
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 00:1–17
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Performance Characterization of Global Address Space
Applications: A Case Study with NWChem

Jeff R. Hammond⇤, Sriram Krishnamoorthy+, Sameer Shende‡

Nichols A. Romero⇤, Allen D. Malony‡

⇤ Argonne National Laboratory + Pacific Northwest National Laboratory ‡ University of Oregon

SUMMARY

The use of global address space languages and one-sided communication for complex applications is
gaining attention in the parallel computing community. However, lack of good evaluative methods to
observe multiple levels of performance makes it difficult to isolate the cause of performance deficiencies
and to understand the fundamental limitations of system and application design for future improvement.
NWChem is a popular computational chemistry package which depends on the Global Arrays / ARMCI
suite for partitioned global address space functionality to deliver high-end molecular modeling capabilities.
A workload characterization methodology was developed to support NWChem performance engineering on
large-scale parallel platforms. The research involved both the integration of performance instrumentation and
measurement in the NWChem software, as well as the analysis of one-sided communication performance
in the context of NWChem workloads. Scaling studies were conducted for NWChem on Blue Gene/P
and on two large-scale clusters using different generation Infiniband interconnects and x86 processors.
The performance analysis and results show how subtle changes in the runtime parameters related to the
communication subsystem could have significant impact on performance behavior. The tool has successfully
identified several algorithmic bottlenecks which are already being tackled by computational chemists to
improve NWChem performance. Copyright c� 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: performance characterization, global address space, computational chemistry, NWChem

1. INTRODUCTION

The design of supercomputers with ever greater degrees of parallelism, more complex
interconnection networks and communications hardware, and deeper hierarchies and multiple levels
of locality in memory systems has always had a symbiotic relationship with the design of parallel
algorithms and applications. While the computational demands of high-end applications drive the
requirements for next-generation parallel platforms, it is clear that the nature of the parallel machines
actually available to scientists will shape how the applications are developed, used, and optimized.
Crucial to this process is a thorough knowledge of the characteristics of the applications that are
expected to both produce scientific results with the present HPC generation and form the candidate
workloads for future supercomputer procurements.

A cornerstone of system design has been the quantitative workload-driven exploration of the
design space. Benchmarks have been developed to characterize various classes of applications,
such as sequential [11], multi-threaded [49], transaction-based [52], shared-memory-based [49],
and MPI-based [4]. Concern for both computational aspects (e.g., floating point rate and work
throughput) as well as communication characteristics (e.g., bandwidth, latency, and collective
operations) are highly relevant to high-end performance. However, the co-evolution of HPC systems

Copyright c� 2010 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]



2

and application design forces workload benchmarks to reflect modern programming methods.
A case in point is the recent interest in addressing the productivity challenge in programming
current and future supercomputers through the use of global address space languages and one-sided
communication. Languages such as UPC [54], Co-Array Fortran [43], and newer HPCS languages
– X10 [9], Chapel [8], and Fortress [50] – are examples based on the concept of extending global
view programming techniques to operate efficiently on large-scale distributed memory machines.

Despite recent interest in applications based on these parallel programming methods,
characterization of important workloads has not been adequately pursued. Lack of good evaluative
methods to observe multiple levels of performance, from programming interfaces to hardware
counters, makes it difficult to isolate the cause of performance deficiencies on current systems,
and to understand the fundamental limitations of system design for future improvement.

In this paper, we characterize a key module in NWChem [13], an exemplar application employing
the one-sided programming model. NWChem is a computational chemistry suite supporting
electronic structure calculations using a variety of chemistry models. The computational cost to
perform these calculations increases as a steep polynomial of the problem size (O(N3�7)). The
capability provided by future supercomputers should enable more accurate calculations on larger
molecular systems and have the potential to provide better understanding of such diverse phenomena
as catalysis, photosynthesis and drug-design.

NWChem employs Global Arrays (GA) [41] as the underlying one-sided programming model.
GA provides a global address space view of the distributed address spaces of different processes.
Aggregate Remote Memory Copy Interface (ARMCI) [40] is the communication substrate that
provides the remote memory access functionality used by GA. Being able to observe the
performance characteristics of ARMCI in support of Global Arrays and in the context of NWChem
is a key requirement for future development and optimization. For this purpose, we have extended
the ARMCI library to support profiling using the TAU Performance System (henceforth referred to
simply as TAU). The developed capability was then used to profile the key NWChem modules. The
most interesting results obtained were for the module implementing the CCSD(T) method [45, 26],
which is the subject of intense interest due to its capability to achieve petaflop/s performance [2].
We employ a modest problem size to identify challenges in strong-scaling real calculations on future
supercomputers.

The primary contributions of this paper are:

1. Development of a profiling interface for ARMCI and integration with TAU.
2. Detailed performance analysis of the CCSD(T) module of NWChem on three different

supercomputers.
3. Comparison of ARMCI with different usage modes related to the heavy use of one-sided

communication by NWChem.
4. Determination of optimal comunication parameters for running NWChem on two state-of-

the-art interconnects.

Section 2 describes ARMCI and its profiling interface. Section 3 discusses the organization of the
NWChem software suite. Section 4 gives an overview of TAU. The systems configurations we used
for performance testing are described in Section 5, followed by a detailed analysis in Section 6 of
the workload characterization study.

2. THE ARMCI COMMUNICATION SYSTEM

Aggregate Remote Memory Copy Interface (ARMCI) [40] is the one-sided communication library
that underpins Global Arrays and NWChem. ARMCI operates on a distributed memory view of a
parallel system. Communication is performed through one-sided put and get operations on remote
memory. Accumulate operations that atomically add to remote locations are also provided to support
algorithms for which put is not sufficient. ARMCI provides a rich set of primitives including
optimized blocking and non-blocking operations on contiguous, strided, and vector data. Atomic
operations on remote memory locations have been used to design distributed algorithms and scalable

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



3

dynamic load balancing schemes [10]. The ability to operate on remote data without synchronizing
with another process extends the flexibility of shared memory programming to distributed memory
machines. The support provided to query the location of a process with respect to an SMP node
enables careful tuning of an application to maximize locality and minimize communication. ARMCI
provides portable performance on a variety of high-performance interconnects and has been used
as the communication substrate in implementing frameworks that provide higher-level abstractions,
such as Global Arrays [41, 42] and GPSHMEM [44]. It is fully inter-operable with MPI, allowing
applications to intermix the use of both programming models.

Designing and optimizing applications that rely on ARMCI, such as NWChem, and scaling
to hundreds of thousands of cores is a challenging task that requires performance feedback at
multiple stages of development, system deployment, and application use. This process can benefit
significantly through the use of scalable performance engineering tools and practices that enable
a full characterization of performance factors, analysis of their interactions, mining/learning of
correlated features, and discovery of high-performing solutions in a multi-dimensional space of
options.

Of specific interest to multicore parallelism in NWChem is that one-sided communication
requires remote agency, leading communication runtime systems to often spawn a thread for
processing incoming one-sided message requests. In ARMCI this thread is known as the data-
server. In the results below, we demonstrate that the communication intensity of NWChem is
such that the ARMCI data-server requires a dedicated core for optimal application performance,
especially at scale. This disproves the naı̈ve assumption that maximizing the utilization of cores
for computation is the right way to maximize application performance. As the number of cores per
socket continues to increase, dedicating a core per node or per socket to communication becomes
less significant for the computational workload. Our results provide insight into how to design
applications and one-sided communication runtimes for current and future multicore processors.

3. NWCHEM SOFTWARE SUITE

NWChem [13] is the premier massively-parallel quantum chemistry software package due to
its portable scalability and performance on high-performance computing resources and breadth
of features. The success of NWChem culminated in its demonstrated scaling to more than one
petaflop/s on the JaguarPF supercomputer at Oak Ridge National Laboratory [1, 2], which was the
result of significant effort into scaling the GA toolkit to more than 100,000 cores [51] and tuning of
the application code for maximum parallel efficiency.

In addition to its use on leadership-class supercomputers, NWChem is a widely used
computational chemistry code consuming large amounts of computing time on clusters. Due to
the broad spectrum of scientific functionality in NWChem, it makes an excellent package to study
to understanding quantum chemistry algorithms in general. The primary barrier to performance
characterization of NWChem is that it employs a one-sided programming model as implemented
with the Global Arrays (GA) runtime, as opposed to MPI. Until now, there have not been any tools
available to measure the communication behavior of the ARMCI communication subsystem used
by GA. Due to the ubiquitous use of NWChem for performing chemistry simulations on parallel
computers, it is an ideal application using one-sided communication to characterize.We believe
certain NWChem modules which use GA could form a candidate workload to drive such research
for one-sided programming methods as part of a more general effort to understand applications
which employ non-standard programming models (that is, those not relying on message-passing).

The first part of this section describes the kernels of quantum chemistry and their basic
performance characteristics, while the second discusses high-level integration of kernels and
communication patterns.

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4

Figure 1. TAU’s 3D communication matrix shows a flat communication profile. The yellow diagonal
indicates local access via ARMCI, which does not utilize the network.

3.1. Quantum Chemistry Kernels

Almost all the computation associated with quantum chemistry calculations, at least inside of
NWChem, are associated with two procedures: generation of atomic integrals and dense linear
algebra.

Atomic integrals are the matrix elements of physical operations (e.g. Coulomb) in the atom-
centered Gaussian basis set [24]. They can be summarized as being computationally intensive
in both floating-point and integer computation, while generating significant memory traffic and
branching [15, 20]. As such, they do not usually achieve more than 20% of the single-core peak
performance on most architectures. A detailed description of the computation of these objects can
be found elsewhere [17].

The asymptotically dominant cost of most quantum chemistry methods is the evaluation of
complicated tensor-contractions. These operations are implemented as matrix-matrix multiplication
(MMM) due to the immense effort devoted to optimized BLAS libraries [28], which provide vastly
superior performance relative to implementations coded by non-experts [18], even if tensors must
be reshaped in order to match MMM syntax [19].

3.2. Coupled-Cluster Theory

Coupled-cluster theory is a many-body method involving a complex set of multidimensional array
computations. In this paper, we consider on the “gold-standard” CCSD(T) variant of coupled-cluster
theory, which requires N7 floating-point operations (almost all from DGEMM) and N4 storage, where
N is proportional to the molecular system and atomic basis set employed.

The first step in CCSD(T) is the four-index transformation, which requires a large number
of DGEMM calls with a non-collective global transpose in the middle [57]. The iterative step, in
which the CCSD equations are solved, requires DGEMM and atomic integral computations and is
communication intensive due to the recursive intermediates which must be formed in the course
of evaluating the residual for this complex set of nonlinear equations [26]. The final stage, in
which the non-iterative (T) contribution is evaluated, requires first the processing of a large number
of new atomic integrals and another four-index transformation, followed by a computationally-
intensive stage which dominates the wall time and is dominated by large MMM operations.
Nonetheless, it requires numerous one-sided ARMCI GetS operations to build local intermediates.
Overall, coupled-cluster is both computation- and communication-intensive. It is implemented
without topology-awareness in NWChem, as demonstrated in the communication matrix shown
in Figure 1. ARMCI optimizes local communication between processes on the same node, hence
that communication does not contribute to network congestion. Note that while pictorially most

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



5

of the communication appears to be along the diagonal, representing optimized intra-node shared
memory copies, the range of the inter-processor communication volumes is shown by the heat map.
In Figure 1 the inter-processor communication volumes vary from 3.4⇥ 108 to 4.6⇥ 109 bytes.
Thus the non-local communication represents a significact fraction of the total data movement and
is uniformly spread amongst all pairs of processes. Such flat communication matrices represent
problematic usage on almost all networks, especially those with a torus topology, such as Blue
Gene/P and, to a lesser extent, Cray XT (due to greater bandwidth).

3.3. Description of Test Input

The NWChem performance was studied using a mid-sized calculation which could be run across
a large range of node counts with reasonable efficiency. Our benchmark test calculation is a small
water cluster with a moderately large basis set, specifically, (H2O)4 with aug-cc-pVTZ (368 AO
functions), henceforth referred to as w4. This test case is less than half the size of that used in recent
performance demonstrations [2], but nonetheless large enough to strong-scale efficiently across
a few hundred nodes of Blue Gene/P. The organization of the computation in CCSS(T) and its
demonstration at scale imply that performance analysis of larger calculations will confirm findings
at lower scale, and will not reveal any new information.

We performed our experiments on two large scale clusters, Fusion and Chinook, described in more
detail in Section 5. For each performance experiment, most parameters of the NWChem job were
kept exactly the same. The memory utilization was scaled accordingly for each machine’s capacity
and we disabled disk caching of integrals in CCSD on the Fusion system (ccsd; nodisk; end)
as this decreased performance due to the disparity between the processor capability and the local
disk performance. On Chinook, disk caching increases performance significantly due to excellent
I/O capability, while on Blue Gene/P disk caching is effective due to the balance between I/O
bandwidth and processor speed.

4. TAU PERFORMANCE SYSTEM

Our NWChem performance characterization studies targeted large-scale distributed memory
platforms consisting of nodes with multicore processors. The tools we used for performance
measurement and analysis needed to address challenges of observing intra-node thread performance
and thread interactions via shared memory and global address space communication. We applied the
TAU performance system for performance measurement and analysis. TAU (Tuning and Analysis
Utilities) is research and development project at the University of Oregon creates state-of-the-
art methods and technologies for parallel performance analysis and tuning with the primary
objectives of portability, flexibility, and interoperability [48, 34, 47, 46]. The project produces and
distributes the open source TAU parallel performance system, a robust, integrated suite of tools
for instrumentation, measurement, analysis, and visualization of large-scale parallel applications.
One of TAU’s strengths is its support for instrumentation at multiple levels of program code
transformation. Instrumentation calls can be directly inserted in the code using a manual API, or
automatically using TAU’s source code instrumentor for C, C++, and Fortran, which is based on the
Program Database Toolkit (PDT) [31] package. TAU also supports compiler-based instrumentation
to leverage the compiler’s instrumentation capabilities for object code directly, rather than through
source transformation. Profiling and tracing of performance data (e.g., execution time, hardware
counters, communication statistics) are provided by TAU’s measurement system.

4.1. Multicore Performance Measurement

Multicore performance measurement in NWCHem is supported by TAU since it can capture
performance data specific to each thread’s execution on a processor core. TAU utilizes the PAPI [6]
library to obtain counters about a thread’s use of a specific core and its cache/memory interactions.
TAU combines this performance data with per-core timing to maintain profile and trace information
about each NWChem thread at runtime. NWChem can assign different execution roles to each

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6

thread and assign cores for specific tasks. By capturing core-level performance data in each thread,
TAU can characterize the performance behavior of the NWChem application with respect to core
usage.

4.2. Profiling interface for ARMCI (PARMCI)

An important challenge for profiling the NWChem software was to capture events associated with
the use of Global Arrays and the ARMCI communication substrate. The ARMCI instrumentation
approach we developed is similar to what is used in the MPI library whereby an alternate “name-
shifted” interface to the standard routines is created (called PMPI [14] in the case of MPI, where
‘P’ stands for ‘profiling’) and a new library is provided to substitute for the original calls. In the
spirit of PMPI, we call the profiling interface for ARMCI, PARMCI. The power of this approach is
that the name-shifted interface allows any wrapper library to be developed that wants to intercept
the original ARMCI calls. We use PARMCI to create a TAU-instrumented library for ARMCI that
captures entry/exit events and make performance measurements of time as well as communication
statistics (e.g., bytes transmitted) between sender and receivers. PARMCI is now included as part of
the ARMCI distribution.

Around each wrapped ARMCI call are pairs of interval events with calls to start and stop timers,
as well as events to trigger atomic events with the size of one-sided communication primitives.
Calculating the size of one-sided remote memory access operations requires iterating through the
indices of arrays and invoking ARMCI runtime system calls to determine the size of a given
array. This cumulative size and the destination process id are used to trigger atomic events that
resemble tracking of point-to-point communication primitives in MPI. This helps us generate a
communication matrix that shows the extent of communication in one-sided operations between a
pair of sender and receiver tasks. TAU’s paraprof profile browser supports 2D and 3D displays of
communication matrix to show the extent and type of communication. This helps highlight the gross
pattern of communication in the application.

4.3. Alternative Library Wrappers

Another challenge facing us was how to create instrumentation of routines found in multiple
object files which are linked together to generate an executable, but whose source is unavailable.
For NWChem, such routines included the DGEMM call from the vendor-optimized BLAS library.
The idea was to create a wrapper library that defines a new interface to replace DGEMM, call it
wrap DGEMM, and then internally invokes an alternate DGEMM interface, call it real DGEMM,

passing all parameters to it. The library is then instrumented with TAU. The problem became how
to get the wrapper library linked in.

The solution is to utilize special linking options (such as -Wl,--wrap for the GNU compilers)
that leverage linker support to substitute a given routine with an alternate instrumented version.
Thus, while linking the NWChem application, we can provide an -Wl,--wrap DGEMM option
telling the linker to resolve any reference to DGEMM by wrap DGEMM. It also resolves any
undefined reference to real DGEMM with the actual DGEMM call provided by the BLAS library.
In this way, all invocations of DGEMM are automatically instrumented. In fact, multiple routines
across code modules can be instrumented in this way. It was our goal to use portable instrumentation
techniques that would allow us to execute workload characterization experiments on different
platforms and compare the results.

4.4. Runtime Preloading

Additionally, TAU supports runtime preloading of a measurement library in the address space of
an executing application to intercept library calls using the tau exec tool. For instance, when it
is invoked with the ARMCI option (tau exec -armci ./application) it replaces the ARMCI shared
library with a wrapper interposition library that invokes the PARMCI interface at runtime. This
may be used with an un-instrumented dynamic executable under Linux to assess the performance
of the ARMCI library calls made by the application. TAU also supports runtime preloading of other

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



7

libraries to track the performance of POSIX I/O, MPI, memory allocation and de-allocation routines,
CUDA, and OpenCL libraries using tau exec.

5. SYSTEM CONFIGURATIONS

Given the importance of runtime support for one-sided programming, we chose system
configurations that highlight the different design decisions used to implement ARMCI.

5.1. Infiniband Clusters

The design of the ARMCI over the Infiniband (IB) network is typical of many high-performance
networks. Here, contiguous put and get operations directly map to RDMA operations where
possible while the remaining operations are processed by a dedicated data server thread running
on each SMP node. The data server thread ensures progress of communication without requiring
anything of the target process. The following two IB machines, both of which support the OFED
stack, were used:
Fusion: A 320-node Linux cluster with dual-socket Intel Nehalem-series quad-core processors
(Xeon X5550) connected by QDR IB (Mellanox Technologies MT26428). Each node has 36 GB
of memory and is connected to a SATA local disk and a GPFS shared filesystem. This machine
is operated by the Argonne Laboratory Computing Resource Center (LCRC). Hyperthreading is
disabled on Fusion as it has not been shown to improve performance of the relevant HPC workloads.
Chinook: A 2310-node Linux supercomputer with dual-socket AMD Barcelona-series quad-core
processors (AMD Opteron 2354) connected by DDR IB (Mellanox Technologies MT25418 NICs
and Voltaire switches). Each node has 32 GB of memory and is connected to a four-disk RAID5
local disk array which can achieve nearly 1 TB/s bandwidth and 1.3 PB HP SFS (Lustre) shared
filesystem. This machine is operated by Pacific Northwest National Laboratory’s Molecular Science
Computing Facility.

5.2. Blue Gene/P

The implementation of ARMCI on Blue Gene/P is substantially different from other platforms.
In particular, the data server is not used because it is neither necessary due to the existence of
active-message functionality within DCMF [30], nor optimal due to the limited memory bandwidth
within the node. True passive progress is achieved either with a communication helper thread
continuously polling for incoming active-messages or by operating system interrupts, which are
extremely lightweight in the BGP compute node kernel (CNK) relative to Linux. The Argonne
Leadership Computing Facility operates Intrepid and Surveyor, which are 40- and 1-rack Blue
Gene/P systems, respectively. The specifications for the Blue Gene/P architecture are described
in Ref. [25].

6. NWCHEM WORKLOAD CHARACTERIZATION

As described in Section 4, we chose automatic instrumentation of the NWChem source code,
ARMCI, and MPI layers using TAU. Support for profiling of Pthreads was also critical since both the
IB and BG/P implementations of ARMCI use a Pthread (optional on BG/P) to enable asynchronous
progress.

An important goal in analyzing one-sided communication in NWChem was to understand the
interplay between the data-server and compute processes as a function of scale. However, as the
job is strong-scaled to larger numbers of nodes, not only does the computational work per node
decrease, but the fragmentation of data across the system leads to an increase in the total number of
messages. Our analysis investigated this in detail by varying the number of nodes, cores-per-node,
and whether or not memory buffers were “pinned”, that is, registered with the NIC and ineligible

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



8

for paging. On BG/P, paging is disabled in the kernel and memory-registration of the entire address
space is trivial, hence there is no comparison to be made with respect to buffer pinning.

There is an important trade-off between using all available processing power for numerical
computation and dedicating some fraction of the cores to communication. Understanding these
trade-offs as a function of scale is critical for adapting software for new platforms which may
have widely varying capability for hardware offloading of message-processing, such as support for
contiguous and/or non-contiguous RDMA operations. As these more complex interconnects may
require more power, it will be even more important for designing future systems to understand what
interconnect features are absolutely necessary.

6.1. Fusion Results

The first times that NWChem was run on the Fusion system, the default settings were used, meaning
that NWChem buffers did not use pinned memory. It was natural to use all available cores for
computation, so eight processes per node were utilized. Figure 2 was the first indication of a
significant performance defect when running NWChem using these naı̈ve settings. Clearly, more
than 60% of the total time spent in a strided communication operation is not optimal.

Figure 2. Mean exclusive time spent in different NWChem routines for the w4 testcase.

In response to the subroutine timing data, we used PerfExplorer to conduct a similar analysis
across 24, 32, 48, 64, 96 and 128 nodes using both 7 and 8 compute cores per node, again with
pinning disabled (Figures 3 and 4). We see clearly that the total time associated with functions doing
computation — e.g. DGEMM, HF2 (atomic integrals) — decrease with increasing node count, while
functions associated with ARMCI communication increase dramatically, not just as a percentage
of the overall time, which is natural due to decreasing computational work per process, but in total
time, which is pathological for performance. There is a small difference between 7 and 8 compute
cores per node for 48 and 64 nodes, but this is likely an artifact of context-switching and interrupt-
handling, and does not affect the composite analysis showing that execution time does not scale
when buffer pinning is disabled.

After having determined that the performance of ARMCI was nominally affected by having a
dedicated core for the data server, we considered the role of using pinned buffers in NWChem.
Again we ran tests on 24, 32, 48, 64, 96 and 128 nodes using 7 and 8 compute processes per node
(see Figures 5 and 6). The change from the previous results are dramatic: we observe excellent
total execution time and an absence of the anti-scaling of ARMCI operations. The time spent in

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



9

Figure 3. Stacked bar chart in PerfExplorer shows the
growth of time spent in communication operations
with increasing core counts. Note that the time axis

is not the same in all figures.

Figure 4. PerfExplorer shows the relative performance
of each thread when we reduce the number of
application threads to 7 per node without pinning
Infiniband memory. Note that the time axis is not the

same in all figures.

armci vapi complete buf grows slightly with node count, but this is expected in a strong-
scaling scenario since it is increasingly difficult to overlap computation with communication when
the amount of computation decreases.

Figure 5. TAU’s PerfExplorer shows the stacked bar
charts when Infiniband memory is pinned by ARMCI
for communication operations and all 8 cores are used.
Note that the time axis is not the same in all figures.

Figure 6. The time spent in different events when
Infiniband memory is pinned and only 7 cores are used
in each node. Note that the time axis is not the same

in all figures.

This dramatic shift in performance confirms our hypothesis that pinning the Infiniband memory
can significantly impact both the execution time and scaling characteristics of codes that use one-
sided communication operations.

Figure 7 summarizes the distribution of time in various operations in NWChem as a function of
scale for the best combination of execution parameters (a dedicated communication core and pinned
buffers). As one would expect, as the time spent on computation decreases directly proportional to
the number of processors used, the percentage of time spent in communication grows. One also
sees a slight growth in the time spent in MPI Barrier, which is, of course, due to load-imbalance
(implicit time) rather than the cost of this collective operation itself (explicit time).

Figure 8 shows the relative speedup of all four cases. The problems with using the default
communication substrate are clearly apparent. By pinning bufferes used for communication and
giving the communication thread its own core we see a marked improvement in performance.
While the scaling is not perfect, pinning is the difference between scaling and anti-scaling (wall
time increases as more processors are used) and the scaling is noticeably better using a dedicated
core for communication.

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10

Figure 7. PerfExplorer’s runtime breakdown
chart shows the contribution and rate of growth
of each event for the case with 7 cores and

pinned Infiniband memory
Figure 8. TAU’s PerfExplorer relative speedup chart

compares each case with an ideal speedup

6.2. Chinook Results

To test the generality of our experiments on Fusion, we performed similar tests on Chinook, which
is superficially similar due to the use of Mellanox Infiniband and dual-socket quad-core nodes
with more than 30 GB of memory. A key difference is that the newer Intel nehalem process has
approximately twice the memory bandwidth per core and per node (as measure by the STREAM
benchmark [36, 35]), and the system software is different (Chinook runs HP’s HPC-oriented Linux
and communication stack).

Table I reports a high-level performance analysis of NWChem based upon module timings.
This information can be obtained by TAU or directly from the NWChem output file, albeit with
more effort. Because efficient ARMCI communication requires both the data-server and interrupt
handling by the operating system, we tested the use of 6, 7 and 8 compute processes per node on
32, 48, 64, 96 and 128 nodes with and without pinning.

Table I. Performance data on Chinook, with 48- and 96-node data omitted.

nodes cores pin Total Wall Tints Triples
32 6 on 5538.9 684.7 1073.4
32 6 off 5052.5 665.6 1073.2
32 7 on 6302.5 793.1 929.3
32 7 off 6410.6 897.0 928.3
32 8 on 7857.9 2496.6 801.1
32 8 off 11813.5 6044.1 814.0
64 6 on 3364.3 482.2 545.0
64 6 off 3585.9 480.0 543.6
64 7 on 4290.6 615.6 473.7
64 7 off 4223.7 569.7 474.1
64 8 on 4737.0 1552.5 413.5
64 8 off 4832.1 1614.5 412.7
128 6 on 2433.3 328.8 291.3
128 6 off 2456.0 350.3 291.5
128 7 on 2939.4 382.9 258.1
128 7 off 2942.3 436.7 259.4
128 8 on 3948.5 1157.3 233.3
128 8 off 3664.5 1134.3 237.0

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



11

In contrast to the data for Fusion, which showed a much stronger dependence on the use of pinning
than how many compute cores were used, Chinook is much less sensitive to pinning. On the other
hand, it is much more sensitive to how cores are allocated. In particular, using all 8 cores per node
for computation increases the time for certain procedures markedly. With 32 nodes and 8 cores/node
computing, the time spent generating atomic integrals required for the triples calculation (Tints) is
3 and 9 times greater than when only 6 cores per node are used for the pinned and non-pinned cases,
respectively. Similarly, on 128 nodes, using 8 cores per node for computation increases the wall time
by approximately 3 times the 6- and 7-compute core per node cases. The DGEMM-rich Triples
procedure benefits from the use of more cores per node due to high computation-to-communication
ratio. Figure 9 shows the relative efficiency and Figure 10 compares the total wallclock time for
all cases comparing Chinook with Fusion. Obviously one way to maximum performance of Tints
and Triples at the same time would be use to use threads within BLAS. However, not all matrices
passed to BLAS by NWChem are sufficiently large to warrant the use of multiple threads and
one would have to reduce the number of processes per node to four to use multiple threads in
BLAS without oversubscription. Threading was recently introduced to the non-BLAS portions of
the Triples kernel [38] but we have not yet analyzed that implementation.

Figure 9. Relative efficiency comparison between Chi-
nook and Fusion.

Figure 10. Total time comparison between Chi-
nook and Fusion.

6.3. Blue Gene/P Results

We compare to the Blue Gene/P (BGP) system to provide an entirely different context for our
scaling experiments. BGP not only has very different hardware — low-memory, slow-clock-rate
processors, no local disk and an extremely low-latency but modest bandwidth network — but it
uses a lightweight operating system which does not permit Linux-style oversubscription, nor does
it support SysV shared-memory. As such, the implementation of ARMCI is quite different and
relies heavily upon active-message capability within DCMF [30], which is enabled by lightweight
operating system interrupts. Based upon preliminary investigations of ARMCI performance on
BGP, a primitive communication helper thread (CHT) was added to the ARMCI implementation.
The performance results reported herein demonstrate the utility of this approach to asynchronous
progress relative to interrupts. Both the CHT and interrupt-mode provide a means to achieve passive-
target progress in one-sided communication, although only the CHT requires a dedicated core. We
compare these two context for running NWChem across a range of node counts (64, 128, 256 and
512) which is approximately comparable to the range used on Chinook and Fusion. Our NWChem
calculations on BGP executed in SMP and DUAL mode – 1 and 2 processes per node respectively.
VN mode does not provide enough memory per process to run CCSD(T), nor does it permit a
comparison of interrupt and CHT mode due to the inability to oversubscribe in the latter case.

Figures 11 (CHT mode) and 12 (interrupt mode) summarize the total time spent in various
procedures for the same test as before. Unlike the IB systems, ARMCI calls are barely noticeable,

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



12

whereas a normally negligible BLAS2 operations, DAXPY, shows up in an unusually significant way.
This result is not surprising due to the low clock-frequency of the BGP processor and relatively low
bandwidth from L2 cache. As we see from the total times, the scaling on BGP is excellent since the
absence of pathological communication behavior, as was observed for IB in some contexts, allows
for straightforward halving of total execution time with a doubling of node count.

Figure 11. TAU’s PerfExplorer shows relative effi-
ciency plot for the strong scaling experiment. Note

that the time axis is not the same in all figures.

Figure 12. TAU’s PerfExplorer shows relative effi-
ciency plot for the strong scaling experiment. Note

that the time axis is not the same in all figures.

The application timing perspective on BGP performance is presented in Table II. We see that
in SMP mode, both interrupts and the CHT provide similar performance and scaling, although the
CHT is slightly better. Because NWChem kernels lack of multithreading support, a free core is
always available to handle interrupts (using multiple threads in ESSL was not found to improve
performance significantly). While there is still a free core for interrupt-handling in DUAL mode,
the performance advantage of using a CHT is more significant. This is clear for the case where 256
cores are used for computation: 128 nodes in DUAL mode performs almost identical to 256 nodes
in SMP mode with the CHT, whereas interrupts are significantly slower with 128 nodes running
DUAL mode compared to 256 nodes running SMP mode. One downside of using a CHT is that it
competes with the compute process for locks on the communication fabric, DCMF, which means
that MPI collectives can be slower when interrupts are used. However, the function-level analysis
with TAU (not shown) reveals this to be a relatively minor issue, at least at the scales considered in
this paper.

7. DISCUSSION AND FUTURE PLANS

Despite the importance of NWChem to HPC workloads, particularly on DOE supercomputers, it
was previously impossible to characterize the communication behavior of NWChem because it
uses ARMCI, rather than MPI, for communication. The analysis techniques demonstrated in this
paper are already in use to understand how to optimize NWChem and the underlying Global
Arrays runtime for larger systems. In addition, understanding NWChem’s behavior on current
supercomputer architectures has motivated design decisions involving both software and hardware
of future systems.

In the future, we intend to extend this work in a number of ways. First, we will employ
TAU’s tracing capability to create a more detailed understanding of communication patterns within
NWChem. Second, a detailed profiling interface for BLAS will be built in order to gather input
parameters in addition to timings. Parameter histograms from BLAS calls will help us understand
how NWChem can be multithreaded most effectively. For example, large MMM calls can utilize
many threads at a time, whereas small MMM calls cannot. If there are many more small MMM
calls than large ones, it will be necessary to develop a multithreaded runtime that can execute many
such calls at one time within the same process, which motivates the development of a thread-safe
implementation of Global Arrays (already in-progress). Another approach is to develop a different

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



13

Table II. Performance data on Blue Gene/P. All calculations were run using the ZYXT mapping and
either SMP or DUAL mode. Both interrupts (i=1) or a communication helper thread (i=0) were used for
passive-target progress. Jobs for DUAL mode using interrupts for 256 and 512 nodes were not run since
it was obvious from the 128 node case that the performance was going to be much worse than with a

communication helper thread.

mode nodes i Tints Triples Total

SMP

64 0 1495.46 5105.27 17895.10
64 1 1706.85 5099.81 20215.40
128 0 748.55 2580.66 9177.00
128 1 859.35 2576.60 10413.30
256 0 376.19 1294.28 4896.80
256 1 427.50 1292.47 5594.50
512 0 190.80 647.01 3030.80
512 1 209.33 646.03 3191.70

nodes i Tints Triples Total

DUAL

128 0 379.62 1296.32 5293.10
128 1 1029.78 1314.19 7444.30
256 0 193.73 650.28 3338.00
512 0 100.73 353.97 2202.20

implementation of MMM that does not use vendor BLAS libraries and is written specifically for
multithreaded MMM calls involving small matrices. It is possible to optimize such operations in
special cases, such as when all input arrays are already in cache.

The last area in which we hope to apply this work is to use the results of TAU traces and BLAS
histograms to build a detailed performance model of NWChem’s coupled-cluster capability. As
scientific applications are often far too complex to be of use by computer scientists to develop
new compiler and runtime technology, a detailed performance model and a representative skeleton
application which mimics its behavior will allow in-depth study of quantum chemistry algorithms
by non-chemists.

Another application of detailed performance models is to understand the anticipated performance
of NWChem on hardware architectures that do not yet exist. In the short term this might involve
understanding what parts of NWChem are readily amenable to acceleration with graphics processor
units (GPUs) and which modules require redesign for such systems.

8. CONCLUSIONS

In this paper, we investigated the performance of an important module in the NWChem software
package using TAU. Special consideration was paid to the use of one-sided communication
operations and the optimal usage thereof on three platforms. The scaling of NWChem was analyzed
for a variety of runtime parameters related to ARMCI communication system. It was demonstrated
that seemingly similar platforms — Chinook and Fusion — showed vastly different behavior with
respect to the dedication of cores to communication operations and to the use of pinned buffers. On
the vastly different Blue Gene/P architecture, we compared interrupt to thread-assisted ARMCI
communication and found that the communication helper thread is a more efficient means to
achieving passive-target progress, although at the expense of losing a core per process. However,
having shown that even on platforms which permit oversubscription that leaving one or more cores
free to handle communication operations is optimal for many procedures in the NWChem CCSD(T)
code, the use of a dedicated communication core on Blue Gene/P is further justified.

The role of a automatic instrumentation system such as TAU was invaluable for generating and
analyzing performance data for a complex code such as NWChem. The NWChem code base is
millions of lines and the relevant source even for a single method such as CCSD(T) is approximately
200K lines in addition to the tens of thousands of lines of code active in GA and ARMCI for a

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



14

given interconnect. Without automated source instrumentation and profiling hooks to both MPI and
ARMCI, it would not have been possible to reliably identify the performance issues described in
this paper. As should be clear from the results, profiling one-sided communication can be more
complex since, while the remote target is passive from a programmer perspective, passive-target
progress requires significant resources on every node, especially since remote accumulate requires
floating-point computation on top the memory operations required for packing and unpacking of
non-contiguous messages. More rudimentary profiling techniques (e.g. gprof) are not useful for
analyzing the behavior of an asynchronous agent such as the ARMCI data server. Thus, with
increased interest in one-sided programming models in both GA and PGAS languages, advanced
profiling tools such as TAU must become even more widely used.

9. RELATED WORK

9.1. Workload Characterization

Characterizing computational workloads is the first step in any quantitative approach to evaluating
alternative implementations and ultimately improving performance. This includes system design,
optimization of development tools and libraries, and prediction of performance and utilization on
current and future systems. Each class of applications is characterized by kernel and application
benchmarks that best capture the computation, memory access, and communication characteristics
of that class. For example, NASA Advanced Supercomputing (NAS) parallel benchmarks [4]
are representative of many codes of importance to NASA and have been used in numerous
scenarios including tuning libraries and languages, and job scheduling on supercomputers. The DOE
Advanced Scientific Computing (ASC) benchmarks [3] are of interest to U.S. National Nuclear
Security Administration for large-scale modeling of nuclear materials. NAS and ASC benchmarks
are representative of different classes of high-end applications equally important in terms of their
utilization of supercomputer time. HPC applications across the spectrum of science domains share
a need for performance benchmarking and robust workload characterization methods.

9.2. Performance Evaluation Tools

While the choice of TAU for the NWChem performance characterization provided us with robust
instrumentation, measurement, and analysis capabilities, the methodology presented would also be
supported by other performance tools for large-scale parallel systems. One important point to note is
that the PARMCI API is tool independent and can be leveraged by other measurement support since
it is part of the ARMCI distribution. For instance, PARMCI is being applied with Scalasca [16],
especially for generating traces of one-sided communication that can then be visualized with tools
such as Vampir [7].

The use of sampling-based measurement methods, such as supported by PerfSuite [29] and
HPCToolkit [37] could also be helpful in exposing different thread performance behaviors and
finer-grained multicore resource contention issues. Some support has been built into TAU for event-
based sampling [39] and we will apply this technique in upcoming performance tests to investigate
resource limiting performance factors.

9.3. One-Sided Programming Models

One-sided communication models communicate through remote memory access (RMA), a
mechanism by which a process accesses the data in another process’ memory without explicit
synchronization with the remote process. This model extends the philosophy of shared memory
programming models, which have been known to simplify programming as compared to message
passing. The programming models designed using one-sided communication as the fundamental
unit are said to be variants of global address space programming models. Partitioned global address
space (PGAS) models enable differentiation between local and remote memory, enable incremental
optimizations. UPC [54], Titanium [58], X10 [9], and Chapel [8] are examples of PGAS languages.

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



15

NWChem relies on GA as the underlying PGAS programming model. It provides a global view
of a physically distributed array, supporting one-sided access to arbitrary patches of data. Being
developed as a library, it is fully interoperable with MPI allowing a programmer to use MPI and
Global Arrays API at the same time. ARMCI is the communication substrate providing the one-
sided communication support for GA. It is a portable high-performance one-sided communication
library that supports a rich set of remote memory access primitives. In order to analyze the
communication characteristics of NWChem modules, we have developed support to generate TAU
events when the ARMCI API is invoked.

9.4. Computational Chemistry Applications

Quantum chemistry codes have long targeted high-performance computing (HPC) platforms due
to their substantial requirements for floating-point computation, storage, execution time and job
number. Early HPC-oriented codes targeted Cray vector machines by exploiting BLAS calls in
numerical kernels and pipelining array access for optimal memory and I/O utilization. Many codes
originally written for vector machines transitioned to superscalar architectures without complete
rewriting due to the continuity in performance provided by BLAS and the ever-increasing power of
a single processor due to Moore’s law.

Between the transition from vector to superscalar processors, relatively little effort was devoted
to distributed-memory parallelization of quantum chemistry codes. NWChem was specifically
designed for massively-parallel supercomputers and exploited a variety of new communication
protocols — including TCGMSG [22] and GA — which were developed specifically in response
to the challenge of parallelization quantum chemistry algorithms across distributed memory [12].
Other early efforts to develop parallel quantum chemistry codes include:

• COLUMBUS [32], which used GA,
• GAMESS [56], which used TCGMSG,
• Gaussian [53], which used Linda.

A more complete review can be found in Ref. [23].
Very recently, there has been significant effort devoted to parallel implementations of CCSD(T),

including the two different implementations in NWChem [1, 27] and those in the Molpro [55],
GAMESS [5], ACESIII [33], and CFOUR [21] packages. Given the ubiquity of parallelism in
all modern computer hardware and the increasing interest in parallel quantum chemistry software
development, particularly for the CCSD(T) method, our careful investigation of one implementation
is timely.

ACKNOWLEDGMENTS

This work was funded by the U.S. Department of Energy’s Pacific Northwest National Laboratory
under the Extreme Scale Computing Initiative. The authors would like to thank PNNL EMSL
Molecular Sciences Computing Facility (MSCF) for access to their computing resources.

This research used resources of the Argonne Leadership Computing Facility and the Laboratory
Computing Resource Center at Argonne National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. JRH
acknowledges an Argonne Director’s Postdoctoral Fellowship.

The research at the University of Oregon was supported by grants from the U.S. Department of
Energy, Office of Science, under contracts DE-FG02-07ER25826, DE-SC0001777, and DE-FG02-
09ER25873.

REFERENCES

1. E. Aprà, R. J. Harrison, W. A. Shelton, V. Tipparaju, and A. Vazquez-Mayagoitia. Computational chemistry at the
petascale: Are we there yet? Journal of Physics: Conference Series, 180:012027 (6pp), 2009.

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16

2. E. Aprà, A. P. Rendell, R. J. Harrison, V. Tipparaju, W. A. de Jong, and S. S. Xantheas. Liquid water: obtaining
the right answer for the right reasons. In SC ’09: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, pages 1–7, New York, NY, USA, 2009. ACM.

3. ASC sequoia benchmarks. https://asc.llnl.gov/sequoia/benchmarks/.
4. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson,

T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel
benchmarks—summary and preliminary results. In Supercomputing ’91: Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 158–165, New York, NY, USA, 1991. ACM.

5. J. L. Bentz, R. M. Olson, M. S. Gordon, M. W. Schmidt, and R. A. Kendall. Coupled cluster algorithms for
networks of shared memory parallel processors. Computer Physics Communications, 176(9–10):589–600, 2007.

6. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable Programming Interface for Performance
Evaluation on Modern Processors. International Journal of High Performance Computing Applications, 14(3):189–
204, Fall 2000.

7. H. Brunst, D. Kranzlmüller, and W. E. Nagel. Tools for Scalable Parallel Program Analysis - Vampir NG and
DeWiz. Distributed and Parallel Systems, Cluster and Grid Computing, 777, 2004.

8. B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and the chapel language. Intl. J. High
Performance Computing Applications (IJHPCA), 21(3):291–312, 2007.

9. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster computing. In Intl. Conf. Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 519–538. ACM SIGPLAN, 2005.

10. J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha. Scalable work stealing. In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, pages
53:1–53:11, New York, NY, USA, 2009. ACM.

11. K. M. Dixit. The SPEC benchmarks. Parallel Computing, 17(10-11):1195 – 1209, 1991. Benchmarking of high
performance supercomputers.

12. T. H. Dunning Jr., R. J. Harrison, and J. A. Nichols. NWChem: Development of a modern quantum chemistry
program. CTWatch Quarterly, 2(2), May 2006.

13. E. J. Bylaska et al. NWChem, a computational chemistry package for parallel computers, version 5.1.1, 2009.
14. M. P. I. Forum. MPI: A message-passing interface standard. Technical Report UT-CS-94-230, University of

Tennessee, Knoxville, TN, USA, May 1994.
15. M. J. Frisch, B. G. Johnson, P. M. W. Gill, D. J. Fox, and R. H. Nobes. An improved criterion for evaluating the

efficiency of two-electron integral algorithms. Chemical Physics Letters, 206(1-4):225–228, 1993.
16. M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr. The SCALASCA performance toolset

architecture. In Proc. of the International Workshop on Scalable Tools for High-End Computing (STHEC), pages
51–65, Kos, Greece, June 2008.

17. P. M. Gill. Molecular integrals over gaussian basis functions. In J. R. Sabin and M. C. Zerner, editors, Advances
in Quantum Chemistry, volume 25, pages 141–205. Academic Press, 1994.

18. K. Goto and R. A. v. d. Geijn. Anatomy of high-performance matrix multiplication. ACM Transactions on
Mathematical Software (TOMS), 34:12:1–12:25, May 2008.

19. J. R. Hammond. Coupled-cluster response theory: parallel algorithms and novel applications. PhD thesis, The
University of Chicago, Chicago, IL, USA, June 2009.

20. J. R. Hammond. Scalability of quantum chemistry codes on Blue Gene/P and challenges for sustained petascale
performance. Poster at Supercomputing, 2009.

21. M. E. Harding, T. Metzroth, J. Gauss, and A. A. Auer. Parallel calculation of CCSD and CCSD(T) analytic first
and second derivatives. Journal of Chemical Theory and Computation, 4(1):64–74, 2008.

22. R. J. Harrison. Moving beyond message passing. experiments with a distributed-data model. Theoretical Chemistry
Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 84(4):363–375, 1993.

23. R. J. Harrison and R. Shepard. Ab initio molecular electronic structure on parallel computers. Annual Review of
Physical Chemistry, 45(1):623–658, 1994.

24. T. Helgaker, P. Jørgensen, and J. Olsen. Molecular Electronic-Structure Theory. Wiley, Chichester, 1st edition,
2000.

25. IBM Blue Gene Team. Overview of the IBM Blue Gene/P project. IBM Journal of Research and Development,
52(1):199–220, January 2008.

26. R. Kobayashi and A. P. Rendell. A direct coupled cluster algorithm for massively parallel computers. Chemical
Physics Letters, 265(1-2):1 – 11, 1997.

27. K. Kowalski, J. R. Hammond, W. A. de Jong, P.-D. Fan, M. Valiev, D. Wang, and N. Govind. Coupled cluster
calculations for large molecular and extended systems. In J. R. Reimers, editor, Computational Methods for Large
Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology. Wiley, March 2011.

28. S. A. Kucharski and R. J. Bartlett. Recursive intermediate factorization and complete computational linearization
of the coupled-cluster single, double, triple, and quadruple excitation equations. Theoritical chemistry accounts:
theory, computation, and modeling, 80:387–405, 1991. 10.1007/BF01117419.

29. R. Kufrin. Measuring and Improving Application Performance with PerfSuite. Linux Journal, 135:62–70, July
2005.

30. S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E. Giampapa, M. Blocksome, A. Faraj, J. Parker,
J. Ratterman, B. Smith, and C. J. Archer. The deep computing messaging framework: generalized scalable message
passing on the Blue Gene/P supercomputer. In ICS ’08: Proceedings of the 22nd annual international conference
on Supercomputing, pages 94–103, New York, NY, USA, 2008. ACM.

31. K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, B. Mohr, R. Rivenburgh, and C. Rasmussen. A tool framework
for static and dynamic analysis of object-oriented software with templates. In Proceedings of SC2000: High
Performance Networking and Computing Conference, Dallas, November 2000.

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



17

32. H. Lischka, H. Dachsel, R. Shephard, and R. J. Harrison. Parallel computing in quantum chemistry - message
passing and beyond for a general ab initio program system. In HPCN Europe 1994: Proceedings of the nternational
Conference and Exhibition on High-Performance Computing and Networking Volume I, pages 203–209, London,
UK, 1994. Springer-Verlag.

33. V. Lotrich, N. Flocke, M. Ponton, A. D. Yau, A. Perera, E. Deumens, and R. J. Bartlett. Parallel implementation of
electronic structure energy, gradient, and hessian calculations. The Journal of Chemical Physics, 128(19):194104,
2008.

34. A. Malony and S. Shende. Performance Technology for Complex Parallel and Distributed Systems. Distributed
and parallel systems: from instruction parallelism to cluster computing, pages 37–46, 2000.

35. J. D. McCalpin. Stream: Sustainable memory bandwidth in high performance computers. Technical
report, University of Virginia, Charlottesville, Virginia, 1991-2007. A continually updated technical report.
http://www.cs.virginia.edu/stream/.

36. J. D. McCalpin. Memory bandwidth and machine balance in current high performance computers. IEEE Computer
Society Technical Committee on Computer Architecture (TCCA) Newsletter, pages 19–25, Dec. 1995.

37. J. Mellor-Crummey. Hpctoolkit: Multi-platform tools for profile-based performance analysis. In 5th International
Workshop on Automatic Performance Analysis (APART), November 2003.

38. V. Morozov and J. R. Hammond. unpublished results, 2010.
39. A. Morris, A. Malony, S. Shende, and K. Huck. Design and Implementation of a Hybrid Parallel Performance

Measurement System. In International Conference on Parallel Processing (ICPP 2010), Sept. 2010.
40. J. Nieplocha and B. Carpenter. ARMCI: A portable remote memory copy library for distributed array libraries and

compiler run-time systems. Lecture Notes in Computer Science, 1586, 1999.
41. J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: a portable “shared-memory” programming model

for distributed memory computers. In Supercomputing ’94: Proceedings of the 1994 ACM/IEEE conference on
Supercomputing, pages 340–349, New York, NY, USA, 1994. ACM.

42. J. Nieplocha, B. Palmer, M. Krishnan, H. Trease, and E. Aprà. Advances, applications and performance of
the Global Arrays shared memory programming toolkit. International Journal of High Performance Computing
Applications, 20, 2005.

43. R. W. Numrich and J. Reid. Co-array Fortran for parallel programming. SIGPLAN Fortran Forum, 17(2):1–31,
1998.

44. K. Parzyszek. Generalized portable shmem library for high performance computing. PhD thesis, Iowa State
University, Ames, IA, USA, 2003. AAI3105098.

45. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon. A fifth-order perturbation comparison of
electron correlation theories. Chemical Physics Letters, 157:479–483, May 1989.

46. S. Shende, A. Malony, and R. Ansell-Bell. Instrumentation and Measurement Strategies for Flexible and Portable
Empirical Performance Evaluation. In Proceedings Tools and Techniques for Performance Evaluation Workshop,
PDPTA, volume 3, pages 1150–1156. CSREA, 2001.

47. S. Shende, A. Malony, J. Cuny, K. Lindlan, P. Beckman, and S. Karmesin. Portable Profiling and Tracing
for Parallel Scientific Applications using C++. In Proceedings 2nd SIGMETRICS Symposium on Parallel and
Distributed Tools (SPDT’98), pages 134–145, 1998.

48. S. Shende and A. D. Malony. The TAU parallel performance system. The International Journal of High
Performance Computing Applications, 20(2):287–311, Summer 2006.

49. J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications for shared-memory. SIGARCH
Comput. Archit. News, 20:5–44, March 1992.

50. G. L. Steele Jr. Parallel programming and parallel abstractions in Fortress. In 14th Intl. Conf. on Parallel
Architecture and Compilation Techniques (PACT), page 157, 2005.

51. V. Tipparaju, E. Apra, W. Yu, and J. Vetter. Enabling a highly-scalable global address space model for petascale
computing. In CF ’10: Proceedings of the 7th ACM conference on Computing frontiers, New York, NY, USA,
2010. ACM. TO APPEAR.

52. Transaction processing performance council. http://www.tpc.org/.
53. D. P. Turner, G. W. Trucks, and M. J. Frisch. Ab initio quantum chemistry on a workstation cluster. In Parallel

Computing in Computational Chemistry, volume 592 of ACS symposium series, pages 62–74. American Chemical
Society, 1995.

54. UPC Consortium. UPC language specifications, v1.2. Technical Report LBNL-59208, Lawrence Berkeley
National Lab, 2005.

55. H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz, P. Celani, G. Knizia, T. Korona, R. Lindh, A. Mitrushenkov,
G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn,
F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd,
R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Pflüger, R. Pitzer,
M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf. Molpro, version
2010.1, a package of ab initio programs, 2010. see http://www.molpro.net.

56. T. L. Windus, M. W. Schmidt, and M. S. Gordon. Parallel algorithm for integral transformations and GUGA
MCSCF. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta),
89(1):77–88, 1994.

57. A. T. Wong, R. J. Harrison, and A. P. Rendell. Parallel direct four-index transformations. Theoretical
Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 93:317–331, 1996.
10.1007/BF01129213.

58. K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. N. Hilfinger, S. L. Graham,
D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance Java dialect. Concurrency - Practice and
Experience, 10(11-13):825–836, 1998.

Copyright c� 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe


	1 Introduction
	2 The ARMCI Communication System
	3 NWChem Software Suite
	3.1 Quantum Chemistry Kernels
	3.2 Coupled-Cluster Theory
	3.3 Description of Test Input

	4 TAU Performance System
	4.1 Multicore Performance Measurement
	4.2 Profiling interface for ARMCI (PARMCI)
	4.3 Alternative Library Wrappers
	4.4 Runtime Preloading

	5 System Configurations
	5.1 Infiniband Clusters
	5.2 Blue Gene/P

	6 NWChem Workload Characterization
	6.1 Fusion Results
	6.2 Chinook Results
	6.3 Blue Gene/P Results

	7 Discussion and Future Plans
	8 Conclusions
	9 Related Work
	9.1 Workload Characterization
	9.2 Performance Evaluation Tools
	9.3 One-Sided Programming Models
	9.4 Computational Chemistry Applications


