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SUMMARY

Density function theory (DFT) is the most widely employed electronic structure method due to its favorable
scaling with system size and accuracy for a broad range of molecular and condensed-phase systems. The
advent of massively parallel supercomputers has enhanced the scientific community’s ability to study
larger system sizes. Ground-state DFT calculations on ∼103 valence electrons using traditional O(N3)
algorithms can be routinely performed on present-day supercomputers. The performance characteristics of
these massively parallel DFT codes on >104 computer cores are not well understood. The GPAW code was
ported an optimized for the Blue Gene/P architecture. We present our algorithmic parallelization strategy
and interpret the results for a number of benchmark test cases.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Kohn–Sham density functional theory (DFT) [1, 2] continues to play an important role in the
computational modeling of molecules and condensed-phase systems. Its popularity is due to
a number of factors, such as accuracy over a wide range of systems (e.g., insulators, metals,
molecules), its first-principles nature, and the ability to treat relevant system sizes on commodity
Linux clusters. The performance of DFT software packages is not well understood by the
community at large. In an era of rapidly evolving high-performance computing (HPC) architectures,
the design and performance characteristics of massively parallel DFT codes is of great importance
because it is a means to enabling high-impact science.
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Typical DFT calculations include geometry optimization and Born–Oppenheimer molecular
dynamics (BOMD). These types of calculations require ∼103−6 electronic minimization steps
and thus large amounts of computer time. Even with multiple levels of parallelization and large
supercomputers, the time-to-solution† for these calculations can be on the order of several days.
Strong-scaling performance bottlenecks are present over a wide range of system sizes relevant to
users due to serial parts (or parts with limited parallelization) in traditional O(N3) DFT algorithms,
a behavior known as Amdahl’s Law [3].

GPAW [4, 5] is a real-space finite-difference (FD) [6, 7] DFT code based on the projector
augmented-wave (PAW) [8] method. In addition to standard ground-state DFT, extensions such
as time-dependent DFT [9, 10], GW approximation [11], and Bethe-Salpeter equation [12] are
implemented in GPAW. It is also possible to use localized atomic orbitals (LCAOs) [13, 14], which
are complementary to real-space grids, and plane wave basis sets. In this work, we focus on the
parallelization of real-space ground-state DFT calculations.

GPAW is written in the Python and C programming languages [15] and uses the MPI [16, 17]
programming model for parallel execution. Originally developed on commodity Linux clusters,
GPAW has now been successfully ported for use on Blue Gene/P [18] (and other massively parallel
architectures such as the Cray XT series) on >105 computational cores. From the beginning,
GPAW has been designed for large-scale scalability, and it currently supports multiple levels
of parallelization. Here, we investigate the performance of the two main non-trivial levels of
parallelization: real-space domain decomposition and band parallelization. We note that this two-
level parallelization approach is also implemented in at least one other real-space DFT code
JuRS [19], as well as a number of plane wave based DFT codes including ABINIT [20], CPMD [21,
22], Qbox [23], Quantum ESPRESSO [24], NWChem [25], PEToT [26], and VASP [27].

Section 2 describes the algorithm for minimizing the Kohn–Sham energy functional, and
Section 3 is an in-depth description of the parallelization strategy employed. Performance
bottlenecks based on Amdahl’s Law are derived by simple analytical considerations. Computational
results for various system sizes are presented and analyzed in Section 4. Finally, a summary and an
outlook are provided in Section 5.

2. MINIMIZING THE KOHN–SHAM ENERGY FUNCTIONAL

There are two general families of methods for calculating the Kohn–Sham (KS) ground state: (i)
Direct minimization methods and (ii) iterative methods where the KS Hamiltonian is diagonalized
in conjunction with density mixing. Iterative diagonalization methods contain two levels of iteration,
one for the eigenvalue problem and an another one for the density, and they are often referred to
as self-consistent field (SCF) methods [28]. GPAW employs SCF methods to obtain the KS ground
state and offers three different iterative eigensolvers: (i) residual minimization method by direct
inversion in the iterative subspace (RMM-DIIS) [29, 28], (ii) conjugate gradient method [30, 31],
and (iii) Davidson’s method [32, 28]. The RMM-DIIS method is the main iterative eigensolver and
has been optimized for maximum scalability on high-performance computing platforms, and is thus
our main focus in this work. A detailed description of the PAW method as implemented in the GPAW
code is found in Reference [5]; only the salient features are presented here.

Within the PAW approximation, the SCF method for minimizing the KS energy functional leads
to the generalized eigenvalue equation for the pseudo (PS) wave functions ψ̃n,

Ĥψ̃skn = εsknŜψ̃skn, (1)

where s is the spin index, k the k-point index, and n the band index. We limit our discussion mostly
to spin-unpolarized systems with a single k-point (Γ-point sampling of the Brillouin zone), and thus
the s and k indices are omitted. The Hamiltonian operator Ĥ is nonlinear as it depends on the wave
functions. The Ŝ is the overlap operator, which can be defined in terms of the PAW transformation

†The total wall-clock time from beginning to end of the calculation.
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operator T̂ such that
Ŝ = T̂ †T̂ = 1 +

∑
a

∑
i1i2

|p̃ai1〉∆S
a
i1i2〈p̃

a
i2 |. (2)

Here a is an atomic index and i1, i2 are combination indices for the principal, angular momentum,
and magnetic quantum numbers. The projector functions p̃ai are localized to an augmentation sphere
and ∆Sa

i1i2
are the atomic corrections to the overlap operator.

The Hamiltonian operator in Equation 1 is given by

Ĥ = −1

2
∇2 + ṽ +

∑
a

∑
i1i2

|p̃ai1〉∆H
a
i1i2〈p̃

a
i2 |, (3)

where ∆Ha
i1i2

represents the atomic corrections and the effective potential is

ṽ = ṽcoul + ṽxc +
∑
a

v̄a. (4)

The Coulomb potential ṽcoul satisfies the Poisson equation for the charge density (including the
compensation charge contribution) ∇2ṽcoul = −4πρ̃, while ṽxc is the exchange–correlation (XC)
potential and v̄a represents fixed local potentials around each atom.

The SCF solution of Equation 1 using the RMM-DIIS algorithm proceeds as follows:

1. Initial guess for PS wave functions ψ̃n given by the LCAO initialization.
2. Orthogonalization of wave functions:

(a) Construction of overlap matrix: Smn = 〈ψ̃m|Ŝ|ψ̃n〉.
(b) Cholesky factorization of the overlap matrix: S = LTL.
(c) Rotation of wave functions: L−1ψ̃n → ψ̃n.

3. Calculation of the PS density: ñ(r) =
∑

n fn|ψ̃n(r)|2 +
∑

a ñ
a
c (r), where fn represents the

occupation numbers and ñac is a smooth PS core density equal to the all-electron (AE) core
density outside the augmentation sphere.

4. Calculation of the Coulomb and effective potential: ṽcoul, ṽ.
5. Application of the KS operator on the PS wave functions: Ĥψ̃n.
6. Subspace diagonalization:

(a) Construction of the Hamiltonian matrix: Hmn = 〈ψ̃m|Ĥ|ψ̃n〉.
(b) Diagonalization of the Hamiltonian matrix gives the eigenvalues and eigenvectors in the

subspace: εn,Wmn.
(c) Rotation of wave function: Wψ̃n → ψ̃n .

7. Update of wave functions by residual minimization:

(a) Calculation of residuals: Rn = (Ĥ − εnŜ)ψ̃n.
(b) Improvement of the PS wave functions: ψ̃′n = ψ̃n + λP̂Rn , where the preconditioner is

the approximate inverse of the kinetic energy operator T̂ , P̂ = T̂−1. The step length is
chosen to minimize the norm of the residual for the new guess: R′n = (Ĥ − εnŜ)ψ̃′n.

(c) Final trial step with the same step length: ψ̃′n = ψ̃n + λP̂Rn + λP̂R′n.

The algorithm is equivalent to RMM-DIIS as described in Ref. [28] with the subspace
dimension of two.

8. If energy, density, and wave functions have not converged, return to Step 2; otherwise, the
process is done.

The equations are discretized by representing the wave functions, densities, and other variables
with their values at points in a uniform real-space grid; for example, ψ̃n(r) = ψ̃ng where g is a
combination index for the grid points in the Cartesian dimensions. In the discretized form the
Hamiltonian can be written as

Hgg′ = −1

2
Lgg′ + ṽgδgg′ +

∑
i1i2

p̃ai1g∆Ha
i1i2 p̃

a
i2g′ (5)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe
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where Lgg′ is the finite-difference stencil for the Laplacian. The Hamiltonian is sparse, and because
the RMM-DIIS algorithm requires only evaluation of matrix-vector products, the full matrix is never
stored.

3. PARALLELIZATION STRATEGY

The parallelization strategy employed in GPAW is co-designed with the memory requirements,
floating point operations, and communication patterns of the RMM-DIIS algorithm. These resource
requirements are related to three extensive parameters characterizing the size of the calculation: (i)
total number of bands Nb (or states in the case of finite systems),‡ (ii) total number of grid points
Ng, and (iii) total number of PAW projectors Np, which is related to the total number of atoms Na

and their chemical species. For real physical systems, these parameters are inter-related:

• Ng � Nb, which is the mathematical condition motivating iterative diagonalization instead of
direct diagonalization.

• Np ≥ Na, since each atom generally has at least one projector function for each valence state.

The goal of the parallelization strategy presented here is to achieve the best weak- and strong-
scaling performance. Weak-scaling is primarily concerned with enabling calculations on larger
system sizes, which might otherwise not be possible due to hardware constraints (e.g., memory),
while strong-scaling is primarily concerned with reducing the time-to-solution for a fixed system
size. The performance of a DFT code is determined by a number of aspects that cross-cut hardware
and software, as summarized here:

1. Initialization phase (which includes reading the input file and PAW pseudopotentials, as well
as the LCAO calculation which generates the initial PS wave functions);

2. Scalable data structures;
3. Amdahl’s Law bottlenecks in the main SCF algorithm;
4. Scalable communication patterns;
5. Single-core peak performance of key algorithmic kernels; and
6. Check-pointing (with a frequency determined by the user).

In this paper we focus on the Items 2 through 4 from this list in Sections 3.1–3.3. We briefly touch
upon the remaining items in Section 3.4.

3.1. Memory and Matrix Distribution

The first hardware resource that becomes exhausted as the system size increases is the memory per
node. The matrix requiring the largest amount of memory stores the PS wave functions. The PS
wave functions ψ̃ng are stored naturally as a four-dimensional matrix (as g is a combination index
for the three Cartesian dimensions). The storage requirement for ψ̃ng is thus O(NbNg). Beyond a
certain system size, it becomes necessary to distribute ψ̃ng along the band index n and grid index g
simultaneously. Figure 1 illustrates the simplicity behind this approach, which is inspired by well-
known concepts in the parallel dense linear algebra community [33, 34, 35] and is now employed
in several DFT codes [20, 21, 22, 23, 24, 25, 26, 27]. The PS wave functions ψ̃ng are distributed on
a B×G process grid, where B and G are the total number of band groups and real-space domains,
respectively. Note that G is the product of G1, G2, and G3, the domain decomposition along each
of the three axes of the unit cell. Thus in our parallelization strategy, there are a total of B×G MPI
tasks, with each task assigned a single contiguous range of rows and columns of ψ̃ng (this layout
is commonly known as a two-dimensional block layout). For algorithmic simplicity, we require

‡Note that Nb is not to be confused with Nval, the total number of valence electrons. In direct minimization methods, Nb

is typically equal to Nval/2, which is the number of occupied bands, while iterative diagonalization methods, including
RMM-DIIS, require extra unoccupied bands to achieve convergence, hence Nb > Nval/2.
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Nb modB = 0 but allowNgi modGi 6= 0 for i ∈ 1, 2, 3 since doing otherwise would lead to changes
in the grid spacing as a function of the number of MPI tasks, which is undesirable.

B

band_comm
(same domain group, 
different band group)

domain_comm
(same band group, 

different domain group)

G

Figure 1. Two-dimensional grid layout of PS wave functions. Each square represents an MPI task and
belongs to two MPI communicators: band comm (blue) and domain comm (red). Each MPI task is assigned
a single contiguous slice of ψ̃ng; band comm contains MPI tasks with different n indices but the same g

indices; domain comm contains MPI tasks with different g indices but the same n indices.

The memory requirements for a spin-unpolarized Γ-point calculation are shown in Table I. Note
that both the order of memory storage as well as the distribution vary considerably among the
different matrices. Although at first glance it would seem natural to distribute all matrices across
the entire B×G process grid, this turns out to be impractical because it would lead to an increase in
communication among the MPI tasks. Thus the matrices in GPAW are either completely replicated,
partially replicated, or fully distributed with respect to the B×G process grid.

Table I. Memory requirements for the RMM-DIIS algorithm. Order of memory storage for matrices as
function of extensive system parameters and distribution with respect to the B×G process grid.

Matrix Memory Storage B-axis G-axis
ψ̃ng O(NbNg) distributed distributed
p̃ai (r) O(Np) replicated distributed

ñ(r), ṽ(r), ṽcoul(r) O(Ng) replicated distributed
Hmn, Smn,Wmn, O(N2

b ) distributed replicated
neighbor list O(Na) replicated replicated

While the PS wave functions are fully distributed along the B and G-axes, the real-space PAW
projectors are distributed along the G-axis and are partially replicated along the B-axis. The PAW
projectors are evaluated in real-space and only exist inside an atom-centered augmentation sphere.
This has the advantage of requiring only O(Np) storage instead of the O(NpNg) storage that is
needed in plane wave DFT codes using reciprocal-space projectors. There are also a number of
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matrices (e.g., ñ(r)) that require O(Ng) memory storage and are distributed along the G-axis and
replicated along B-axis.

The Hamiltonian Hmn and overlap Smn matrices in the subspace of computed bands require
O(N2

b ) storage. These matrices are not frequently distributed in DFT codes since they are negligible
in size for most problems. Clearly, as the system size Nb increases, Hmn and Smn will eventually
need to be distributed across multiple nodes. Hmn and Smn are distributed only along the B-
axis (one-dimensional block layout) and are replicated across the G-axis, effectively slicing these
matrices along the row or column index but not both. Although these matrices are two-dimensional,
a one-dimensional distribution has not proven to be a memory bottleneck for problems up to
Nb ∼ 104. Lastly, there are O(Na) arrays that are completely replicated since they require modest
amounts of memory even for Na ∼ 103, which is near the practical limits of O(N3) DFT methods.

3.2. Floating Point Operations and Amdahl’s Law

The strong-scaling efficiency of a parallel code is limited by the least parallel component of
the algorithm. We identify these Amdahl’s Law bottlenecks by analyzing GPAW’s RMM-DIIS
algorithm, as well as confirming these results with computational experiments. Table II is a
breakdown of the computational complexity for the individual steps in the SCF cycle. Although DFT
methods are often associated with having O(N3) computational complexity, the full description of
the complexity contains five types of terms (in decreasing order): (i) O(N2

bNg), (ii) O(N3
b ), (iii)

O(NbNg), (iv) O(NbNp) and (v) O(Ng).

Table II. Computational complexity and scaling of the RMM-DIIS algorithm in terms of extensive system
parameters. The scaling column is with respect to the B ×G process grid. The ScaLAPACK process grids

are typically chosen to be O(B2) in size.

Description Computational Computational
of Operation Complexity Scaling
ṽcoul(r), ṽxc(r), ṽ(r) O(Ng) O(Ng/G)
density mixing O(Ng) O(Ng/G)

(1st term in Eq. 3) ×ψ̃ng O(NbNg) O(NbNg/(BG))

(2nd term in Eq. 3) ×ψ̃ng O(NbNg) O(NbNg/(BG))

(3rd term in Eq. 3) ×ψ̃ng O(NbNp)
constructing ñ(r) O(NbNg) O(NbNg/(BG))
subspace diagonalization:
εn,Wmn O(N3

b ) O(N3
b /B

2)
subspace Cholesky decomposition
including inversion: L−1 O(N3

b ) O(N3
b /B

2)
constructing Hmn, Smn O(N2

bNg) O(N2
bNg/(BG))

rotation of wave functions O(N2
bNg) O(N2

bNg/(BG))

A parallelization strategy employing only domain-decomposition (parallelization along the G-
axis), leads to Amdahl’s Law bottlenecks arising from the O(N3

b ) terms. GPAW is able to calculate
these terms either using LAPACK [36], in which case the computation is replicated across all MPI
tasks, or ScaLAPACK [37], in which case these terms are computed in a parallel fashion using
a small subset of MPI tasks since Nb � Ng. Simultaneous parallelization on domains and bands
(parallelization along the B- and G-axis) leads to an additional Amdahl’s Law bottleneck arising
from the O(Ng) terms whose computation is replicated along the B-axis.

Although it is not an Amdahl’s Law bottleneck, the evaluation of the PAW projector terms leads to
computational load imbalance in calculations where atoms are not evenly distributed geometrically.
The computational complexity of evaluating the PAW projectors in real space is O(NbNp), much
lower than in reciprocal space, which is O(NbNpNg). This greatly reduces the total number of
floating-point operations, especially for larger system sizes. However, the distribution of PAW
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GPAW CODE ON MASSIVELY PARALLEL SUPERCOMPUTERS 7

projectors (and their associated computational work) is determined by the domain-decomposition
parallelization scheme. The total real-space grid is partitioned into equal-sized subdomains that
may or may not contain projectors.§ The effects are most readily observed for slab calculations
with a vacuum, or any other configuration of atoms that leads to a non-uniform distribution of
projectors, and thus computational load imbalance, both in terms of memory and in terms of
floating-point operations. It is worth noting that this load imbalance could potentially be reduced by
leveraging a computational runtime environment that can handle both global task scheduling (e.g.,
MADNESS [38]) and global shared-memory arrays (e.g., Global Arrays [39]), but this is currently
an open issue for GPAW.

In spin-polarized cases and in periodic systems with k-points, Equation 1 can be solved
independently for each spin and k-point. The computational complexity of most of the operations
increases by a factor of NsNk where Ns is the number of spins and Nk is the number of k-
points. GPAW can parallelize over both the spin and k-point degrees of freedom, and because
communication is needed only when constructing the charge density, the parallelization is very
efficient. However, because the number of spins is limited to two, and the number of k-points is
roughly inversely proportional to the number of atoms, the spin and k-point parallelization has only
limited use in very large-scale calculations.

3.3. Communication Patterns

The GPAW code has four different types of communication patterns:

1. Halo-exchange communication patterns arising from FD stencil operations on ñ, ṽcoul, and
ψ̃ng where boundary points have to be transferred between processes.

2. Projector-wave function integrals P a
ni =

∑
ga p̃aiga ψ̃nga where ga are defined inside the

augmentation sphere of atom a.
3. Parallel matrix multiplies for the construction of the Hmn, Smn, and rotation operations on
ψ̃ng.

4. Dense linear algebra operations on Nb×Nb matrices, which are handled by ScaLAPACK.

Because the augmentation spheres extend typically only to adjacent domains, their communication
pattern is three-dimensional nearest neighbor, similar to the halo-exchange.

Because of the specialized nature of the parallel matrix multiplies in GPAW, we chose to write
our own routines on top of MPI and BLAS libraries. The routines themselves are complicated due to
the need to support slightly irregular distributions of ψ̃ng, as well as the PAW terms. The calculation
of the matrix elements Hmn and Smn requires communication between all the MPI tasks within
band comm. However, by utilizing a pipeline with overlapping communication and computation,
the communication can in practice be performed as one-dimensional nearest-neighbor exchange. A
more detailed description of our parallel matrix multiply algorithms is presented in Appendix B.
Here we summarize the main features of our implementation.

1. Two distinct phases. A one-dimensional systolic ring algorithm implemented using MPI Isend
and MPI Irecv on band comm, immediately followed by MPI Reduce on domain comm. The
MPI communicators band comm and domain comm are shown in Figure 1.

2. Internal blocking inside the ring algorithm to reduce memory usage and MPI message size.
The amount of memory used for blocking is specified with the buffer size parameter in units
of kilobytes (KiB).

3. Use of ScaLAPACK for O(N3
b ) operations. Our present implementation uses a single

two-dimensional process grid for all ScaLAPACK operations in a given real-space DFT
calculation, but a different two-dimensional process grid is allowed for the LCAO
initialization.

§GPAW allows Ng mod G 6= 0 which can lead to subdomains that are slightly different in volume; subdomains with
significantly different volumes are not supported.
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8 N. A. ROMERO ET AL.

The algorithm for the rotation of wave functions by the unitary matrix W is similar except that
MPI Reduce is not needed andW is partially replicated, as noted in Section 3.1. Our parallel matrix
multiply algorithms are scalable in terms of communication and memory, but a disadvantage is that
it does not make use of as many networks links as would be possible if the MPI Isend and MPI Irecv
were replaced by MPI collectives, particularly MPI Bcast.

An important point in optimizing the communication pattern of GPAW is recognizing that
communication patterns are radically different in terms of the amount of communication per MPI
task. For example, the halo-exchange communication is proportional to the surface area of the
subdomain (Ng/G)2/3, while parallel matrix multiplies are proportional to the volume of the
subdomain Ng/G. On the other hand, the projector-wave function integrals are independent of the
domain size.

In principle, a four (or higher) dimensional torus network has a topology that can accommodate
nearest neighbor communications for all these distinct communication patterns simultaneously. For
example, the Blue Gene/P node can operate in virtual node (VN) mode, with each of the four cores
in a node running an MPI task, effectively adding a very short fourth dimension to the three-
dimensional torus network topology. We show in the results section that GPAW’s scalability is
primarily determined by optimizing the mapping so that the communication in the parallel matrix
multiplies are nearest neighbors, since this is the worst communication pattern in the RMM-DIIS
algorithm.

3.4. Initialization Phase, Single-core Peak Performance and Check Pointing

The initialization phase is defined to occur at the beginning of the calculation and to occur only
once per calculation. It includes the LCAO initialization which itself is an entirely separate DFT
algorithm that relies on direct diagonalization instead of iterative diagonalization. The GPAW LCAO
code is described in greater detail in Larsen et al. [13]. Although the LCAO code has not been
optimized as thoroughly as the real-space code, it contains sufficient parallelism to generate initial
PS wave functions for a DFT calculation with at least Nb ∼ 104.

Single-core peak performance is a measure of the efficiency with which software can use the
floating point units on the computer cores. This efficiency is heavily dependent on the nature of
algorithmic kernel and hardware details. Today’s computer architectures use deep hierarchical levels
of cache memory and have relatively slow access speeds to main memory. In the strong-scaling limit,
the arrays used in a DFT calculation will become smaller for a fixed problem size. Since smaller
arrays lead to a higher ratio of load operations to float operations, application developers tuning
their computational kernels must work increasingly harder to retain reasonable percentages of the
single-core peak performance.

For instance, vendor-supplied BLAS [40] libraries usually have double-precision general matrix
multiply (DGEMM) function tuned to obtain >75% of single-core peak-performance on large
square arrays. However, the arrays used in the GPAW’s DGEMM calls include long skinny as
well as small square arrays. The results obtained here used the optimized DGEMM available in
the single-threaded version of IBM’s ESSL [41], which has been primarily optimized for large
square matrices where it obtains >80% of the single-core peak performance. In sharp contrast,
DGEMM as used in GPAW typically only obtains 40%−60% of the single-core peak performance
using ESSL. Furthermore, as a DFT calculation is strong scaled to larger numbers of computer
cores, the dimensions of these arrays become even smaller, which reduces the single-core peak
performance and increases the total wall-clock time of a calculation.

4. RESULTS

4.1. Preliminaries: Test Cases, Timers, TAU, and Blue Gene/P architecture

The performance characteristics of DFT codes are perhaps unique in the computational science
community, in that there is no single algorithmic kernel that dominates SCF algorithms. Their
distinguishing traits can be understood by studying the weak- and strong-scaling efficiency as a
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GPAW CODE ON MASSIVELY PARALLEL SUPERCOMPUTERS 9

function of system size parameters (Na, Nb, Ng, Np). In this section, we obtain performance data on
several test cases with the GPAW code to gain insight into:

• The computational kernels that dominate the wall-clock time.
• The computational kernels that limit scalability.

This information allows us to construct a phenomenological map of GPAW’s performance
characteristics. Such a phenomenological map is valuable not only to DFT users, but also to DFT
developers who are seeking to port their codes to new architectures and obtain good performance.

We study the performance of GPAW by collecting timing data for DFT calculations of bulk (face-
centered cubic) gold for a variety of repeated cubic unit cells (L1×L2×L3) listed in Table III. The
cell sizes were chosen to facilitate comparison, while bulk gold was chosen for no other reason than
to distinguish it from the proverbial test case in the condensed matter community (i.e., bulk silicon).
As the length of the cell is doubled in a dimension, the total number of atoms, bands, and grid points
is also doubled.

ScaLAPACK process grids were chosen to be square in shape and were not exhaustively tuned
for performance. Our current implementation constrains all ScaLAPACK operations within a given
calculation to a single process grid. Ideal weak-scaling with a fixed time per SCF cycle requires
rescaling a two-dimensional process grid by a ratio proportional to N3

b . However, rescaling a two-
dimensional process grid by a ratio proportional to

√
(N3

b ) is not generally possible, so we chose to
rescale the ScaLAPACK process grid by a ratio proportional toN2

b instead. While it has been shown
that 2.5- and 3-dimensional parallel dense linear algebra algorithms [42, 43] are required to achieve
ideal scaling, we still expect that the two-dimensional algorithms that are used by ScaLAPACK will
lead only to a linear increase in the time-to-solution as Nb increases; we show later in this section
that this is not the case.

Table III. Extensive system and ScaLAPACK process grid parameters for bulk gold test cases.

L1 L2 L3 Na Nb Ng ScaLAPACK process grid
2 4 4 128 712 (64, 128, 128) 2×2
4 4 4 256 1424 (128, 128, 128) 4×4
4 4 8 512 2848 (128, 128, 256) 8×8
4 8 8 1024 5696 (128, 256, 256) 16×16

All calculations used a grid spacing of h = 0.125Å and a gold PAW setup containing 18 PAW
projector functions. Setups version 0.8.7929 was used which can be obtained online.¶ Ground-
state DFT calculations were performed in the local density approximation (LDA) [2] for 10 SCF
iterations with a Γ-point sampling of the Brillouin zone. The template for our input file is included
in Appendix A.

The performance data presented here was collected with the Tuning and Analysis (TAU)
Performance System R© [44, 45, 46, 47] (henceforth referred to simply as TAU). It consists of a
number of tools for instrumenting code as well as storing and analyzing performance data. We have
collected performance data by swapping out GPAW’s default Python timers with those from TAU
(shown as BGP TIMERS in our figures). The performance data shown will be based on timers
that are normally defined in a ground state DFT calculation (excluding those from the LCAO
initialization) and are shown in Table IV. A special font is used in the main text to identify a
timer. The timers represent exclusive timings unless noted otherwise. A number of timers that take
up a negligibly small fraction of the total time have been intentionally omitted to make the figures
easier to read.

The Blue Gene/P architecture has three networks for node-to-node communication [18]: (i)
a global collective network, (ii) a global barrier network and (iii) a three-dimensional torus

¶https://wiki.fysik.dtu.dk/gpaw/setups/setups.html
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Table IV. Timers in the SCF cycle as obtained from the output of the GPAW code. Right (left) indentation
indicates child (parent) relationship in the hierarchy. Timers are non-overlapping at the same level. The sum
of child timers does not necessarily provide complete coverage of the parent timer. Timers marked with an

asterisk have been absorbed into their parent timer.

SCF-cycle
Density

Atomic density matrices*
Mix*
Multipole moments*
Pseudo density*
Symmetrize density*

Hamiltonian
Atomic*

XC Correction
Communicate energies
Hartree integrate/restrict*
Poisson
XC 3D grid*
vbar*

Orthonormalize*
Blacs Band Layouts*

Inverse Cholesky
calc_s_matrix
projections
rotate_psi

RMM-DIIS
Apply hamiltonian
precondition
projections

Subspace diag*
Blacs Band Layouts*
Diagonalize
Distribute results

calc_h_matrix
Apply hamiltonian

rotate_psi

network. The global collective and global barrier networks handle MPI collectives and barrier
calls, respectively, on the MPI COMM WORLD communicator, while the three-dimensional torus
network handles all other types of MPI calls. The three-dimensional torus network is a low-latency
high-bandwidth network where each node is directly connected to its six nearest neighbors with bi-
directional links. A unique feature of the the Blue Gene/P architecture is that it supports partitions
which are contiguous and allow different mappings of MPI tasks [48]. On a Blue Gene/P partition, a
user’s calculation is isolated and hence protected from external network traffic. A mapping refers to
the assignment of MPI tasks on the three-dimensional torus network and turns out to be an important
aspect of strong-scaling a GPAW calculation. For the work presented here, we use an MPI-only
version of the GPAW code. Thus, all our results were obtained in VN mode where one MPI task
runs on each of the four cores of the Blue Gene/P node.
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4.2. Domain Decomposition and Band Parallelization

We begin by showing two performance enhancements implemented in the RMM-DIIS algorithm:
(i) application of the KS operator to multiple wave functions as specified by the blocksize parameter
and (ii) band parallelization (described in Section 3.2). Figure 2 shows the effect of these algorithmic
strategies in isolation, as well as in tandem, for the smallest of our bulk gold test cases (2×4×4).
The baseline case, corresponding to blocksize = 1 andB = 1, shows rapid performance degradation
above 256 MPI tasks with {Gi} = (4, 8, 8). The strong-scaling efficiency of the baseline case
is significantly improved even for the B = 1 case by simply increasing to blocksize = 10. This
improvement comes from a reduction in communication latency due to the consolidation of small
MPI messages into larger ones. The total number of send/receives per MPI task is proportional to the
total the number of Ĥψ̃ng operations. Thus, applying the KS operator to multiple wave functions
at a time, instead of one wave function at a time, reduces time spent in communication.‖ Hence,
performance data collected in later sections were obtained with blocksize = 10.

The efficacy of a domain decomposition only approach cannot continue indefinitely, because
it is well known that these types of algorithms are limited by a surface-to-volume effect [49].
In Figure 2, we observe the strong-scaling efficiency falling below 75% at 1024 MPI tasks with
{Gi} = (8, 8, 16) for blocksize = 10 and B = 1. This behavior is in line with observations on other
computer architectures, and we generally consider Ngi/Gi ∼ 10 for i ∈ 1, 2, 3 to be the minimum
efficient size for a real-space domain on an MPI task. The best strong-scaling performance is
achieved by simultaneously parallezing over bands and domains along with blocksize = 10, proving
that our approach is tenable even for the smallest of our test cases.
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Figure 2. Strong-scaling efficiency as obtained by inclusive SCF-cycle timer for 10 SCF iterations of
a ground-state DFT calculation on bulk gold 2×4×4 as a function of the blocksize and B. Relevant DFT

calculations parameters are listed Table III.

We examine the blocksize = 10 andB = 1 case for bulk gold 2×4×4 in more detail to understand
the underlying performance degradation. Figure 3a shows a breakdown of the inclusive time in
SCF-cycle as a function of MPI tasks. This type of plot can be obtained from TAU’s PerfExplorer

‖In our current implementation, only the communication from the projector-wave function integral is aggregated. The
communication from the FD stencil operations on the wave function still occurs one band at a time.
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and is called a fractional stacked-bar chart. The colors in the data bar of the stacked-bar chart are
organized from left to right in the same order as the legend. Figure 3a shows that the strong-scaling
bottlenecks at 1024 MPI tasks are Communicate energies, Distribute results, and
precondition. We expect precondition to be among the computational kernels that are
affected by a surface-to-volume effect, especially since these operations occur on a grid coarser
than the wave function grid (2h instead of h).

The presence of Communicate energies and Distribute results as bottlenecks is
at first glance perplexing, but can be understood by looking at where these timers are located in the
GPAW code. Distribute results and Communicate energies contain MPI collectives
that are called after XC Correction and Diagonalize, respectively. Thus time spent in these
timers is indicative of load imbalance in the precedent timers. While there are a number of ways to
show this load imbalance and the relationship between these timers, it is most elegantly shown by a
normal probability plot [50] obtained by PerfExplorer.

A normal probability plot is a graphical technique for assessing whether data is normally
distributed. Data that is normally distributed falls on the ideal normal line, while data that
departs from a normal distribution is shown by departures from the ideal normal line.
Figure 3b shows that XC Correction, Communicate energies, Diagonalize, and
Distribute results contain MPI tasks with timings outside statistical normality; this is
in sharp contrast to precondition, whose data points falls on the ideal normal line. The
load imbalance in Diagonalize arises because the dense diagonalization is performed on a
subset of cores which form the 2×2 process grid. The load imbalance in XC Correction
arises from exchange–correlation PAW corrections which are evaluated around each atom. In our
current implementation, this computational work is local to domains containing atoms; thus load
imbalance is present due to idle processes when the number of MPI tasks (=B×G) is greater than
Na. Note that this computation is also replicated across band groups. In subsequent figures, we
absorb Communicate energies into XC Correction and Distribute results into
Diagonalize for the sake of clarity and simplicity.

4.3. Mapping and DCMF environment variables

In order to minimize time-to-solution, we gathered timings for bulk gold 4×4×8 at 2048 nodes
while varying the values of the mapping, buffer size parameter, and Deep Computing Messaging
Framework (DCMF) [51] protocol variables. The standard mappings supported are permutations
of XYZT, with T located either at the beginning or end of the mapping specification string. T
can be thought of the dimension of parallelism available within the node and is equal to the
number of MPI tasks per node (T = 4 for VN mode). While it is possible to specify a nonstandard
mapping using a mapfile, it is most convenient for typical users to work with the standard mappings
instead. By design, the MPI tasks in the GPAW’s world communicator are ordered so that the band
index is incremented last. The ordering of MPI tasks in GPAW’s world communicator are fixed
and not re-ordered as a function of the partition dimension. We have found that this approach is
sufficient for scaling calculations that use simultaneously parallelization on bands and domains, but
has shortcomings when parallelization is invoked on three or more layers of parallelization. For
calculations which have simultaneous parallelization on bands and domains in conjunction with
spins, k-points, and/or images, mapping should be accomplished by using a mapfile.

The 2048-node partitions on the Argonne Leadership Computing Facility (ALCF) Blue
Gene/P have dimensions XYZT = 8×8×32×4 and can execute up to 8192 MPI tasks. For our
computational experiments, we choose simultaneous parallelization on domains and bands with
{Gi} = (8, 8, 16) and B = 8 which uses all the cores on the 2048-node partition. Table V shows
that for all cases, the MPI eager protocol yields the shortest time; this is because our parallel
matrix multiply algorithm is able to overlap some communication and computation to the extent
that is allowable by the hardware. It was discovered, somewhat counter-intuitively, that there is
performance degradation when increasing buffer size from 2048 KiB to 4096 KiB. We were able to
confirm for select cases that this was due to the default value of DCMF RECFIFO SIZE, which is
8192 KiB per node. Because there are four MPI tasks per node in VN mode, four times the parallel
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(a) Wall-clock time breakdown

(b) Normal probability plot at 1024 MPI tasks.

Figure 3. Ten SCF iterations of a ground-state DFT calculation on bulk gold 2×4×4 with blocksize = 10
and B = 1. A complete set of timers and relevant DFT calculation parameters are listed Tables III and IV,

respectively.

matrix multiply buffer size must be a lower bound for the value of DCMF RECFIFO – thus a
buffer size of 2048 KiB can already fill up the default DCMF RECFIFO buffer. It would be possible
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14 N. A. ROMERO ET AL.

to benefit from a larger buffer size value, but only at the expense of a larger DCMF RECFIFO buffer
value which would reduce the total amount of allocatable memory to GPAW.

Table V. Inclusive timings for SCF cycle (10 SCF iterations excluding LCAO initialization) of the bulk
gold 4×4×8 case at 2048 nodes as a function of mapping, parallel matrix multiply buffer size, and DCMF
protocol. The ScaLAPACK process grid was incidentally set to 6×6 instead of the value noted in Table III.
The three DCMF protocols are eager, rendezvous (rzv) and optimized rendezvous (optrzv) [48]. Data was
collected in virtual node mode (four MPI tasks per node) with DCMF EAGER set to 8192 KiB. Mapping

where the last index is equal to B = 8 are indicated with an asterisk (∗).

Mapping Permuted Partition buffer size Timing (seconds)
Dimensions (kilobytes) eager rzv optrzv

XYZT 8×8×32×4
2048 592 619 610
4096 612 628 629

TXYZ 4×8×8×32
2048 471 532 520
4096 500 532 527

TZYX∗ 4×32×8×8
2048 462 479 478
4096 459 532 628

Lastly, we see that the largest performance enhancement comes from an optimal mapping of
MPI tasks unto the torus network. This optimal mapping can be achieved when B is identical to
the last index of the Blue Gene/P mapping. While in principle an optimal mapping could always
be obtained on a four-dimensional network, architectural constraints prevent the use of certain
values of {Gi} and B. The most obvious constraint is the total number of available cores per
node (T dimension) and the available set of partition shapes and sizes (X, Y, and Z dimensions)
available on the Blue Gene/P at ALCF. We illustrate this concept using a 512-node partition for
simplicity in Figure 4. This figure depicts a 512-node partition with cartesian dimensions 8×8×8.
Figure 4a shows a decomposition of B = 4 along one of the partition dimensions. As discussed
in Section 3.3, our parallel matrix multiply involves a large volume of communication in a one-
dimensional systolic ring pattern. There are large messages sent using MPI Isend and MPI Irecv
between each MPI process and its adjacent MPI process in band comm. This communicator is not
explictly shown, but is defined to be the set of MPI processes forming columns perpendiculator to
the colored plane. In Figure 4a, band comm consist of the perpendicular column of MPI processes
from every other (i.e., second nearest neighbor) colored plane of nodes. On the other hand, Figure 4b
shows a decomposition of B = 8, where band comm consists of the perpendicular column of MPI
process from adjacent (i.e., first nearest neighbor) colored planes of nodes. The one-dimensional
systolic communication pattern in the B = 4 case leads to hopping over a plane of nodes and thus
significant network contention. The B = 8 decomposition requires no hopping over plane of nodes
and leads to much lower network contention.

4.4. Performance data for bulk gold

We collected strong-scaling performance data for our four bulk gold benchmark test cases. The
parameters for each of the cases are given in Table III. For each case, we created a stacked-bar
and fractional stacked-bar chart using TAU’s PerfExplorer. The stacked-bar chart shows both the
strong-scaling performance and the wall-clock time breakdown, while the fractional stacked-bar
chart shows only the percentage wall-clock time breakdown. The fractional stacked-bar chart can
be considered a magnified view of the stacked-bar chart view that more clearly depicts fine grain
details. In the stacked-bar chart representation, ideal strong-scaling is shown by bars which are
reduced proportionately between MPI tasks. For example, between 64 and 128 MPI tasks, the bars
for each computational kernel would go down by a factor of 2 in the limit of ideal scalability.
In the fractional stacked-bar chart representation, ideal strong-scaling performance is shown by a
constant fraction of the wall-clock time with varying MPI tasks. These two representations for the
performance data are complementary and helpful in interpreting our results. Unless noted otherwise,
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(a) Bad mapping for B = 4 (b) Good mapping for B = 8

Figure 4. Mappings available on a 512-node partition of Blue Gene/P with cartesian dimensions equal to
8×8×8. Cubes represent computer nodes. Nodes with the same color form planes of MPI processes that

exist on the same domain comm; band comm is orthogonal to these planes and is not shown.

our results were obtained with blocksize set to 10, buffer size set to 2048 KiB, DCMF EAGER set
to 8192 KiB, and B set to the last index of the Blue Gene/P mapping (whenever this was possible
with the given partition).

Our smallest test case is 2×4×4 which was discussed in greater detail in Section 4.2. We
only summarize the results here. Figure 5b shows that 74% of the inclusive SCF-cycle time
is spent on Ĥψ̃ng products (sum of Apply hamiltonian, projections, precondition,
RMM-DIIS), which are either O(NbNg) or O(NbNp) operations, while only about 24% is spent in
parallel matrix multiplications (sum of calc s matrix, calc h matrix, and rotate psi),
which are O(N2

bNg) operations.∗∗ As the 2×4×4 case is strong-scaled to a larger number
of MPI tasks, the bottlenecks emerging are XC correction arising from load imbalance,
Diagonalize arising from Amdahl’s Law, and precondition arising from a surface-to-
volume effect.

The dominant computational kernels in the 4×4×4 case are very similar to those in the 2×4×4.
However, it is worth noting that strong-scaling bottlenecks are different for 4×4×4 than for
2×4×4. Figure 6b shows that XC correction and Diagonalize are still an issue, but that
precondition is no longer as relevant even though Ngi/Gi ∼ 10 for i ∈ 1, 2, 3 per MPI task.
In addition, there are a number of subtle bottlenecks that appear at 4096 MPI tasks (B = 16).
For instance, Poisson and Inverse Cholesky no longer take a negligible fraction of the
inclusive SCF-cycle time, which is consistent with Amdahl’s Law. We identified these inherent
limitations of our parallelization approach in Section 3.1 (see Table II); namely, that the Poisson
computation is replicated for each group of bands and that Inverse Cholesky is an operation
that is constrained to the concurrency available in the ScaLAPACK process grid which is only
4× 4 = 16 MPI tasks for this test case.

The 4×4×8 case is the second largest test case we consider and is significantly different from
the 2×4×4 with respect to the dominant computational kernels. Figure 7b shows that 50% of the
inclusive SCF-cycle time is spent in parallel matrix multiplies, while 46% is spent in Ĥψ̃ng

products. This test case is interesting because it marks a transition region where the dominant
computational kernels shift from the Ĥψ̃ng, which are O(N2) in computational complexity, to
parallel matrix multiplies which areO(N2

bNg). As the 4× 4× 8 case is strong-scaled out, the largest
bottlenecks are XC Correction and Diagonalize, but Inverse Cholesky is also more
prominent.

∗∗These percentages can be approximately obtained from visual inspection of the fraction stacked-bar chart.
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(a) Stacked-bar chart

(b) Fractional stacked-bar chart

Figure 5. Strong-scaling performance data as obtained by timers for 10 SCF iterations of a ground-state
DFT calculation on bulk gold 2×4×4. A complete set of relevant DFT calculation parameters and timers are

listed Tables III and IV, respectively.
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(a) Stacked-bar chart

(b) Fractional stacked-bar chart

Figure 6. Strong-scaling performance data as obtained by timers for 10 SCF iterations of a ground-state
DFT calculation on bulk gold 4×4×4. A complete set of relevant DFT calculation parameters and timers are

listed Tables III and IV, respectively.
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(a) Stacked-bar chart

(b) Fractional stacked-bar chart

Figure 7. Strong-scaling performance data as obtained by timers for 10 SCF iterations of a ground-state
DFT calculation on bulk gold 4×4×8. A complete set of relevant DFT calculation parameters and timers are

listed Tables III and IV, respectively.
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Our largest test case investigated in this study is the 4×8×8 shown in Figure 8. We observe that
58% of the inclusive SCF-cycle time is spent in parallel matrix multiplies, while only 32% is
spent in Ĥψ̃ng products. As the 4×8×8 test case is strong-scaled out, we see in Figure 8b that
Diagonalize is the dominant computational kernel at 131,072 MPI tasks. In addition, at this
very large scale, we discover that our parallel matrix multiplies are not scaling as well as in the
previously discussed smaller test case (4×4×8). This is most easily seen in Figure 7a by comparing
the exclusive time of calc h matrix, calc s matrix, and rotate psi between 65,536
and 131,072 MPI tasks. We speculate that the poor scaling comes from the mapping not being
commensurate with the value of B=64 at 131,072 MPI tasks. This hypothesis is based on our
previous observations of timings for 4×4×8 test case which exhibited a 28% performance penalty
(compare timings for buffer size = 2048 for eager between XYZT and TZYX in Table V). Currently,
it is not possible to accommodate an ideal mapping for B > 32 with the available partitions on the
Blue Gene/P at the ALCF.

It is evident from Figures 7–8 that Diagonalize is the predominant factor for the poor
performance in the two largest test cases. The subspace diagonalization in GPAW is performed
by ScaLAPACK’s Divide and Conquer dense diagonalization routine (PDSYEVD) [52]. Its weak-
scaling performance is shown in Figure 9, where we plot the ideal versus the observed wall-clock
time. This behavior is consistent with the findings of Sunderland [53] and Petschow [54]. While we
have not investigated the source of the poor performance of PDSYEVD on Blue Gene/P, we note
that Petschow identifies the reduction to tridiagonal form as a severe bottleneck when the upper
triangle of the input matrix is referenced – which is the current implementation GPAW. However,
the performance issue note by Petschow et. al. becomes prevalent only at matrix sizes larger than
10,000, which is almost a factor of two larger than what is studied in this paper.
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(a) Stacked-bar chart

(b) Fractional stacked-bar chart

Figure 8. Strong-scaling performance data as obtained by timers for 10 SCF iterations of a ground-state
DFT calculation on bulk gold 4×8×8. A complete set of relevant DFT calculation parameters and timers are

listed Tables III and IV, respectively.
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Figure 9. Weak-scaling performance of PDSYEVD for bulk gold test cases as a function of the ScaLAPACK
process grid. The value of Nb is annotated adjacent to the data point (blue crosses). The data points are the
Diagonalize time normalized to the value at Nb = 712. Worse performance is indicated by data points

(blue crosses) above the ideal line (black).

5. CONCLUSIONS

The scientific need for DFT calculations on increasingly larger system sizes as well as the
availability of massively parallel supercomputers has driven the development of more scalable
algorithms. The GPAW data structures are completely scalable with respect to memory with the
possible exception of O(Na) arrays. Our real-space implementation of PAW method is parallelized
over all quantum mechanical indices: k-points, spins, bands and domains. We have examined the
weak and strong-scaling behavior of several bulk gold test case ranging in size from Nb=712 to
Nb=5696.

We determined that proper mapping of MPI tasks on the Blue Gene/P torus is an important aspect
of obtaining good performance. ForNb∼500−2000, the dominant part of the inclusive SCF-cycle
time was Ĥψ̃ng products which contain all the O(N2) terms. For Nb>2000, the dominant part of
the SCF-cycle are parallel matrix multiplies with computational complexity O(N2

bNg). On all
test cases investigated, Diagonalize was an Amdahl’s Law bottleneck, consistent with findings
of Kent [27]. AsNb increases, terms withO(N3

b ) computational complexity become an increasingly
severe bottleneck for weak- and strong-scaling. A less severe, but non-neglible, strong-scaling
bottleneck included XC correction, which suffers from load imbalance as well as computation
replicated across the different band groups (B-axis). For the largest calculation presented in this
work, our parallel matrix multiply algorithm exhibited poor performance at 131,072 MPI tasks,
which was caused by the inability to obtain an optimal mapping on the Blue Gene/P partition.
A possible way to improve upon our current parallel matrix multiply algorithm is to replace our
MPI Isend/MPI Irecv calls with MPI Bcast, which would make better use of the Blue Gene/P three-
dimensional torus network.
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We have shown that ground-state DFT calculations up to Na∼1000 with Nb>5000 are feasible
with massively parallel supercomputers such as Blue Gene/P. Similarly large calculations have
been around since at least 2006, where F. Gygi et. al. [55] performed similarly large calculations
on Blue Gene/L which result in resulted in a Gordon Bell Award. The major differences being
the use of uniform real-space grids instead of a plane-wave basis and the use of PAW instead
of norm-conserving pseudopotentials. Kleis et al. [56] performed total energy calculations on
gold nanoparticles containing as many as 1415 atoms (Nb > 8064) using GPAW on ALCF’s Blue
Gene/P. More recently, Lin et. al [57] performed similarly large scale DFT calculations on platinum
nanoparticles. While the work presented here focuses on the Blue Gene/P architecture, many
architectures have benefited from the parallelization strategy presented here; most notably, Cray
XT5 (see Figure 14 in Reference [5]), and even commodity Linux clusters. The size of the largest
test case investigated in this work is near the practical limits accessible by O(N3) DFT methods.
While it is possible to push this limit further with diagonalization-free approaches in conjunction
with more scalable parallel dense linear algebra algorithms, robust O(N) DFT methods are needed
to make calculations onNb∼104 practical for time-sensitive calculations such as ab initio molecular
dynamics.

When going beyond ground-state DFT calculations, new possibilities for utilizing massively
parallel supercomputers arise. For example, time-dependent DFT (both in linear response and real-
time propagation forms), GW-approximation, and Bethe-Salpeter equation in GPAW have been
parallelized with additional degrees of freedom with minimal communication requirements. These
are also computationally much more demanding, and are thus currently limited to much smaller
system sizes than ground-state studies. The optimization work reported here also paves the way for
enabling these beyond-DFT schemes in much larger parallel scale than previously possible.
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A. BENCHMARK INPUT FILE TEMPLATE

# Perform a single point total energy calculation
from ase import Atoms
from gpaw import GPAW, Mixer, ConvergenceError, PoissonSolver
from gpaw.poisson import PoissonSolver
from gpaw.utilities.timing import Timer, TAUTimer
from gpaw.eigensolvers.rmm_diis import RMM_DIIS
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ps = PoissonSolver(nn=’M’, relax=’GS’, eps=1e-9)
es = RMM_DIIS(keep_htpsit=False, blocksize=10)

# dimensions
L1 = <value1>
L2 = <value2>
L3 = <value3>

# system
nbandspercell = 22.25
a = 4.08
bulk = Atoms(’Au4’,

positions=((0, 0 ,0),
(0.5, 0.5, 0),
(0.5, 0, 0.5),
(0, 0.5, 0.5)),

pbc=True)

bulk.set_cell((a, a, a), scale_atoms=True)
bulk = bulk.repeat((L1, L2, L3))

calc = GPAW(h=0.1275,
maxiter=10,
mode=’fd’,
poissonsolver=ps,
nbands=int(nbandspercell * L1 * L2 * L3),
spinpol=False,
xc=’LDA’,
width=0.01,
mixer=Mixer(0.10, 5, 100.0),
eigensolver=es,
parallel={’buffer_size’:2048},
txt=’Au_bulk.out’)

bulk.set_calculator(calc)

try:
bulk.get_potential_energy()

except ConvergenceError:
pass

B. PARALLEL MATRIX MULTIPLY

There are two different types of parallel matrix multiplication routines needed by the RMM-DIIS
algorithm. Although both types have computational complexity of O(N2

bNg), different routines are
needed because of the distinct shapes and logical distributions for the input matrices. One routine
is needed for the construction of Hmn, Smn, and another one for performing rotation operations on
ψ̃ng. The former has the general form of Omn = 〈ψ̃m|Ô|ψ̃n〉, where Ô is a matrix-free operator. Let
φ̃ng denote the matrices resulting from Ô|ψ̃n〉. We denote the row and column coordinates of the
MPI task in the two-dimensional process grid by (r, c). Additionally, letBr andGc denote the range
of indices of ψ̃ng associated with MPI task (r, c).
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We calculate Omn in terms of an auxiliary matrix denoted O1D[q](r, c), where each entry q is
a Nb/B ×Nb/B-size subblock of Omn. The superscript reminds us that this matrix contains one-
dimensional slices of the Omn matrix. Since Omn is symmetric, only q = B div 2 exchanges are
needed to build up all the needed subblocks to form the lower triangle of Omn.†† The capability to
only compute half the matrix in parallel has substantial computational savings and is not currently
available in any parallel dense linear algebra package.

Our parallel matrix multiply algorithm proceeds as follows:

1. Initially, without any communication, each MPI task can calculate its diagonal block
contribution to Omn, which is given by

O1D[0](r, c) =

Gc∑
g

φ̃∗mgψ̃mg∆V, {m ∈ Br}, (6)

where ∆V is the volume element for the real-space grid. Then each MPI task in band comm
exchanges φ̃ng with the nearest neighbor rank and computes the next contribution. In general,
for the q-th wave function exchange, we have

O1D[q](r, c) =

Gc∑
g

φ̃∗mgψ̃ng∆V, {m ∈ B(r+q)divB , n ∈ Br}. (7)

This phase of the communication uses MPI Isend and MPI Irecv. This allows us to overlap
the computation phase ofO[q](r, c) with the communication ofO[q + 1](r, c) for q < B div 2.
Instead of exchanging the entirety of φ̃ng in a single pass, a buffer size parameter is available
to control the chunk of ψ̃ng that is sent and received (not explictly shown in the equations).
While this additional layer of complexity is tedious to code, the additional memory savings
are beneficial on low-memory nodes like those found on Blue Gene/P.

2. Summing along the columns of the two-dimensional process grid (MPI Reduce on
domain comm), we have

O1D[q](r, c = 0) =
∑
c

O1D[q](r, c). (8)

3. At this step, we have all the necessary blocks of Omn, but they are not distributed in a form
that is amenable to use with ScaLAPACK. This requires two additional steps.

(a) Since the necessary subblocks are not on the needed task on the B×G process grid,
an MPI-based routine assembles the blocks of O1D[q](r, c = 0) into a one-dimensional
column-wise block layout: O1D

mn(r, c = 0) := Omn(r, c = 0), {∀m,n ∈ Br}
(b) A ScaLAPACK routine call redistributes O1D

mn(r, c) to the two-dimensional block cyclic
layout required by the ScaLAPACK library. The dimensions of the ScaLAPACK process
grid are a user specified parameter and independent of the B×G process grid. After the
ScaLAPACK-based operations are completed, a second call to a ScaLAPACK routine
is required to return the resulting matrix to its previous one-dimensional column-wise
block layout.

The second type of parallel matrix multiply has the general form of ψ̃′mg =
∑

n Umnψ̃ng

where Umn is a unitary matrix. Our parallel matrix multiply algorithm is similar to the work of
Solomonik [42] and proceeds as follows:

1. Umn is computed by ScaLAPACK in its native two-dimensional block cyclic layout as the
result of subspace diagonalization or the Cholesky factorization plus triangular inversion.

††In general, for odd values of B greater than unity, exactly the lower triangle of Omn is computed. For even values of
B greater than two, a few subblocks in addition to the lower triangle are computed. In the limit of large even B, this
additional computation is negligible.
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2. Using a ScaLAPACK routine, Umn is redistributed from a two-dimensional block cyclic
layout into a one-dimensional row-wise block layout that only exists on the root node of
domain comm: U1D

mn(r, c = 0) := Umn(r, c = 0), {m ∈ Br,∀n}.
3. U1D

mn(r, c = 0) is broadcast along the columns of the two-dimensional process grid
(MPI Broadcast on domain comm). We define a new array U1D[q](r) in a manner reminiscent
of our previously described matrix multiply. The c index is dropped as the matrix is replicated
on the G-axis and the q index is introduced as this matrix is accesssed in Nb/B×Nb/B
subblocks.

4. Each MPI task calculates its local contribution to the rotated wave functions:

ψ̃′mg(r, c) =

Br∑
n

U1D[0](r)ψ̃ng(r, c), {m ∈ Br, g ∈ Gc}. (9)

Since symmetry is not as easily exploitable here, q = B − 1 exchanges are required to rotate
the wave functions. In general, the q-th exchange is given by

ψ̃′mg(r, c) = ψ̃′mg(r, c) +

Br∑
n

U1D[q](r)ψ̃ng(r, c), {m ∈ Br, g ∈ Gc}, (10)

where the ψ̃′mg on the right-hand side contains the cumulative contributions from the previous
q − 1 exchanges. The communication pattern here closely follows the prior algorithm with
respect to the overlapping computation and communication with MPI Isend and MPI Irecv.
We also use the buffer size parameter to control the chunk of ψ̃ng that is sent and received.

We schematically depict the the distinct MPI operations on the rows and columns of the process
grid below:

Table VI. MPI operations in parallel matrix multiply routines

Operation Before After
band comm band comm

ISend/IRecv
rank 0 rank 1 rank 2
ψB0Gc ψB1Gc ψB2Gc

rank 0 rank 1 rank 2
ψB2Gc ψB0Gc ψB1Gc

domain comm domain comm

Reduce
rank 0 rank 1 rank 2

O[q](r, 0) O[q](r, 1) O[q](r, 2)
rank 0 rank 1 rank 2∑

cO[q](r, c)

domain comm domain comm

Bcast
rank 0 rank 1 rank 2

U1D
mn(r, 0)

rank 0 rank 1 rank 2
U1D
mn(r, 0) U1D

mn(r, 0) U1D
mn(r, 0)
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