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ABSTRACT
Extreme-scale computing requires a new perspective on the
role of performance observation in the Exascale system soft-
ware stack. Because of the anticipated high concurrency and
dynamic operation in these systems, it is no longer reason-
able to expect that a post-mortem performance measure-
ment and analysis methodology will su�ce. Rather, there is
a strong need for performance observation that merges first-
and third-person observation, in situ analysis, and introspec-
tion across stack layers that serves online dynamic feedback
and adaptation. In this paper we describe the DOE-funded
XPRESS project and the role of autonomic performance
support in Exascale systems. XPRESS will build an inte-
grated Exascale software stack (calledOpenX ) that supports
the ParalleX execution model and is targeted towards future
Exascale platforms. An initial version of an autonomic per-
formance environment called APEX has been developed for
OpenX using the current TAU performance technology and
results are presented that highlight the challenges of highly
integrative observation and runtime analysis.

1. INTRODUCTION
The challenges to achieving extreme-scale computing for

DOE mission-critical applications demand basic research in
future system software and programming models if strong-
scaled problems today will derive performance advantage
from Moore’s Law and a broader range of problems will be
able to fully exploit Exascale computing capabilities by the
end of this decade. We are in the first year of a three-year
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DOE-funded X-Stack project, eXascale PRogramming En-
vironment and System Software (XPRESS), to investigate
programming methods, runtime software, system services,
and tools needed to create a proof-of-concept system soft-
ware stack for Exascale, focused on strong-scaled computing
for real-world applications. The XPRESS software devel-
opment will be enabled and driven by innovative concepts
in future extreme-scale computing and research to explore
and evaluate them. These two project thrusts – concepts re-
search and software stack development – will be coordinated
and mutually supportive. XPRESS will engage the tal-
ents and contributions of Indiana University, Louisiana State
University, University of Houston, University of Delaware,
Oak Ridge National Laboratories, University of Oregon, and
University of North Carolina at Chapel Hill to provide com-
prehensive coverage of the interrelated domains, disciplines,
and advances necessary to inform and facilitate the research
in Exascale computing, applications, systems, and program-
ming.

What makes XPRESS unique as a project is that it will
deliver a new and complete system software architecture
based on the innovative ParalleX execution model [17]. Par-
alleX has been devised to address challenges of starvation,
overhead, latency, and contention by enabling a new com-
puting dynamic through the application of message-driven
computation in a global address space context with lightweight
synchronization. XPRESS will design an integrated Exas-
cale software stack for ParalleX, OpenX, and implement a
critical proof-of-concept prototype to validate its concepts
for achieving high levels of parallelism and resource e�-
ciency.

One of the key components of the XPRESS project is
a new approach to performance observation, measurement,
analysis and runtime decision making in order to optimize
performance. The particular challenges of accurately mea-
suring the performance characteristics of ParalleX applica-
tions requires a new approach to parallel performance ob-
servation. The standard model of multiple operating sys-
tem processes and threads observing themselves in a first-



person manner while writing out performance profiles or
traces for o✏ine analysis will not adequately capture the
full execution context, nor provide opportunities for run-
time adaptation within OpenX. The approach taken in the
XPRESS project is a new performance measurement sys-
tem, called APEX (Autonomic Performance Environment
for eXascale). APEX will include methods for information
sharing between the layers of the software stack, from the
hardware through operating and runtime systems, all the
way to domain specific or legacy applications. The perfor-
mance measurement components will incorporate relevant
information across stack layers, with merging of third-person
performance observation of node-level and global resources,
remote processes, and both operating and runtime system
threads.

We have taken the first steps at realizing APEX with the
current OpenX runtime system, HPX, the TAU Performance
System, and the RCRToolkit. Results on these initial e↵orts
are reported on below. First, an overview of the XPRESS
project is given, followed by a description of OpenX com-
ponents. We then discuss our APEX prototype implemen-
tation. Our objective is to learn from experiments with the
software about the issues involved and how the relative soft-
ware components need to be evolved to address them. The
prototype is destined to be discarded, but the lessons learned
will directly inform the final APEX version.

2. XPRESS OVERVIEW

2.1 Vision
The XPRESS project envisions a class of systems, both

software and hardware, that reflects the new realities of
emerging enabling component technologies and responds to
the challenges they impose in terms of starvation, latency,
overheads and contention, as well as the availability con-
straints of reliability, power consumption, and application
user programmability. Innovative concepts and their syn-
thesis are imperative if sustained exaflops performance is to
be realized and applied for DOE mission-critical require-
ments. Future extreme-scale computational systems will
move from previous static largely compiler and user based
resource management to future dynamic runtime based sys-
tem and work supervision with an entirely new form of
lightweight kernel operating system exhibiting a single sys-
tem image but comprising an ensemble of potentially mil-
lions of operating system agents operating in synergy and
through a revolutionary relationship with runtime control.

For the first time, the tension between machine responsi-
bilities and applications requirements will be balanced by a
system incorporating this new dynamic runtime versus op-
erating system relationship. The logical point of exchange
is the Prime Medium, a new system-wide interface protocol
that supports bi-directional information exchange including
local and global state and mutual requirements of each other.
Instrumentation measurements, faults, power consumption,
utilization and demand, changes in requirements, locality at-
tributes, and parallelism discovery are all aspects of the new
vision of computing that will be enabled by the symbiotic
relationship to be established between the runtime and oper-
ating software systems. But the vision must and does extend
further to the programming models and methods that must
provide the end user with abstractions and means of eliciting
10,000 times more parallelism than conventional practices
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Figure 1: Major components of the OpenX archi-
tecture stack.

and the ability to exploit runtime information and instru-
mentation for resource usage. New APIs both low level and
domain specific will be required and provided to work in con-
text of the new class of Exascale systems even as means of
legacy mitigation allow old applications to run on new hard-
ware/software system platforms. Among the interstices of
these concepts and the system modules that manifest them
is key support and new functionality to be attributed to and
supported by advanced compilation methods.

2.2 XPRESS Project
The XPRESS project is comprised of four major thrusts:

system software, programming models and languages, appli-
cations, and crosscutting issues. E↵orts in these areas will
be defined and guided by key metrics.

2.2.1 Exascale System Software
The HPX-3 runtime system provides an early starting

point as a programming tools and operating system target at
the beginning of the XPRESS project. This will be phased
out as HPX-4 - based on a new modular software architec-
ture, OpenX - is developed incorporating added functional-
ity for fault tolerance and power management to provide a
robust open-source runtime system. The LXK lightweight
kernel operating system will be developed based on the ad-
vanced Kitten operating system [25, 5] in response to the
new requirements for billion-way concurrency, introspective
management of faults and power, assumed future directions
of system architectures while dealing with near term sys-
tems, and management of protected and dynamic global
virtual name space. LXK will be co-designed with HPX-4
around the centerpiece of the Prime Medium interface be-



tween the runtime and operating system software. This in-
terface will share information in both directions between the
two major software layers for performance, reliability, and
control of power consumption. The Open-X software stack
is shown in Figure 1.

2.2.2 Programming Models and Languages
Two programming methods will be employed to provide

early means of conducting application kernel driven exper-
iments and to facilitate ease of programming and portabil-
ity. A low-level imperative programming interface, XPI, will
be developed to expose the semantic constructs comprising
the ParalleX execution model embodied in the experimental
HPX runtime system. To facilitate the creation of diverse
domain specific programming libraries, the XPRESS project
will develop a set of tools, a meta-programming framework,
that will support rapid deployment of future embedded DSL
formalisms exploiting the potential of ParalleX-based execu-
tion environments. The project will also develop an example
of a DSL using the meta-DSL toolkit. The project will ex-
plore at depth and provide means of legacy mitigation to
ensure seamless transition of legacy codes embodied with
the MPI or OpenMP programming interfaces to the OpenX
software stack. The project will develop and demonstrate
interfaces to XPI for legacy code execution, provide for in-
teroperability between software modules in both forms, and
provide means for extending the parallelism incrementally
within the MPI and OpenMP frameworks to increase scal-
ability through the XPRESS OpenX software stack. APEX
will provide instrumentation methods for performance mea-
surement to XPI, DSL, and legacy codes.

2.2.3 Applications
Three computational science domains are included: cli-

mate science, nuclear energy, and plasma physics, repre-
sented by the Community Earth SystemModel (CESM) [30],
Denovo [3], and GTC [19, 20, 7], respectively. GTC is a
small code already being redesigned for ParalleX. CESM and
Denovo are both large, complex applications that address
important science and engineering questions with stringent
numerical requirements, numerous configuration and science
options, a need to retain the ability to run on modest com-
putational resources, and a need to run on Exascale systems.
CESM and Denovo will be used to verify the ability to tran-
sition smoothly from the current MPI+OpenMP program-
ming model to the new XPRESS runtime and programming
models. A fourth driver is the collection of libraries in Trili-
nos [11], which service the needs of hundreds of applications
within DOE and across the world.

2.2.4 Crosscutting Issues
Essential cross-cutting functionality includes automatic

control and introspection, resilience, power management and
heterogeneity. Power management software in combination
with anticipated energy e�cient hardware will achieve much
greater resource utilization per joule while dramatically re-
ducing data movement, a major source of power consump-
tion, through active locality management. Resilience will
be achieved through a combination of in-memory micro-
checkpointing that temporarily stores selected past data in
memory in case of failures until no longer required for fu-
ture calculations, with a new compute-validate-commit cycle
that defers side-e↵ects until previous calculations have been
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Figure 2: Modular structure of the HPX-3 imple-
mentation. HPX-3 implements the supporting func-
tionality for all of the elements needed for the Par-
alleX model: AGAS (active global address space),
parcel port and parcel handlers, HPX-threads and
thread manager, ParalleX processes, LCOs (local
control objects), performance counters enabling dy-
namic and intrinsic system and load estimates, and
the means of integrating application specific compo-
nents.

determined correct thus isolating error propagation.

3. RELEVANT COMPONENTS

3.1 HPX
High Performance ParalleX (HPX [17, 16, 28, 2]) is the

first open-source implementation of the ParalleX execution
model. HPX is a modular, state-of-the-art runtime sys-
tem developed for conventional architectures and, currently,
Linux-based systems, such as large Non Uniform Memory
Access (NUMA) machines and clusters. Strict adherence
to Standard C++ 11 [29] and the utilization of the Boost
C++ Libraries [4] makes HPX both portable and highly opti-
mized. Its modular framework facilitates simple compile or
runtime configuration and minimizes the runtime footprint.
The current implementation of HPX supports all of the key
ParalleX paradigms; Parcels and Parcel transport layer for
inter-locality communication, PX-threads and their manage-
ment, Local Control Objects (LCOs) for lightweight syn-
chronization of medium grain parallelism, the Active Global
Address Space (AGAS) as the basis to e�cient resource
management, and PX-processes to represent and manage
the dynamic execution structure of an application at run-
time.

The existing HPX-3 library (shown in Figure 2) supplies
a valuable initial environment for the other parts of this
project by providing immediate availability of stable pro-
gramming interfaces and a functional, ParalleX-compliant
low level runtime environment. Moreover, the experiences
collected during several years of HPX development are highly
relevant to the design, implementation, and optimization of
all related XPRESS software layers, including the lightweight
kernel, the distributed operating system, the improved next-
generation runtime system HPX-4, and the development of
migration path for legacy applications. The latter will take
full advantage of the existing code by pairing it with inter-
faces that (a) permit direct access to core HPX functional-
ity from traditional C and Fortran programs via lightweight
programming interface (XPI) for advanced programmers who



wish to explore it, and (b) enable traditional MPI and OpenMP
functions by providing a thin translation layer for MPI com-
bined with compiler support for OpenMP operation.

3.2 APEX
Scaling systems to extreme size capabilities is happening

through three architectural trends. First, the number of
computational cores on each chip and node will continue to
increase. Second, the number of nodes will continue grow.
Third, systems will become more heterogeneous at levels in-
cluding accelerator modules (GPUs, MIC [14]), shared func-
tional units on chip (IBM BlueGene and AMD Bulldozer),
and performance heterogeneous multi-core chips based on a
single instruction set architecture [18, 21]. The performance,
energy, and health measurement and control infrastructure
of XPRESS must address all of these.

Performance is no longer constrained primarily by the
throughput of individual cores or the behavior of the code
executing in a single pipeline. Increasingly cores interact
with each other through the shared resources. These inter-
actions are manifested by bottlenecks and queuing at scarce
resources both on a chip (node), and between nodes. The
system measurement and control components of XPRESS
need to address all of these areas. Furthermore, to be use-
ful for introspective adaptive control, both measurements
and analyses need to be available in real time to software
components at all levels.

Over the last ten years, high-performance computing (HPC)
performance methods have evolved incrementally to serve
the dominant architectures and programming models. The
parallel performance abstractions embodied in HPC tools
such as TAU [26], HPCToolkit [1], Open|SpeedShop [23],
oprofile [15], and PAPI [6] are driven by the underlying
system environment. Performance observation requirements
have been satisfied by local measurements and o✏ine perfor-
mance optimization. The stable, static model has allowed
performance tools to focus on a first person measurement
model where performance is seen only by individual threads
and collected at the end of execution for post mortem analy-
sis. The first person approach is inadequate for Exascale use
since the shared resources operate independently of the cores
with their own hardware monitors built in [13]. This re-
quires using a system-wide third person measurement model.
A key component of XPRESS will be a measurement and
analysis facility designed specifically to support introspec-
tive adaptation for performance, energy, and reliability by
making node-wide resource utilization data and analysis, en-
ergy consumption, and health information available in real
time.

The entire Exascale software stack needs to be performance-
aware and performance-reactive, able to observe performance
state holistically and to couple it with application knowl-
edge for self-adaptive, runtime control. We use the term
autonomic performance to reflect this idea. XPRESS will
be designed and developed with an autonomic performance
environment for Exascale (called APEX) with this new per-
formance paradigm.

The role of APEX in the XPRESS project will be to serve
both top-down and bottom-up performance requirements of
the OpenX software stack and its integrated operation. The
top-down requirements are driven by the mapping of appli-
cations to the ParalleX model and the translation through
the programming models and the language compilers into

runtime operations and execution. The mapping and trans-
lation process at each level includes performance abstrac-
tions. Defining the set of parameters to be observed and
then coupling the abstractions to the observables is the func-
tion of the hierarchical performance framework. The top-
down view sees APEX functionality as part of application
creation specifically to provide integrated performance as-
sessment and tuning. APEX observability support will be
built into each OpenX layer:

• LXK operating system will track system resource as-
signment, utilization, job contention, and overhead.

• HPX will track threads, queues, concurrency, remote
operations, parcels, and memory management.

• ParalleX, DSLs and legacy codes will allow language-
level performance semantics to be measured.

The APEX observation infrastructure will be specialized
through programming to enable autonomic performance ca-
pabilities specific to the application. It is also important
to highlight the importance of mapping high-level semantic
context top-down to low-level observation where context can
be used to distinguish between performance artifacts.

3.2.1 Bottom-up Development Approach
The bottom-up requirements of APEX are targeted to

performance introspection across the OpenX layers to en-
able dynamic, adaptive operation and decision control. The
working model here is multi-parameter system optimization.
APEX creates the performance feedback mechanisms and
builds an e�cient infrastructure for connecting subscribers
to runtime performance state. There are intra-level perfor-
mance awareness needs for HPX and LXK, but these will
clearly interplay with the overall application dynamics. The
performance information provided for introspection at feed-
back points will be the result of runtime analysis. The design
of APEX to meet both top-down and bottom-up require-
ments will enable closed-loop performance optimization for
the ParalleX execution model. APEX development will be
constrained by available Exascale technology. There are im-
portant factors concerning the overhead of measurement, the
cost of analysis, and the latency of feedback that will con-
tribute to APEX’s e↵ectiveness. Our goal is to support the
general concept of performance portability through dynamic
adaptivity.

The bottom-up approach for XPRESS, will extend previ-
ous experimental work [8, 22, 24] on building decision sup-
port instrumentation (RCRToolkit) for introspective adap-
tive scheduling on current generation X86 64 Linux systems.
In this approach, called Resource Centric Reflection, a sys-
tem daemon (RCRdaemon) monitors shared, non-core re-
sources, applies real-time analyses, and publishes both raw
and processed information for use by other software compo-
nents. The components include a display and logging tool
(RCRtool) and an adaptive thread scheduler. Previously [8],
performance was used with introspection to prevent per-
formance degradation at very high loads in a commercial
database system. In more recent work, the MAESTRO
scheduler throttles thread/core concurrency to successfully
reduce power consumption without degrading performance
in several cases and in other cases has increased throughput.
HPCToolkit [1] was modified to use RCRToolkit informa-
tion to distinguish cache misses that occur when there is a



memory bandwidth bottleneck from those that occur when
memory is lightly utilized. Since memory channels are mon-
itored independently, RCRToolkit has been used to detect
and diagnose memory imbalance problems.

Within a “node” software components will communicate
through a self-describing blackboard structure. This is a
shared memory region that is organized as a hierarchy of
single-writer, multiple-reader data regions aligned along cache
block and virtual memory page boundaries for performance
and access control purposes. The single-writer, multiple-
reader organization allows lock-free access and minimizes
memory coherence overhead. The blackboard is self-describing,
with a directory structure to locate regions owned by indi-
vidual software modules as well as the data layout within
each region. The blackboard is a key component of the
Prime Medium communication between the operating and
runtime systems.

Good individual node performance does not automatically
result in good performance for hundreds of thousands of
nodes. To understand and adapt application performance
across the entire system will require tools that communicate
with all of the single node blackboards to generate a global
view of performance.

Conventional techniques used for o↵-line performance anal-
ysis such as profiling and tracing can generate a volume of
data that will both impact application performance and re-
quire substantial computing power. To address this, we will
build on past work with hierarchical lossy wavelet compres-
sion to filter out uninteresting parts of the performance sig-
nals while preserving outliers and anomalous patterns [10].
We have also used clustering [9] to further reduce data re-
quirements for o↵-line analysis. These methods will extend
the blackboard mechanism hierarchically to each level at
which control decisions are made.

3.2.2 Top-Down Development Approach
In the APEX model performance observability require-

ments and semantics, starting with the application, are spec-
ified through the programming model and languages and
implemented by instrumentation generated by the compiler
that invokes an HPX performance measurement API. It cou-
ples the first person and third person performance views by
translating application context down the OpenX stack in
order to associate the execution performance state back up.

APEX will integrate TAU instrumentation capabilities with
the XPRESS programmatic specialization methodology and
its compiler framework, the legacy programming tools, and
the imperative API for ParalleX-based system programming.
TAU’s mapping API will be used to create higher-level ab-
stractions to contextualize lower-level measurements. Both
static and dynamic wrapper interposition libraries will in-
tercept and instrument the imperative API and the runtime
layers of HPX. TAU’s multi-level instrumentation API will
be augmented with a performance feedback API that will
supply vital runtime information to a compiler for further
analysis.

4. APEX PROTOTYPE IMPLEMENTATION
In the first year of the ongoing XPRESS project, the

project team has made significant strides with respect to
design of the APEX performance measurement infrastruc-
ture, performance measurement of the HPX-3 runtime sys-
tem, and beginning the transition from first-person perfor-
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Figure 3: The APEX prototype architecture.

mance reporting to third-person performance observation.
The XPRESS team has implemented an APEX prototype
using TAU [27] as the core measurement infrastructure. The
APEX instrumentation interface provides access to TAU
performance timers and counters. The APEX prototype
also works with TAU event based sampling, providing per-
formance observation of the HPX-3 runtime and application
code without instrumentation, which will guide the place-
ment of additional APEX timers in the HPX-3 runtime.
Figure 3 shows an architecture diagram of how APEX inte-
grates with the layers of the OpenX stack.

Because we are only in the beginning stages of the project,
significant functionality is missing from our current imple-
mentation. As HPX has not yet been ported to Kitten/LXK,
our implementation has currently only been tested on ex-
isting x86 64 Linux clusters. Our implementation also does
not yet provide a runtime control mechanism, nor true third-
person observation and response. Those aspects of the de-
sign will be developed over the remainder of the project.

The APEX prototype has been developed with the HPX-
3 build process in mind, and is designed to integrate seam-
lessly into the build. If the APEX variables are not defined
at the configuration step, HPX-3 is configured and compiled
as normal. If the APEX variables are defined with a refer-
ence to the local APEX installation, the HPX-3 build system
will enable APEX support.

HPX-3 previously provided support for various perfor-
mance counters that could be periodically sampled and/or
reported at program termination. Some examples of these
counters include the runtime thread queue length, various
thread counts, and the thread idle rate. As these coun-
ters were only output to the user terminal or a log output,
the counters were not easily machine readable, nor in a form
that could leverage existing analysis tools. HPX-3 was mod-
ified so that when the counters were observed they were also
recorded by the APEX prototype, and subsequently stored
in performance profiles at program termination. Supporting
the HPX-3 counters required a modification to TAU to cre-
ate a new type of counter, a context user event. A context
user event is annotated not only by the value it is measuring,
but also the current execution context of the application, i.e.
the current function or subroutine. The measurement li-
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Figure 4: HPX-3 profile in TAU ParaProf.

brary also generates simple statistics (maximum, minimum,
mean, variance). The context of the counters separates those
collected during the thread scheduler part of the code from
the application code.

The HPX-3 runtime thread manager was also instrumented
with APEX timers. This instrumentation will provide in-
sight into how much time is spent in runtime thread schedul-
ing as opposed to actual application processing. An example
of a profile collected with these timers is shown in Figure 4.
This example was run with 48 total HPX threads on four
nodes of ACISS [31], the computational cluster at the Uni-
versity of Oregon. In addition to the twelve operating sys-
tem threads that are directly involved in application execu-
tion progress, HPX-3 has eight additional operating system
threads. Instrumenting HPX-3 in this way will help HPX
developers in reducing the runtime thread scheduling over-
head. Figure 5 shows a trace timeline of the thread scheduler
in HPX-3 when executing an HPX-3 application.

Prior to the XPRESS project, HPX-3 had been instru-
mented with Intel Instrumentation and Tracing Technology
(Intel R� ITT) [12]. ITT provided detailed performance mea-
surement of the HPX-3 runtime, not unlike the APEX im-
plementation. However, ITT does not provide multi-node
(multi-locality) support. In addition, there is no explicit an-
notation of whether an HPX thread completed its execution
or was preempted and migrated to another thread (possibly
even to another locality). Finally, there is no explicit anno-
tation of the provenance of the HPX thread, i.e. the HPX
thread which spawned it. By capturing this information,
APEX can support more performance scenarios than ITT.
To that end, The ITT instrumentation points have been ex-
tended to also provide detailed APEX instrumentation. Be-
cause APEX does provides multi-node support, multi-node
performance experiments are possible with APEX.

One of the key aspects of the APEX third-person ob-
servation design is to incorporate the full system context
in any performance observation. With that in mind, the
XPRESS team has also been working to integrate the RCR-
Toolkit library into the APEX measurement infrastructure.
As described in § 3.2.1, RCRToolkit exposes holistic hard-
ware and system observations that are not available in the
currently executing process space through a shared memory
region, called the RCRBlackboard. The APEX prototype
has integrated with the RCRBlackboard as a client applica-
tion, so that non-core hardware measurements such as power
and energy can be taken. As the current implementation of
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Figure 5: HPX-3 trace in TAU Jumpshot.

RCRToolkit has specific hardware and execution permission
requirements, the XPRESS team has established common
development systems at both RENCI and LSU that meet
the requirements. On the RENCI development system with
an Intel Sandybridge architecture, APEX has successfully
collected non-core hardware measurements such as power
and energy from the RCRBlackboard, which is provided by
the RCRDaemon running on that system.

5. EXPERIMENTAL RESULTS
GTC [19] is a 3D particle-in-cell (PIC) code developed for

studying turbulent transport in magnetic confinement fusion
plasmas [20, 7]. In the PIC method, the interaction between
particles is calculated using a grid on which the charge of
each particle is deposited and then used in the Poisson equa-
tion to evaluate the field. This is the scatter phase of the
PIC algorithm. Next, the force on each particle is gathered
from the grid-base field and evaluated at the particle loca-
tion for use in the time advance. The PIC algorithm is the
most expensive part of GTC.

Advances in multi-core technology have presented some
challenges for GTC in terms of strong scaling. Strategies
in combining OpenMP and MPI in GTC have not resulted
in a clear solution to the scalability issue in the context of
multi-core. This is a topic of active research. GTC has
already been ported to C++ and HPX and algorithms are
being modified to remove the global barriers which inhibit
scalability.

To test the APEX prototype, HPX-3 was configured with
APEX support, and the GTC sample application was built
and executed on the ACISS cluster. The experiment was
performed on a single node with 32 cores and 384GB of mem-
ory per node. Figure 6 shows the variation in the amount of
time spent in the thread scheduler loop. The overhead of the
scheduler varies from 15% to 18.8% of the total execution
time.

Because the overhead appears considerable for this appli-
cation, more analysis is required. A trace of the same execu-
tion was also collected. Figure 7 shows a zoomed-in region of
the trace timeline, showing the 32 HPX worker threads and
8 additional operating system threads. There appears to
be synchronization artifacts in the application, causing the
significant overhead in the scheduler. The synchronization
occurs when work cannot be executed until data dependen-



Figure 6: Performance profile of the HPX-3 thread
scheduler loop while executing GTC. 32 HPX
threads were requested, resulting in 40 operating
system threads, total.

cies are resolved. In the trace figure, the cyan colored bars
represent time spent in the gtcx_partition_loop_action

task, while the orange bars in-between represent the time
spent in hpx-thread-scheduler-loop. Further analysis is
required, but it appears that this application performance
can be improved if the “lockstep” behavior can be removed
from the algorithm, or if its e↵ect can be mitigated.

6. DISCUSSION AND FUTURE WORK
The initial APEX prototype will be useful in providing

integrated performance measurement of HPX-3 applications
running on current operating systems and platforms. How-
ever, there are a number of immediate issues and future work
to discuss. The integration of HPX-3 counters into APEX,
as discussed in § 4, will need to be modified so that they
are not updated in APEX when periodically requested, but
rather that they are updated directly when their values are
changed. In addition, as discussed in § 4, APEX provides
detailed instrumentation of the thread scheduler in HPX-
3. However, like ITT, as yet there is no explicit annotation
of whether an HPX thread completed its execution or was
preempted and migrated to another thread, and there is no
explicit annotation of the provenance of the HPX thread.
Because TAU does not have the capability to capture that
information explicitly, APEX will be designed to capture
these important aspects of performance.

While the prototype implementation of APEX provides
insight into HPX applications, there are some drawbacks to
our prototype approach. The most significant of these is that
the performance data is not yet modeled in the ParalleX
view of the world. For example, the performance model
currently used in APEX uses measurement dimensions that
include only the currently executing process and operating
system thread, with no explicit support for capturing the

Figure 7: Performance trace detail of the HPX-3 op-
erating system threads while executing GTC. The 32
runtime system threads are showing a synchronous
pattern, limiting scalability and adding overhead.

HPX-3 runtime thread. However, until the ParalleX perfor-
mance model is fully captured in APEX we still gain valuable
insight into the application by implementing our prototype it
in existing tools, running on existing systems, and mapping
back to the ParalleX model. In addition, more components
of the HPX-3 runtime can and should be instrumented, in-
cluding the parcel transport layer, local control objects, and
the active global address space.

Finally, there is much work to be done with respect to
information sharing between components, runtime analysis
and distillation of wide-scale performance data, integration
with the operating system, measuring legacy and XPI level
application context, and an event-based model for triggering
runtime performance corrections. Over the lifetime of the
XPRESS project, APEX will grow to provide these features.
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