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Abstract. Parallel performance tuning naturally involves a diagnosis
process to locate and explain sources of program inefficiency. Proposed
is an approach that exploits parallel computation patterns (models) for
diagnosis discovery. Knowledge of performance problems and inference
rules for hypothesis search are engineered from model semantics and
analysis expertise. In this manner, the performance diagnosis process
can be automated as well as adapted for parallel model variations. We
demonstrate the implementation of model-based performance diagnosis
on the classic Master-Worker pattern. Our results suggest that pattern-
based performance knowledge can provide effective guidance for locating
and explaining performance bugs at a high level of program abstraction.
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1 Introduction

Performance tuning (a.k.a. performance debugging) is a process that attempts
to find and to repair performance problems (performance bugs). For parallel
programs, performance problems may be the result of poor algorithmic choices,
incorrect mapping of the computation to the parallel architecture, or a myriad
of other parallelism behavior and resource usage problems that make a program
slow or inefficient. Expert parallel programmers often approach performance
tuning in a systematic, empirical manner by running experiments on a parallel
computer, generating and analyzing performance data for different parameter
combinations, and then testing performance hypotheses to decide on problems
and prioritize opportunities for improvement. Implicit in this process is the ex-
pert’s knowledge of the program’s code structure, its parallelism approach, and
the relationship of application parameters with performance factors. We can
view performance tuning as involving two steps: detecting and explaining per-
formance problems (a process we call performance diagnosis), and performance
problem repair (commonly referred to as performance optimization). This paper
focuses on parallel performance diagnosis and how it can be supported as an
automated knowledge-based process in performance analysis tools.



Performance diagnosis, as a process, is best based on understanding of how
expert parallel programmers debug performance problems. That is, we should
regard performance diagnosis as an intelligent system wherein we capture knowl-

edge about performance problems and how to detect them, and then apply this
knowledge in a diagnosis framework. The key idea is to extract performance
knowledge from parallel computational models that represent structural and
communication pattern of a program. The models provide semantically rich de-
scriptions that enable better interpretation and understanding of performance.
The goal is to engineer the performance knowledge to support bottom-up infer-
ence of performance causes effectively. A diagnosis system can then use the per-
formance knowledge for performance problem search and reasoning. The problem
we focus on in this paper is the knowledge engineering required for model-based
performance diagnosis. We will show in a particular scenario, the classic Master-

Worker parallel model, that the performance knowledge derived from parallel
models provides a sound basis for automating performance diagnosis processes
and can explain performance loss from high-level computation semantics.

In Section §2, we more formally discuss performance diagnosis as a general
intelligent process and provide background on why we advocate a model-based
diagnosis approach. From this perspective, Section §3 describes our approach to
engineering performance knowledge and problem inference. A prototype diagno-
sis system, Hercule, was developed based on this approach and is presented. The
Master-Worker pattern is illustrated in section §4 to demonstrate how perfor-
mance knowledge is engineered in Hercule and to show automatic performance
diagnosis in action. Section §5 highlights related research and Section §6 con-
cludes with observations and future work.

2 Model-based Performance Diagnosis

Performance diagnosis is the process of locating and explaining sources of perfor-
mance loss in a parallel execution. Expert parallel programmers often improve
program performance by iteratively running their programs on a parallel com-
puter, then interpreting the experiment results and performance measurements
to suggest changes to the program. Specifically, the process involves:

Designing and running performance experiments. Parallel computing
researchers have developed integrated measurement systems to facilitate
performance analysis [18, 15, 2]. The performance experiments specify in-
put data, number of processors, and other parameters. The experiments also
decide on points of instrumentation and what information to capture. Per-
formance data are then collected from experiment runs.

Finding symptoms. We define a symptom as an observation that deviates
from performance expectation. General metrics for evaluating performance
includes execution time, parallelization overhead, speedup, efficiency, and
cost. By comparing the metric values computed from performance data with
what is expected, we can find symptoms such as low scalability, poor effi-
ciency, and high overhead.
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Inferring causes from symptoms. Causes are explanations of observed
symptoms. Expert programmers interpret performance symptoms at differ-
ent levels of abstraction. They may explain symptoms by looking at more
specific performance properties [9], such as load balance and communica-
tion cost, or tracking down specific source code fragments that are respon-
sible for major performance loss. Performance analysis expertise and knowl-
edge about code structure and parallelization design can help form perfor-
mance hypotheses, capture supporting performance information, synthesize
raw performance data to test the hypotheses, and iteratively refine hypothe-
ses toward higher-level abstractions until some cause is found.

A parallel computational model [13, 14], also called a parallel pattern [16]
or programming paradigm [6] in the literature, is a recurring parallel solution
to a class of problems. Typical models include master-worker, pipeline, divide-
and-conquer, and domain decomposition [13]. Models usually describes compu-
tational components and their behaviors (semantics) and how multiple threads
of execution interact and collaborate in a parallel solution (parallelism). Parallel
programming models abstract parallelism common in realistic parallel applica-
tions and serve as a computational basis for parallel program development. It
is possible to extract from them a performance knowledge foundation based on
which we are able to derive performance diagnosis processes tailored to realistic
program implementations. Specifically, we envision that computational models
can play an active role in the following aspects of performance diagnosis:

Selective instrumentation. Performance diagnosis naturally involves map-
ping low-level performance details to higher-level program designs, which
raises the problems of what low-level information to collect and how to spec-
ify experiment to generate the information. Parallel models identify major
computational components in a program, and can therefore guide the code
instrumentation and organize performance data produced.

Detection and interpretation of performance bugs. In a parallel program,
a significant portion of performance inefficiencies is due to process interac-
tions arising from data/control dependency. Parallel models capture infor-
mation about computational structures and process coordination patterns
generic to a broad range of parallel applications. This information provides
a context for describing performance properties and associated behaviors.

Expert analysis of performance problems. There is a collection of commonly-
used parallel models for constructing parallel applications. Expert knowledge
about the model performance includes typical performance properties and
corresponding factors at the level of program/algorithm design. If we can
represent and manage the performance knowledge in a proper manner, they
will effectively drive diagnosis process with little or no user intervention.

3 Performance Diagnosis Engineering and Hercule

To build a performance diagnosis system, we need to generate performance
knowledge from computational models and represent it in a knowledge base for
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Fig. 1: Generating performance knowledge from
models. The dashed line draws a boundary between
model-based and algorithm/implementation specific
knowledge generation.
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Fig. 2: Hercule Framework

use in experimentation and problem discovery. Extracting performance knowl-
edge from parallel computational models involves four types of actions, which
are shown in Figure 1. The computational modeling captures knowledge of pro-
gram execution semantics as behavioral patterns represented by a set of abstract
events at varying detail levels, depending on the complexity of the model and
diagnosis needs. The purpose of the abstract events in the diagnosis system is
to give contextual informaton for performance modeling, metric analysis, and
diagnosis inferencing.

Performance modeling is carried out based on structural information in the
abstract events. The modeling identifies performance attributes with respect to
the behavior patterns represented by abstract events and model-specific perfor-
mance overhead categories. Performance metrics are then defined, in terms of
performance attributes in related abstract events, to evaluate the performance
properties for problem interpretation. Inference modeling (i.e., performance bug
search) is driven by the metric and property evaluation. Cause inference tries
to explain found performance problems with performance-critical program de-
sign factors, as specific to the particular computational model. The performance
problem analysis and cause refinement are captured in the form of an inference
tree linking symptoms to sources.

Algorithmic implementations of a computational model may introduce new
performance knowledge with regard to behavioral models, performance proper-
ties, performance-critical design factors, or cause inference. Following our four-
step knowledge extraction approach, the new knowledge can be generated by the
users in the form of refinements or extensions of the generic model knowledge, as
shown on the right hand part of Figure 1. In our design and implementation of
a model-based performance diagnosis system, we will allow the expression of al-
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gorithmic features and incorporating it into the inference system that is initially
based on generic model knowledge.

We have built a prototype automatic performance diagnosis system called
Hercule1, which implements the model-based performance diagnosis approach
discussed above; see Figure 2. The Hercule system operates as an expert system
within a parallel performance measurement and analysis toolkit, in this case,
the TAU [2] performance system. Hercule includes a knowledge base composed
of an abstract event library, metrics set, and performance factors for individual
parallel models. Below, we describe in more detail how the performance diagnosis
engineering is accomplished in Hercule.

The abstract event description used in EBBA [4] is adapted in Hercule to
describe behavioral characteristics of a target computational model. The de-
scription of each abstract event type consists of one required component, ex-
pression, and four optional components, constituent event format, associated
events, constraints, and performance attributes. An abstract event usually rep-
resents a sequence of constituent events. A constituent event can be a primitive
event presenting an occurrence of a predefined action in the program (e.g., inter-
process communication or regular routine invocations), or an instance of other
abstract event type. The expression is a specification that names the constituent
events and enforces their occurrence order using event operators. The order can
be sequential (◦), choice (|), concurrent (∆), repetition (+ or *), and occur zero

or one time ([]). Constituent event format specifies the format and/or types of
the constituent events. For primitive events, the format often takes the form of
an ordered tuple that consists of the event identifier, the timestamp when the
event occurred, the event location, etc. For constituent abstract events, their
types are specified. Associated events are a list of related abstract event types,
such as a matching event on a collaborating process or the successive event on
the same process. Constraints indicate what attribute values an instance of an
abstract event type must possess to match its corresponding expression members
and associated events. Performance attributes present performance properties of
the behavior model an abstract event type represents and computing rules to
evaluate them. Figure 3 in the next section shows an example abstract event for
the Master-Worker (M-W) computational model.

Hercule implements the abstract event representation in a Java class library.
The event recognizer in Hercule fits event instances into abstract event descrip-
tions as performance data stream flows through it. It then feeds the event in-
stances into Hercule’s performance model evaluator - metric evaluator. Perfor-
mance models in Hercule are coded as Java classes used to represent model-
specific metrics and associated performance formulations. The performance met-
rics will be evaluated based on the related abstract event instances. The event
recognizer and metric evaluator can incorporate algorithm-specific abstract event
definitions and metric computing rules.

1 The name was chosen in the spirit of our earlier performance diagnosis project,
Poirot [12].
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Perhaps the most interesting part of the Hercule knowledge engineering is
the cause inferencing system. The expert knowledge used to reason about perfor-
mance problems based on model symptoms can be structured as inference trees

where the root is the symptom to be diagnosed, the branch nodes are interme-
diate observations obtained so far, and the leaf nodes are an explanation of the
root symptom in terms of high-level performance factors. We encode inference
trees with production rules. A production rule consists of one or more perfor-
mance assertions and performance evidences that must be satisfied to prove the
assertions. Hercule makes use of syntax defined in the CLIPS [1] expert system
building tool to describe production rules, and the CLIPS inference engine for
operation. The inference engine provided in CLIPS is particularly helpful in per-
formance diagnosis because it can repeatedly fire rules with original and derived
performance information until no more new facts can be produced, thereby real-
izing automatic performance experiment generation and cause reasoning. Due to
the limitation of space, we refer readers to elsewhere [11] for details of encoding
performance knowledge with CLIPS.

The effort involved in implementing performance knowledge base for a com-
putational model consists of two parts: acquiring knowledge with the approach
presented above and encoding the knowledge with abstract event specification,
performance formulation, and production rules. Work time needed for a perfor-
mance analyst to generate knowledge varies depending on computational com-
plexity of the model and desired detail level of the targeting inference tree.
When using the knowledge base to diagnose a parallel application based on a
parallel model, the developer may need to express the programatic or algorithm
variations with respect to abstract event descriptions, metric computing speci-
fications, and corresponding inference tree. Because the generic knowledge base
is inherited, additional efforts are reduced to adding knowledge specialization.

4 Master-Worker Parallel Pattern and Diagnosis

A widely used parallel computation pattern is the classic Master-Worker (M-W)
model. Here we use the M-W model to demonstrate the performance diagnosis
methodology above and show how it is implemented in the Hercule framework.
Master-Worker models a computation that is decomposed into a number of inde-
pendent tasks of variable length. A master is responsible for assigning the tasks
to a group of workers. Communications are required between the master and
workers before and after processing each task. The workers are independent to
one another. The master usually employs certain task scheduling algorithms to
achieve load balance and minimize workspan. M-W performance factors we iden-
tified, through performance observation of M-W codes and knowledge obtained
from expert performance analysts, are:

– Inherent sequential code fragments in the master.
– Number and complexity of tasks assigned to the workers.
– Task setup costs in the master and the task scheduling method.
– Number of worker processors.
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Fig. 3: An abstract event description of Master-Worker model

– Task scheduling strategy

In a M-W program, an independent task assigned to a worker process has a
well-defined life cycle: first the worker sends a task request to the master, the
master receives the request and sets up a task, it then transfers the data and
task specification to the requesting worker, and the worker processes the task
until finished. At that time, that worker returns the result to the master and
the cycle continues until the worker is instructed to terminate. We specify the
program behaviors and performance properties associated with a task life cycle
by an abstract event type TaskLifeCycle, as shown in Figure 3.

Given the program behavior, we can formulate M-W performance models.
For instance, a worker’s total elapsed time tworker consists of tinit (initialization
cost), tcomp (the amount of time spent computing tasks), tcomm (the amount of
time spent communicating with the master), twait (the amount of time spent
waiting for task assignment or synchronizing with other workers before finaliza-
tion, excluding communication overhead), and tfinal (finalization cost):

tworker = tinit + tcomp + tcomm + twait + tfinal (1)

Whenever we refer to communication time, we mean effective message passing
time that excludes time loss due to communication inefficiencies such as late
sender or late receiver in MPI applications. Rather, waiting time accounts for the
communication inefficiencies with the purpose of making explicit performance
losses attributed to mistimed processor concurrency.

Performance coupling of a worker with the master and the rest of peer work-
ers manifests four performance overheads – tseq (the master initialization and
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Fig. 4: Inference Tree for Performance Diagnosis of M-W programs.

finalization costs translated to idle overhead in the worker), tw−setup (master
task setup time), tw−bn (blocking time in master bottlenecks), and tw−final (the
cost of synchronization with other workers for finalization).

twait = tseq + tw−setup + tw−bn + tw−final (2)

The above performance models enable us to define performance metrics
specifically tailored to M-W programs. We start with evaluating individual worker

efficiencies to detect a top-level symptom because efficiency is a reflection of to-
tal worker scalability.

worker efficiency :=
tworker
comp

tworker

(3)

Refining each item in model (2), we obtain metrics of worker wait time:

tseq := max{tmaster
init − tworker

init , 0} + max{tmaster
final − tworker

final , 0}

tw−setup :=

M∑

i=1

tisetup, tw−bn :=

M∑

i=1

tiw−bn =

M∑

i=1

(tiwait − tisetup)

tw−final := max
all workers

{Tfin} − Tfin

where M is the number of tasks the worker processes altogether, tisetup the

amount of time for setting up task i, tiw−bn is the waiting time due to master
bottleneck when requesting the ith task, tiwait is the total amount of worker idle
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Fig. 5: Vampir timeline view of an example M-W
program execution.

Metric Performance

name loss%

tw−bn 39.2%

tw−setup 34.3%

tw−final 14.8%

tcomm 6.2%

Fig. 6: Metric values of the
run.

time between sending out request and receiving task i, maxallworkers{Tfin} is
the finish timestamp of the last task computed, and Tfin the last task finish
timestamp of the observed worker processor.

Now we can incorporate these performance factors and metrics in diagnosis
inference rules. An inference tree is created for every symptom. The inference
tree for explaining low efficiency of a worker process, for instance, is shown
in Figure 4. The root is the symptom to be diagnosed, the branch nodes are
intermediate observations obtained so far (i.e., a performance evaluation with
respect to a performance metric, such as waiting time is a significant percentage
of total elapsed time), and need further performance evidences to explain, and
the leaf nodes are an explanation of the root symptom in terms of high-level
performance factors. It is interesting to note that nodes at different inference
tree levels may enforce varying experiment specifications. Our diagnosis system
can construct the experiments according to the abstract event descriptions from
which the metrics derive.

We tested Hercule’s performance diagnosis capability for the M-W pattern
using a synthetic M-W application. This allowed us to introduce various known
performance problems (i.e., performance faults) and evaluate whether Hercule
would be able to discover them. All experiments were run on an distributed
memory Pentium Xeon cluster running Linux. The M-W synthetic program was
implemented using MPI.

For the results discussed below, we introduced in the M-W program a perfor-
mance fault targeting the impact of master-request-processing speed on overall
performance. Figure 5 presents a Vampir [3] timeline view of a parallel execution
with one master and six workers. The event trace and profiles are generated by
TAU [2] with only major model components being instrumented. The red regions
in the figure represent task setup periods at the master and task processing pe-
riods at the workers. Light blue regions represent MPI function calls. Note that
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dyna6-166:~/PerfDiagnosis lili$ ./model_diag MW.clp

Begin diagnosing ...
============================================================================================

Level 1 experiment - collect data for computing worker efficiencies.
--------------------------------------------------------------------------------------------
Worker 3 is least utilized, whose efficiency is 0.385.

============================================================================================
Level 2 experiment - collect data for computing initialization, communication, finalization

costs, and wait (idle) time of worker 3.
--------------------------------------------------------------------------------------------
Waiting time of worker 3 is significant.

============================================================================================
Level 3 experiment - collect data for computing individual waiting time fields.

--------------------------------------------------------------------------------------------
Among lost cycles of worker 3, 14.831% is spent waiting for the last worker to finish up

(time imbalance).
--------------------------------------------------------------------------------------------
Master processing time for assigning task to workers is significant relative to average task

processing time, which causes workers to wait a while for next task assignment. Among lost
cycles of worker 3, 34.301% is spent waiting for master computing next task to assign.

--------------------------------------------------------------------------------------------
Among lost cycles of worker 3, 39.227% is spent waiting for the master to process other
workers’ requests in bottlenecks. This is because master processing time for assigning

task is expensive relative to average task processing time, which causes some workers to
queue up waiting for task assignment.

============================================================================================
Diagnosing finished...

Fig. 7: Diagnosis result output from Hercule of the M-W test program.

blocking (waiting) time of processors is implicitly included in the elapsed time
of blocked MPI Send, MPI Recv and MPI Finalize operations.

Given the program and performance knowledge associated with M-W model,
Hercule will automatically request three experiments during the diagnosis of this
problem. The inference process and diagnosis results of these experiments are
presented in Figure 7. The first experiment collects data for computing efficien-
cies of each worker. The measurement data shows that worker 3 performs worst.
Then Hercule investigates the performance loss of worker 3 (of course, any worker
can be identified for additional study), and issues the second experiment to eval-
uate individual overheads in equation (1). Waiting time cost stands out as a
result of this inference step. The third experiment then targets performance loss
categories in equation (2). Figure 6 presents model-specific metrics computed
during the diagnosis in the form of percentage that each overhead category con-
tributes to the overall performance loss (i.e., total elapsed execution time minus
effective task processing time). It is important to note that diagnosis results can
be encoded to present output in a manner close to programmer’s reasoning and
understanding of the M-W computation model.

5 Related Research

There are several related projects to our work. Paradyn [15] is a performance
analysis system that automatically locates bottlenecks using the W 3 search
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model. According to the model, searching for a performance problem is an it-
erative process of refining the answer to three questions: why is the application
performing poorly, where is the bottleneck, and when does the problem occur.
Unlike Hercule, the performance bugs Paradyn targets are not in direct relation
to parallel program design and not intended for explanation of high-level causes.
In [10], a cause-effect analysis approach is proposed to explain inefficiencies in
distributed programs. It interprets performance losses by comparing earlier ex-
ecution paths of behaviorally inconsistent processes. Similarly, [17] looks for
cause of communication inefficiencies in message passing programs by classifica-
tion. They train decision trees with real trace data in order to classify individual
communication operations and find inefficient behaviors automatically.

Several research work use parallel computational models in performance mod-
eling and evaluation. [5] evaluates the performance of parallel programs coded
in algorithmic skeletons with process algebras. POETRIES [7] is a performance
tuning tool that takes advantage of the knowledge about the high-level structure
of the application to detect and correct performance drawbacks. It builds analyt-
ical models based on the structures and attributes performance degradation to
parameters composing the models. Hercule differs to POETRIES in that, first,
it targets performance explanation and, second, it features a knowledge-based
inference system that diagnoses performance in an automated manner.

The project closest to Hercule is Kappa-Pi [8]. This is an automatic per-
formance analysis tool that encodes knowledge about commonly-seen perfor-
mance problems into deduction rules at various abstraction levels. It explains
the problem found by building an expression of the highest-level deduced fact
which includes the situation found, the importance of such a problem, and the
program elements involved in the problem. Kappa-Pi has been applied to the
Master-Worker problem with excellent success. Our work builds on the Kappa-
Pi objectives by proposing a systematic approach to extracting knowledge from
high-level parallel design patterns.

6 Conclusions and Future directions

This paper describes a systematic approach to generating and representing per-
formance knowledge for the purpose of automatic performance diagnosis. The
methodology makes use of operation semantics and parallelism found in par-
allel models as a basis for performance bug search and explanation. In order
to generate performance knowledge from computational models and apply it
to diagnosing realistic parallel programs, we specifically identify methods for
behavioral model representation, performance modeling, metric definition, and
performance bug search and interpretation. The methods address not only per-
formance cause interpretation at high-level program abstractions, but adaptivity
to allow algorithm and implementation variants.

The Hercule framework offers a prototype performance diagnosis system
based on computational patterns. We demonstrated the use of Hercule on the
Master-Worker pattern to validate the approach. However, there is still much
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work to be done for further improvement and application of model-based diag-
nosis. First, we are encoding additional parallel patterns, such as Wavefront and
Divide-and-Conquer. As parallel applications can use a combination of parallel
paradigms, an important target for our future work is the inclusion of composi-
tional patterns that allow hierarchical reasoning about performance problems.
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