce an ad-
ditional layer of program abstraction, performance tools are
needed that support automated performance measurement
and analysis. Component-based performance monitoring is
currently supported by the Tuning and Analysis Utilities
(TAU) performance system. Few tools support high-level
performance measurement and analysis of component-based
applications. To the best of our knowledge, there are no
component-based systems for performance and power mea-
surement and analysis. The work presented in this paper is
part of a component initiative on computational quality of
service (CQoS) [36,42], which helps application scientists dy-
namically compose, substitute, and reconfigure component
implementations and parameters, taking into account trade-
offs among CQoS factors such as power usage, performance,
accuracy, and reliability.

1.2 Motivating Example: The Effect of Com-
piler Optimizations on Performance and
Power

The OpenUH [34] compiler is a branch of the open source
Open64 compiler suite for C, C++, and Fortran 95, support-
ing the IA-64, IA-32e, and Opteron Linux ABI and stan-
dards. OpenUH provides complete support for OpenMP
2.5 compilation and its runtime library. OpenUH has been
enhanced to support the requirements of TAU [49], KO-
JAK [39], and PerfSuite [31] by providing an instrumen-
tation API for source code and OpenMP runtime library
support. OpenUH provides a complete compile-time in-
strumentation module that works at different compilation
phases and covers a variety of program constructs (e.g.,
procedures, loops, branches, callsites). We have designed
a language-independent compiler instrumentation API that
can be used to instrument complete applications written
in C, C++, Fortran, OpenMP and MPI [20]. OpenMP
constructs are handled via runtime library instrumentation,
where the fork and join events, and implicit and explicit
barriers are captured [12]. We leveraged the OpenUH com-
piler’s integrated performance measurement environment in
exploring the tradeoffs between performance and power as
they relate to compiler optimization levels.

In this example, we studied the performance and power
characteristics of a comprehensive and powerful real world
simulation code, GenIDLEST [54]. GenIDLEST (General-
ized Incompressible Direct and Large-Eddy Simulations of
Turbulence) solves the incompressible Navier-Stokes and en-
ergy equations and implements support for multiple levels
of parallelism with “virtual cache blocks” at the lowest level.
“Embedded” or “hybrid” parallelism [55] is exploited by us-
ing OpenMP in each MPI process. We created PerfExplorer
scripts to compute power dissipation and energy consump-
tion estimates and analysis. Different levels of standard op-
timizations for the OpenUH compiler were applied ranging
from O0 (all optimizations are disabled) to O3 (applies the
most aggressive optimizations including loop nest optimiza-
tions). The application was run in parallel with MPI on 16
processors on an Altix 300.

The results from the study show that power dissipation
generally increases with higher optimization levels, while
energy consumption decreases as more aggressive compiler
optimizations are applied (see Table 1). These results are
consistent with previous studies that examine the effects of
compiler optimizations on power dissipation and energy con-
sumption [47, 62]. Also consistent with a previous research
study [62], we found that the instruction count was directly
proportional to energy consumption and that a similar re-
lationship exists between instructions per cycle (IPC) and
power dissipation. A higher instruction count translates to
more work for the CPU, and so energy consumption in-
creases. Optimizations such as common subexpression elim-
ination and copy propagation that decrease the number of
instructions are generally beneficial when compiling for en-
ergy efficiency. When compiling for power efficiency, how-
ever, optimizations that increase the overlap in instruction
execution while keeping the instruction count fairly constant
(and therefore increasing IPC) result in higher power con-
sumption. Examples of such optimizations include software
pipelining, instruction scheduling, and vectorization.

In the following sections, we discuss existing tool sup-
port for performance and power monitoring and analysis of



Table 1: GenIDLEST relative differences for differ-
ent optimization settings, using 16 MPI processes
on a 90riblet problem. Optimization level O0 is the
baseline.

Metric -O0 -O1 -O2 -O3
Time 1.0 0.338 0.071 0.049
Instructions Completed 1.0 0.471 0.059 0.056
Instructions Issued 1.0 0.472 0.063 0.061
Instructions Completed Per Cycle 1.0 1.397 0.857 1.209
Instructions Issued Per Cycle 1.0 1.400 0.909 1.316
Watts 1.0 1.025 1.001 1.029
Joules 1.0 0.346 0.071 0.050
FLOP/Joule 1.0 2.867 13.684 19.305

HPC applications. We then detail our measurement system,
which includes performance and power models and related
software components. We present results from our experi-
ments applying our measurement infrastructure to explore
the performance and power characteristics of an application
based on the scientific numerical library PETSc. Finally, we
close with a discussion of plans for future work.

2. RELATED WORK
Several tools support performance and power measure-

ments and analyses. However, most toolsets are targeted
for either performance or power, not both at the same time.
There is a lack of support for integrated performance and
power measurement and analysis tools, especially at the ab-
straction level of components. In this section, we detail
the state-of-the-art tools that currently support performance
and power measurments and analyses.

2.1 Performance Monitoring and Analysis
Tools

Performance measurement determines what performance
event is captured and in what manner. Two common forms
of measurement are tracing and profiling. Numerous trace-
based performance tools are available in both research and
industry. Examples of tracing tools include TAU [49],
SCALEA [61], KOJAK [67], Vampirtrace [43], and the Sun
Analyzer [27]. Tracing can potentially incur large overheads
and generate very large trace files. Profiling addresses the
overhead problems that arise from tracing. A profiling tech-
nique known as statistical sampling mitigates data collec-
tion overheads by capturing a subset of events. Statisti-
cal sampling involves periodically sampling system counters.
Performance tools such as PerfSuite [44], VTune [68], HPC-
Toolkit [38], and JRockit [52] collect performance data using
statistical sampling. A drawback of statistical sampling is
that the performance data can be less precise and complete
compared to tracing. If the sampling threshold is set to a
high value, the tool will not be able to measure the events
that execute faster than the threshold value. If the sampling
threshold is set to a low value, large levels of overhead can
result from the high frequency of sampling.

The TAU performance system [48] is a portable profil-
ing and tracing toolkit for performance analysis of parallel
programs written in Fortran, C, C++, Java, and Python.
The primary way TAU collects measurement data from ap-
plications is by auto-instrumenting the code at the compile
stage and linking in the TAU measurement runtime. TAU

can measure at a granularity that ranges from the entire ap-
plication down to single lines of code but commonly occurs
at function and loop boundaries. Instrumentation and mea-
surement tools such as TAU can collect detailed performance
data from parallel applications.

Performance analysis tools process the performance data
and transform it into a format that can be more easily ac-
cessible to the performance analyst. Since processing the
data can incur a large runtime overhead, some tools pro-
cess the performance data offline [24, 40, 45]. Performance
analysis can also be accomplished online [2, 19, 57]. Online
analysis usually supports runtime optimizations. In order
for online analysis to be worth the runtime overheads, the
improvements from optimizations should outweigh the over-
head costs. In the case of performance analysis using low
level hardware performance counters, analysis can be per-
formed either online or offline.

PerfExplorer [24], a framework for parallel performance
data mining, and knowledge discovery, was developed for an-
alyzing on large collections of performance experiment data.
The framework architecture enables the development and in-
tegration of data mining operations that can be applied to
parallel performance profiles. PerfExplorer is built on a per-
formance data management framework called PerfDMF [23],
which provides a library to access the parallel profiles and
save analysis results in a relational database. PerfDMF in-
cludes support for nearly a dozen performance profile for-
mats, including TAU profiles. PerfExplorer is integrated
with existing analysis toolkits (e.g., R [58] and Weka [66])
and provides for extensions using those toolkits. Both PerfDMF
and PerfExplorer are free, open-source tools included in the
TAU distribution.

2.2 Power Monitoring and Analysis Tools
For large-scale server systems, timely predictions of power

consumption are critical for preventing thermal emergencies,
reducing cooling costs, and maximizing the lifetime and re-
liability of the system. Power can be measured by using
live measurement techniques; however, tools and necessary
equipment are not readily available or easy to use. An alter-
native is to measure power by using thermal sensors, but this
method is highly inaccurate because of the effects of ther-
mal inertia and slow thermal sensor readings. Research has
shown that power can be accurately modeled by using on-
chip performance hardware counters [8,9,25]. Most modern
processors are equipped with complete hardware-based sup-
port for performance monitoring in the form of performance
counters. Thus, modeling power by using performance coun-
ters includes the benefits of low overhead and high-accuracy
measurements.

Several strategies exist for reducing total power dissipated
and energy consumed by a microprocessor. Power- and
energy-saving techniques can be applied at the level of cir-
cuits, architectures, system software, and application layer
[63]. Power analysis and optimizations at the system soft-
ware and application layers have not been adequately ex-
plored, but some progress has been made in recent times.
Seng and Tullsen [47] studied the effects of power and energy
savings for both standard compiler optimizations and indi-
vidual optimizations on the Pentium 4. Their experiments
suggest that compiling for the best performance is equated
with high energy savings. Valluri and John [62] performed
a similar but more in-depth study on the Alpha 21264 pro-



cessor. They found that optimizations that improve perfor-
mance by reducing the instruction count are optimized for
low energy. They also found that optimizations that im-
prove performance by increasing the amount of overlap in
execution of instructions increase average power dissipation
in the processor. LUNA [17] is a high-level power analy-
sis framework for multicore networks-on-chips (NoCs). The
SUIF2 compiler exploits LUNA for power estimation and op-
timizations. The COPPER project [4] applies dynamic com-
pilation strategies for dynamic power management. Project
members have introduced techniques for compiler-controlled
dynamic register file reconfiguration and profile-driven dy-
namic clock frequency and voltage scaling. At the appli-
cation layer, PowerPack [13] provides library routines that
allow users to apply the Advanced Configuration and Power
Interface (ACPI) in applications and reduce the CPU’s pro-
cessing speed via dynamic voltage scaling (DVS). Few tools
provide an automated framework enabling the nonexpert to
successfully apply these optimization techniques to achieve
low energy consumption and power dissipation rates in their
applications.

3. COMPONENT-BASED PERFORMANCE
AND POWER MODELING
ENVIRONMENT

In this section we introduce our hardware counter-based
performance and power models that are ultimately aimed
at guiding compiler optimizations and automated algorithm
adaptation. Most modern processors are equipped with com-
plete hardware-based support for performance monitoring.
Major hardware vendors including Intel, AMD, IBM, Com-
paq, and Cray provide this base level of support for perfor-
mance monitoring in their processors. In the subsequent dis-
cussion, we focus on the Itanium 2 processor (Madison 9M),
but the same general approach can be applied to different
architectures (e.g., we are defining and validating models for
the SiCortex platform).

3.1 Performance Model
The performance model is designed to enable an appli-

cation tuning cycle consisting of iterative application runs
of data collection that identify locations and explanations
for performance inefficiencies. The performance model pre-
sented here is based on a methodology applied to bottleneck
analysis as discussed in [28] and [22]. Jarp [28] applies a
methodology for bottleneck analysis using hardware perfor-
mance counters. The user initially counts the most general
events and drills down to more fine-grained events. Event
counters are structured to enable the decomposition of more
general events. Our performance model emphasizes more
floating-point inefficiencies and so extends the model shown
in [28] in this respect.

To identify regions of code where there is a higher then
average level of stall cycles in the processor back-end, one
can apply the following formula.

GlobalStalls = Stall Cycles/Total Cycles (1)

For applications that are floating-point based, we derive
several floating point inefficiency metrics. These metrics can
be easily extended for integer-based programs.

The following metric computes the percentage of stall cy-
cles from floating-point interregister dependencies, latencies
of load instructions, and stalls at the floating-point unit.

%FLPStalls = FLP Stalls/Total Cycles (2)

The following metric identifies the regions of code that
have a higher than average percentage of floating-point stalls
and a high count of floating-point operations. Note that this
metric is dependent on problem size and so should be used
in tuning applications where the problem size does not vary.

FLPIneffD = FLP OPS∗
(FLP Stalls/Total Cycles)

(3)

The following metric computes a problem-size-independent
floating-point inefficiency value.

FLPIneffI = (FP OPS/Retired Inst)∗
(Stall Cycles/Total Cycles)

(4)

These metrics are calculated by using PerfExplorer for
each region being measured. The regions with the high-
est inefficiency are those that the programmer and compiler
should focus on optimizing.

We use hardware counters to perform the memory bottle-
neck analysis based on the following formula.

Memory stalls =
(L2 data ref - L2 misses) * L2 mem latency +
(L2 miss - L3 missed) * L3 mem latency +

(L3 miss - Remote mem access) * Local mem latency +
(Remote mem access)* Remote mem latency +

TLB misses * TLB miss penalty

Remote mem access ratio = Remote mem access/L3 miss

The coefficients in this formula are the different latencies
(in cycles) for the different levels of memory for the Itanium
2 processor (Madison), and the interconnection latencies of
the SGI NumaLINK 4 for local and remote memory accesses.
The value for remote memory latency accesses is an estima-
tion of the worst-case scenario for a pair of nodes with the
maximum number of hops and is system dependent.

3.2 Power Model
In our study of modeling processor power and energy con-

sumption, we use PerfExplorer to compute a power metric
based on [26]. Isci and Martonosi [26] construct a model of
power consumption based on performance hardware coun-
ters and on several on-die components of an Intel Pentium 4
processor.We apply a modified version of this power model
for a more complex processor (i.e., Madison 9M Intel Ita-
nium 2 processor) and on a multiprocessor system at the
National Center for Supercomputing Applications (NCSA).
We extend the power model to use transistor counts as ini-
tial values for the architectural scaling factor instead of com-
ponent area ratios [26]. The architectural scaling factor in
the model is applied to the maximum power value for each
component (see Eq. 5). Given that transistor activity and
leakage current are important factors for both dynamic and
static power consumption, respectively, we base the archi-
tectural scaling factor on transistor counts for each compo-
nent. Furthermore, we simplify our power model and do not



initially take into account the power-saving effects of clock
gating. Our power model is based on on-die components and
initially considers the caches and core logic of the processor.
Our power model metric is as follows.

Power(Ci) = AccessRate(Ci)∗
ArchitecturalScaling(Ci) ∗MaxPower

(5)

TotalPower =

nX
i=0

Power(Ci) + IdlePower (6)

In Eq. 5, power is computed for each component (Ci) of
the processor. The maximum power value is the published
thermal design power for the processor. The power for each
component is weighted based on the access rates for the dif-
ferent cache levels and core logic. Table 2 lists the access
rate metrics for each component. Equation 6 computes the
total power consumed by the processor and is based on the
sum of the power consumed by n components and the idle
power. For multiprocessor or multicore systems, the total
power across all processing elements can be modeled by sum-
ming the total power computed in Eq. 6 for each processor
or core.

3.3 Components
Next we describe the components involved in the perfor-

mance instrumentation, data gathering, database manage-
ment, and performance and power analysis. Our ultimate
goal is to provide components that automate all steps in the
process of collecting and analyzing performance information,
enabling the definition of custom analyses, such as identifi-
cation of the sources of inefficiency or estimating power and
energy use.

3.3.1 TAU Performance Component
The TAU performance analysis system includes a compo-

nent for use in component applications [35]. This compo-
nent addresses evaluation and optimization issues in high-
performance component environments, through the use of
wrappers and proxies. The wrapper approach builds on
TAU’s dynamic performance mapping features. At the time
port bindings are made by the CCA framework, it is pos-
sible to inform the port performance wrappers of the con-
nection (i.e., user) identity. This step can occur either at
the user or provider interface, or both. With this informa-
tion, a performance mapping can be created to associate
measured performance data with the specific service invo-
cation. The proxy approach creates a proxy component for
each component the user wants to analyze. The proxy com-
ponent shares the same interface as the actual component.
When the application is composed and executed, the proxy
is placed directly “in front” of the actual component. Since
the proxy implements the same interface as the component,
the proxy intercepts all of the method invocations for the
component and measures its performance.

3.3.2 Performance Database Components
We have defined interfaces for storing and querying per-

formance data and associated metadata (see Fig. 1). The
DB interface provides methods for establishing a connec-
tion to a database and for storing and accessing data. The
data is described through the Property and PropertySet in-

terfaces. The comparator interfaces compare and/or match
properties of two problems under user-specified conditions.

Figure 1: Database interfaces excerpt.

A set of components implements these interfaces. In our
current implementation, we are using the database compo-
nent mainly to store performance data into the database at
the end of an application run for later (offline) analysis with
the PerfExplorer component described in Section 3.3.3. In
the future, we plan to provide utility components based on
the basic database component (whose interfaces are close
to generic SQL) to support domain-specific database opera-
tions.

3.3.3 PerfExplorer Analysis Component
We have created a simple component interface to the Perf-

Explorer engine. At present, the component accepts a Python
analysis script as input, which contains the actual analysis
implementation. The Ccaffeine GUI snapshot in Fig. 2 il-
lustrates the current implementation. The next step is to
design interfaces that allow the implementation of different
components for analysis without having to rely on a sepa-
rate Python script. This would enable greater flexibility, not
only in terms of language choice, but in exposing more of
PerfExplorer’s functionality through a multilanguage API
that is not restricted by Jython’s limitations (e.g., having
to write code compatible with an older version of Python,
a smaller os module, and the inability to use C extension
libraries).

3.3.4 The Application
In our experiments we treated the application as a single

black-box component. We instrumented the entire PETSc



Table 2: Component access rate metrics.

Components Metrics

Core Logic Total Instructions Retired/∆Cycles
L1 Cache L1 Total Cache Access/∆Cycles
L2 Cache L2 Total Cache Access/∆Cycles
L3 Cache L3 Total Cache Access/∆Cycles

Figure 2: Example of an analysis component using
the PerfExplorer component.

library with TAU and the Program Database Toolkit (PDT).
Work is in progress to extend the automated performance
instrumentation to the Terascale Optimal PDE Simulations
(TOPS) interfaces and components [16, 50] and collect the
performance data automatically through the performance
proxy mechanism described in Section 3.3.1. In general,
we cannot expect to have fully instrumented numerical li-
braries and must employ the performance proxy approach
to automatically collect performance information for arbi-
trary computations.

4. EXPERIMENTAL RESULTS
Our case studies were conducted on the Altix 3600. The

Altix 3600 is a distributed-shared memory system consisting
of 256 nodes with two Itanium 2 processors per node, for a
total of 512 processors. A single address space is seen by all
the processors or nodes, and its global memory is based on
a cache-coherent Non-Uniform Memory Access (ccNUMA)
system implemented via the NUMAlink. Each node has a
local memory; two nodes are connected via a memory hub to
form a computational brick (C-brick). The C-bricks are con-
nected via memory routers in a hierarchical topology. The
Itanium 2 (Madison 9M) processor has 16 KB of Level 1 in-
struction cache and 16 KB of Level 1 data cache. The Level
2 cache is unified (both instruction and data) and is 256 KB.
The Level 3 cache is also unified. The different characteris-
tics of the main components of the Itanium 2 processor can
be measured via the hardware counters.

4.1 Driven Cavity Flow Simulation
The Portable, Extensible Toolkit for Scientific Comput-

ing (PETSc) [5, 6] is a suite of numerical libraries for the
parallel solution of scientific applications modeled by par-
tial differential equations (PDEs). Our initial experiments
in power issues for PETSc focus on the solution of large-
scale linear systems, which often dominates overall runtime
for PDE-based applications.

We profile a 2-D simulation of driven cavity flow [15],

where the resulting system of nonlinear PDEs has the form

f(u) = 0, (7)

where f : Rn → Rn. We have selected this model prob-
lem because it has properties representative of many large-
scale, nonlinear PDE-based applications in domains such as
computational aerodynamics [1], astrophysics [18], and fu-
sion [56]. We use fully implicit Newton-Krylov methods (see,
e.g., [41]) to solve Eq. 7 through the two-step sequence of
(approximately) solving the Newton correction equation

(f ′(uk−1)) δuk = −f(uk−1),

in the sense that the linear residual norm ||f ′(uk−1))δuk +
f(uk−1)|| is sufficiently small, and then updating the iterate
via uk = uk−1 + δuk.

As mentioned earlier, the most time-consuming portion
of the simulation is the solution of large, sparse linear sys-
tems of equations. Table 3 confirms this fact – the primary
sources of inefficiency as determined by Eqs. 2 and 4 are
methods used in the solution (and preconditioning) of the
linear systems. The table shows events for which both ef-
ficiency metrics exceed the average by more than 50% and
whose inclusive time accounts for more than 50% of the to-
tal wall clock time. I1 designates the derived metric value
for the event computed by Eq. 2, while I1avg is the aver-
age value for that metric over all events. Similarly, I2 is
the derived metric value computed by Eq. 4, and I2avg is
the corresponding average value over all events. These re-
sults are for the weak-scaling case, in which the problem size
increases with the number of processors.

Table 3: Highest inefficiency regions in the driven
cavity application; P designates the number of pro-
cessors, and T is the total wall clock time.

P Function I1/I1avg I2/I2avg % of T
1 KSPSolve 2.21 8.89 56.72%
2 KSPSolve 1.73 4.22 68.52%
4 KSPSolve 1.76 3.38 79.07%
8 KSPSolve 1.52 2.27 89.53%

MatLUFactorNumeric 1.73 2.74 55.74%
16 KSPSolve 1.26 1.52 95.63%

MatLUFactorNumeric 1.53 1.52 71.63%
32 KSPSolve 1.26 1.52 95.63%

MatLUFactorNumeric 1.53 1.52 71.63%

The same methods are identified as having lower than av-
erage local to remote memory reference ratios by using the
memory stalls model described in Section 3.1; these are in-
herently memory-bound operations. The multigrid solution
method performs a redundant sequential LU factorization at
the coarse-grid level, so the size of the matrix being factor-
ized on each processor increases as the number of processors



grows, resulting in the MatLUFactorNumeric event being one
of the top sources of inefficiency for tests involving more
processors. To avoid this scalability issue, one could use a
parallel LU method for solving the coarse problem or could
increase the number of levels in the multigrid solver as more
processors are used to keep the coarse mesh size constant.
Subsequently, the fine-grid linear solution method becomes
the main source of inefficiency. In the remainder of this sec-
tion we focus on the effect of using different linear solution
methods for the fine-grid solution.

We profiled three linear system solution methods, using
the performance and power models described in Section 3
to evaluate the effect of each method on the performance
and power use. Weak scaling is applied in the experiments
where the problem size on each processor is 16 x 16. Fig-
ure 3 shows the total execution time for the application
when using each of three Krylov subspace linear solvers in
conjunction with a multigrid preconditioner: FGMRES(30),
GMRES(30), and BiCGS. The experiments were performed
on the Cobalt Itanium cluster at the National Center for
Supercompuing Applications at the University of Illinois at
Urbana-Champaign.

Figure 3: Total execution time of the driven cavity
application. The problem size on each processor is
16× 16 (weak scaling).

Figure 4 shows a metric derived from the power mod-
els described in Section 3.2. For one processor, the lin-
ear solution method with the best performance in terms of
execution time (FGMRES) was not the best one in terms
of power efficiency (rather, for a very small degradation of
performance, BiCGS provides better efficiency in terms of
FLOP/Joule). For larger numbers of processors, the best
performing method among the three we tried is also the one
with the best power efficiency. We note that, by default, the
FGMRES method is used. The ability to easily try multi-
ple methods and automatically evaluate their performance
using any metric of interest can lead to better performance
without having to dedicate large amounts of developer time
to analyzing the performance of the application.

5. FUTURE DIRECTIONS: COMPILER PER-
FORMANCE AND POWER COST MOD-
ELING

We will continue evolving the component interfaces and
corresponding implementations, both for database manage-

Figure 4: FLOP/Joule for the driven cavity appli-
cation.

ment and for analysis. Based on our experiences with the
current script-based PerfExplorer component, we will design
the Scientific Interface Description Language (SIDL) inter-
faces for performance modeling that can eventually be used
for interacting not just with PerfExplorer but with other
available performance analysis tools.

Our future work will include the application of our perfor-
mance and power measurement infrastructure for compiler
feedback analysis in order to support more automated op-
timizations. Optimizing compilers often rely on analytical
models of both applications and platforms to guide program
transformations. The static estimate of execution cost pro-
vides support for finding optimal parameters for one opti-
mization phase [37] and/or the best ordering of optimization
phases [65]. Compiler-internal analytical models have many
features in common with stand-alone performance analysis
and prediction tools but are unique in that they must com-
bine precision with high efficiency. Because of the increas-
ing complexity of applications and hardware and the limited
information available, versatile, accurate and fast compile-
time cost modeling has always been a grand challenge for
compiler developers.

Energy and power models with various accuracies have
been proposed for processors [10, 46, 60], memory subsys-
tems [21,30,51], buses [71], and operating systems [33]. The
main method [32, 59] is to quantify power consumption per
instruction and interinstruction effects. Current power mod-
els work well for simple in-order, embedded processors, and
an energy-aware compilation (EAC) framework [29] based
on them was recently proposed. However, out-of-order su-
perscalar processors pose significant challenges. In most
cases, realistic power consumption evaluation relies on cycle-
accurate simulators [3,69] extended with power models [11,
64].

The major difficulty in building effective cost models is
the required deep knowledge of the applications, the plat-
forms, and their interactions. Modeling parallel programs is
significantly harder, given the nondeterministic behavior of
concurrent executing threads and their interactions. Multi-
core and multithreaded platforms add another level of diffi-
culty to accurate modeling, even without energy awareness.
Our biggest future challenge, however, is to integrate the
traditional model with a cost model for power. In practice,



model-based optimizations are widely regarded to be less
successful than empirical tuning [70] except when handling
small kernels like the well-studied matrix-matrix multipli-
cation. Thus, they may be used to complement dynamic
compilation and empirical optimizations.

6. CONCLUSIONS
We have described the initial implementation of component-

based infrastructure for automated performance monitoring,
data management, and analysis. We presented performance
and power analysis results for a 2-D driven cavity simulation
involving Newton-Krylov methods. Based on our early ex-
periences with designing and implementing components for
handling different tasks involved in performance and power
analysis, we believe that combining the extensive functional-
ity of tools such as TAU and PerfExplorer with component-
based software engineering can potentially greatly influence
the efficiency and effectiveness of performance analysis and
tuning of scientific applications. The ability to easily define
derived performance metrics and analyses, as well as the au-
tomation of the difficult and time-consuming tasks involved
in performance data gathering and analysis, will further al-
low compilers to gain access to information that can lead to
more effective optimizations, targeting the metrics that re-
flect the application developers’ specific performance goals.
The success of this effort will depend largely on the quality
of the component interfaces for database access and perfor-
mance analysis, as they must be able to eventually support
a wide range of applications and tools.

Acknowledgments
This work was supported in part by the Mathematical, Infor-
mation, and Computational Sciences Division subprogram
of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy, under Contract DE-
AC02-06CH11357 and in part by a CISE-BPC supplement
to NSF 0444345.University of Oregon research is sponsored
by contracts DE-FG02-07ER25826 and DE-FG02-05ER25680
from the MICS program of the U.S. DOE, Office of Science
and NSF grant #CCF0444475. University of Houston re-
search is sponsored by the NSF grants #CCF-0444468 and
#CCF-0702775. The authors thank the following people for
their discussions and implementation work: Dan Jackson,
Lawrence Stewart, Canturk Isci, Sunita Chandrasekaran,
and Danesh Tafti.

7. REFERENCES
[1] W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E.

Keys, and B. F. Smith. Achieving high sustained
performance in an unstructured mesh CFD
application. In SC99, 1999.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F.
Sweeney. Adaptive optimization in the jalapeno jvm.
In OOPSLA ’00: Proceedings of the 15th ACM
SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 47–65, New York, NY, USA, 2000. ACM Press.

[3] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling.
Computer, 35(2):59–67, 2002.

[4] A. Azevedo, R. Cornea, I. Issenin, R. Gupta, N. Dutt,
A. Nicolau, and A. Veidenbaum. Architectural and

compiler strategies for dynamic power management in
the COPPER project. In IWIA ’01: Proceedings of the
Innovative Architecture for Future Generation
High-Performance Processors and Systems (IWIA’01),
page 25, Washington, DC, USA, 2001. IEEE
Computer Society.

[5] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F.
Smith, and H. Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 2.3.3, Argonne National
Laboratory, 2007. http://www.mcs.anl.gov/petsc.

[6] S. Balay, W. D. Gropp, L. C. McInnes, and B. F.
Smith. Efficient management of parallelism in object
oriented numerical software libraries. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern
Software Tools in Scientific Computing, pages
163–202. Birkhäuser Press, 1997.

[7] D. E. Bernholdt, B. A. Allan, R. Armstrong,
F. Bertrand, K. Chiu, T. L. Dahlgren, K. Damevski,
W. R. Elwasif, T. G. W. Epperly, M. Govindaraju,
D. S. Katz, J. A. Kohl, M. Krishnan, G. Kumfert,
J. W. Larson, S. Lefantzi, M. J. Lewis, A. D. Malony,
L. C. McInnes, J. Nieplocha, B. Norris, S. G. Parker,
J. Ray, S. Shende, T. L. Windus, and S. Zhou. A
component architecture for high-performance scientific
computing. Int. J. High-Perf. Computing Appl.,
ACTS Collection special issue, 20:163–202, 2006.

[8] W. Bircher and L. John. Complete system power
estimation: A trickle-down approach based on
performance events. In ISPASS 2007: IEEE
International Symposium on Performance Analysis of
Systems & Software, pages 158 – 168, April 25-27
2007.

[9] W. L. Bircher, M. Valluri, J. Law, and L. K. John.
Runtime identification of microprocessor energy saving
opportunities. In ISLPED ’05: Proceedings of the 2005
International Symposium on Low Power Electronics
and Design, pages 275–280, New York, 2005. ACM.

[10] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto.
An instruction-level functionally-based energy
estimation model for 32-bits microprocessors. In
Design Automation Conference, pages 346–351, 2000.

[11] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In ISCA ’00: Proceedings of the 27th
Annual International Symposium on Computer
Architecture, pages 83–94, New York, 2000. ACM
Press.

[12] V. Bui, O. Hernandez, B. Chapman, R. Kufrin,
D. Tafti, and P. Gopalkrishnan. Towards an
implementation of the OpenMP collector API. In
PARCO, 2007.

[13] K. W. Cameron, R. Ge, and X. Feng.
High-performance, power-aware distributed computing
for scientific applications. Computer, 38(11):40–47,
2005.

[14] Common Component Architecture (CCA) Forum.
http://www.cca-forum.org/.

[15] T. S. Coffey, C. T. Kelley, and D. E. Keyes.
Pseudo-transient continuation and
differential-algebraic equations. SIAM J. Sci.
Comput., 25(2):553–569, 2003.



[16] D. Keyes (PI). Terascale Optimal PDE Simulations
(TOPS) Center. http://tops-scidac.org/, 2006.

[17] N. Eisley, V. Soteriou, and L.-S. Peh. High-level power
analysis for multi-core chips. In CASES ’06:
Proceedings of the 2006 International Conference on
Compilers, Architecture and Synthesis for Embedded
Systems, pages 389–400, New York, 2006. ACM.

[18] B. Fryxell, K. Olson, P. Ricker, and et al. FLASH: An
adaptive-mesh hydrodynamics code for modeling
astrophysical thermonuclear flashes. Astrophys. J.
Suppl., pages 273–334, 2000.

[19] D. Griswold. The Java HotSpot virtual machine
architecture, 1998.

[20] O. Hernandez, F. Song, B. Chapman, J. Dongarra,
B. Mohr, S. Moore, and F. Wolf. Instrumentation and
compiler optimizations for MPI/OpenMP
applications. In International Workshop on OpenMP
(IWOMP 2006), 2006.

[21] P. Hicks, M. Walnock, and R. M. Owens. Analysis of
power consumption in memory hierarchies. In ISLPED
’97: Proceedings of the 1997 international symposium
on Low power electronics and design, pages 239–242,
New York, 1997. ACM Press.

[22] K. Huck, O. Hernandez, V. Bui, S. Chandrasekaran,
B. Chapman, A. D. Malony, L. McInnes, and
B. Norris. Capturing performance knowledge for
automated analysis. In Supercomputing, 2008.

[23] K. Huck, A. Malony, R. Bell, and A. Morris. Design
and implementation of a parallel performance data
management framework. In Proceedings of the
International Conference on Parallel Computing, 2005
(ICPP2005), pages 473–482, 2005.

[24] K. A. Huck and A. D. Malony. PerfExplorer: A
performance data mining framework for large-scale
parallel computing. In Conference on High
Performance Networking and Computing (SC’05),
Washington, DC, USA, 2005. IEEE Computer Society.

[25] C. Isci and M. Martonosi. Runtime power monitoring
in high-end processors: Methodology and empirical
data. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture,
December 03-05 2003.

[26] C. Isci and M. Martonosi. Runtime power monitoring
in high-end processors: methodology and empirical
data. In 36th Annual IEEE/ACM International
Symposium on Microarchitecture ( MICRO-36), 2003.

[27] M. Itzkowitz. The sun studio performance tools.
Technical report, Sun Microsystems Inc., November
2005.

[28] S. Jarp. A methodology for using the itanium-2
performance counters for bottleneck analysis.
Technical report, HP Labs, August 2002.

[29] I. Kadayif, M. Kandemir, G. Chen, N. Vijaykrishnan,
M. J. Irwin, and A. Sivasubramaniam.
Compiler-directed high-level energy estimation and
optimization. Trans. on Embedded Computing Sys.,
4(4):819–850, 2005.

[30] M. B. Kamble and K. Ghose. Analytical energy
dissipation models for low-power caches. In ISLPED
’97: Proceedings of the 1997 international symposium
on Low power electronics and design, pages 143–148,
New York, 1997. ACM Press.

[31] R. Kufrin. PerfSuite: An accessible, open source,
performance analysis environment for Linux. In 6th
International Conference on Linux Clusters
(LCI-2005), Chapel Hill, NC, April 2005.

[32] S. Lee, A. Ermedahl, and S. L. Min. An accurate
instruction-level energy consumption model for
embedded risc processors. In LCTES ’01: Proceedings
of the ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems, pages
1–10, New York, 2001. ACM Press.

[33] T. Li and L. K. John. Run-time modeling and
estimation of operating system power consumption. In
SIGMETRICS ’03: Proceedings of the 2003 ACM
SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
pages 160–171, New York, 2003. ACM Press.

[34] C. Liao, O. Hernandez, B. Chapman, W. Chen, and
W. Zheng. OpenUH: An optimizing, portable
OpenMP compiler. In Proceedings of the 12th
Workshop on Compilers for Parallel Computers, 2006.

[35] A. Malony, S. Shende, N. Trebon, J. Ray,
R. Armstrong, C. Rasmussen, and M. Sottile.
Performance technology for parallel and distributed
component software. Concurrency and Computation:
Practice and Experience, 17:117–141, Feb - Apr 2005.

[36] L. C. McInnes, J. Ray, R. Armstrong, T. L. Dahlgren,
A. Malony, B. Norris, S. Shende, J. P. Kenny, and
J. Steensland. Computational quality of service for
scientific CCA applications: Composition,
substitution, and reconfiguration. Technical Report
ANL/MCS-P1326-0206, Argonne National
Laboratory, Feb 2006.

[37] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving
data locality with loop transformations. ACM Trans.
Program. Lang. Syst., 18(4):424–453, 1996.

[38] J. Mellor-Crummey, R. Fowler, G. Marin, and
N. Tallent. Hpcview: A tool for top-down analysis of
node performance. The Journal of Supercomputing,
23:81–101, 2002. Special Issue with selected papers
from the 2001 Los Alamos Computer Science Institute
Symposium.

[39] B. Mohr and F. Wolf. KOJAK - a tool set for
automatic performance analysis of parallel
applications. In Proc. of the European Conference on
Parallel Computing (EuroPar), pages 1301–1304, 2003.

[40] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and
K. Solchenbach. VAMPIR: Visualization and analysis
of MPI resources. SUPERCOMPUTER, 12(1):69–80,
January 1996.

[41] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer-Verlag, 1999.

[42] B. Norris, J. Ray, R. Armstrong, L. C. McInnes, D. E.
Bernholdt, W. R. Elwasif, A. D. Malony, and
S. Shende. Computational quality of service for
scientific components. In Proc. Int. Symp. on
Component-Based Software Engineering, Edinburgh,
Scotland, 2004.

[43] Pallas GmbH. Vampirtrace 2.0 Installation and User’s
Guide, November 1999.

[44] Perfsuite. http://perfsuite.ncsa.uiuc.edu/.

[45] V. Pillet, J. Labarta, T. Cortes, and S. Girona.
PARAVER: A Tool to Visualize and Analyze Parallel



Code. In P. Nixon, editor, Proceedings of WoTUG-18:
Transputer and occam Developments, pages 17–31,
March 1995.

[46] G. Qu, N. Kawabe, K. Usarni, and M. Potkonjak.
Function-level power estimation methodology for
microprocessors. In Proceedings of the 37th Design
Automation Conference, 2000.

[47] J. S. Seng and D. M. Tullsen. The effect of compiler
optimizations on Pentium 4 power consumption. In
INTERACT ’03: Proceedings of the Seventh
Workshop on Interaction between Compilers and
Computer Architectures, page 51, Washington, DC,
USA, 2003. IEEE Computer Society.

[48] S. Shende, A. Malony, A. Morris, S. Parker, and
J. de St. Germain. Performance evaluation of adaptive
scientific applications using TAU. In Parallel
Computational Fluid Dynamics - Theory and
Applications, pages 421–428. Elsevier B.V., 2006.

[49] S. Shende and A. D. Malony. The TAU parallel
performance system. International Journal of High
Performance Computing Applications, 20(2):287–331,
2006.

[50] B. Smith et al. TOPS Solver Components.
http://www-unix.mcs.anl.gov/scidac-tops/

solver-components/tops.html, 2005.

[51] C.-L. Su and A. M. Despain. Cache design trade-offs
for power and performance optimization: A case
study. In ISLPED ’95: Proceedings of the 1995
International Symposium on Low Power Design, pages
63–68, New York, 1995. ACM Press.

[52] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu,
and T. Nakatani. Design and evaluation of dynamic
optimizations for a Java just-in-time compiler. ACM
Trans. Program. Lang. Syst., 27(4):732–785, 2005.

[53] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. ACM Press, New York,
1999.

[54] D. K. Tafti. Genidlest - a scalable parallel
computational tool for simulating complex turbulent
flows. In Proceedings of the ASME Fluids Engineering
Division, November 2001.

[55] D. K. Tafti and G. Wang. Application of embedded
parallelism to large scale computations of complex
industrial flows. In Proceedings of the ASME Fluids
Engineering Division, pages 123–130, Anaheim, CA.,
November 1998. ASME-IMECE.

[56] X. Z. Tang, G. Y. Fu, S. C. Jardin, L. L. Lowe,
W. Park, and H. R. Strauss. Resistive
magnetohydrodynamics simulation of fusion plasmas.
Technical Report PPPL-3532, Princeton Plasma
Physics Laboratory, 2001.

[57] C. Tapus, I.-H. Chung, and J. K. Hollingsworth.
Active harmony: towards automated performance
tuning. In Supercomputing ’02: Proceedings of the
2002 ACM/IEEE conference on Supercomputing,
pages 1–11, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[58] The R Foundation for Statistical Computing. R
Project for Statistical Computing.
http://www.r-project.org, 2007.

[59] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: A first step towards software

power minimization. IEEE Trans. Very Large Scale
Integr. Syst., 2(4):437–445, 1994.

[60] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee.
Instruction level power analysis and optimization of
software. J. VLSI Signal Process. Syst.,
13(2-3):223–238, 1996.

[61] H. Truong and T. Fahringer. SCALEA: A
performance analysis tool for parallel programs.
Concurrency and Computation: Practice and
Experience, 15(11-12):1001–1025, 2003.

[62] M. Valluri and L. John. Is compiling for performance
== compiling for power, 2001.

[63] V. Venkatachalam and M. Franz. Power reduction
techniques for microprocessor systems. ACM Comput.
Surv., 37(3):195–237, 2005.

[64] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S.
Kim, and W. Ye. Energy-driven integrated
hardware-software optimizations using simplepower.
In ISCA ’00: Proceedings of the 27th Annual
International Symposium on Computer Architecture,
pages 95–106, New York, 2000. ACM Press.

[65] D. L. Whitfield and M. L. Soffa. An approach for
exploring code improving transformations. ACM
Trans. Program. Lang. Syst., 19(6):1053–1084, 1997.

[66] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005.
http://www.cs.waikato.ac.nz/~ml/weka/.

[67] F. Wolf and B. Mohr. Automatic performance analysis
of hybrid MPI/OpenMP applications. Journal of
Systems Architecture: The EUROMICRO Journal,
49(10-11):421–439, 2003.

[68] A. Wolfe. Toolkit: Intel’s heavy-duty dev tools.
Queue, 2(2):12–17, 2004.

[69] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. Irwin.
The design and use of SimplePower: A cycle-accurate
energy estimation tool. Design Automation
Conference, 2000. Proceedings 2000. 37th, pages
340–345, 2000.

[70] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong,
M. Garzaran, D. Padua, K. Pingali, P. Stodghill, and
P. Wu. A comparison of empirical and model-driven
optimization. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pages 63–76,
New York, 2003. ACM Press.

[71] Y. Zhang, R. Chen, W. Ye, and M. Irwin. System level
interconnect power modeling. In Eleventh Annual
IEEE International ASIC Conference, 1998.



The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (”Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.


