
SMARTS: Exploiting Temporal Locality and Parallelism
through Vertical Execution

Suvas Vajracharya, Steve Karmesin, Peter Beckman,
James Crotinger, Allen Malony: Sameer Shendey Rod Oldehoeft, and Stephen Smith

Los Alamos National Laboratory
Los Alamos, NM, U.S.A.

Abstract In the solution of large-scale numerical problems,
pamllel computing is becoming simultaneously more important
and more difictilt. The complex organization of today’s multi-
processors with several memory hierarchies has forced the sci-
entiific progmmmer to make a choice between simple but unscal-
able code and scalable but extremely complex code that does not
port to other architectures.

This paper describes how the SMARTS runtime system and
the POOMA C++ class library for high-performance scientijk
computing work together to exploit data parallelism in scientific
applications while hiding the details of managing parallelism
and data locality from the user. We present innovative algo-
n’thms, based on the macro-dataflow model, for detecting data
pamllelism and eficiently executing data-parallel statements on
shared-memory multiprocessors. We also describe how these al-
gorithms can be implemented on clusters of SMPs.

Keywords: Data-parallelism, dependence-driven execution, run-
time systems, barrier synchronization, loop scheduling, macro-
dataflow, cache reuse, programming models, object-parallelism,
data-parallel languages, object-oriented, data locality, scientific
computation

1 introduction

The source of most parallelism in numerical and scien-
tific applications comes from independent loop iterations in
data-parallel statements. This paper describes a system for
discovering independent loop iterations through run-time
dependence analysis and efficiently executing those itera-
tions on multiprocessors with deep memory hierarchies.

Conventional models of data-parallel programming take
advantage of horizontal parallelism in a stream of data-
parallel statements. In horizontal data parallelism, the
participating processors apply the same operations to dif-
ferent subsections of the data, one operation at a time. A
barrier synchronization ensures that the next data-parallel
statement is not started until all the processors are done
with the current, statement. In contrast, we define vertical
parallelism as the concurrent execution of multiple data-
parallel operations while respecting the data dependencies

*Dept. of Computer and Information Science, University of
Oregon

PUmission to make digital or hard copies o[‘~]] or part ot‘this work ,i,,
personal or classroom USC is granted n$hout fee provided thal topics
arc not made or distributed for profit or commcrcja] advantage and that
copies beal- this notice and the full citation <,,J the first page. T” c.lJy

otllerLvi% to republish, t0 post on servers or to redjst,-ihutc ~~~ lists.
J’WJiWS pl’ior Specific permission and/or a fee.

KS ‘99 Rhodes Greccc
~o!wkht ACM 1999 l-581 13-164-x/99/06.,.$5.00

Conventional Data Parallel

A=B+C*D;

B=X+Y *A;

C=D+X*B;

D=Y+X*C;

With SMARTS Dataflow

A=B+C*D;

B=X+Y*A;

C=D+X*B;

D=Y+X*C;

Figure 1: Horizontal vs. Vertical Execution. Each square
represents a block of floating point operations.

among those operations. The “vertical” here refers to the
vertical direction in the stream of data-parallel statements
appearing in a program. By exploiting both vertical and
horizontal parallelism, we can reduce the idle time of par-
ticipating processors waiting at barrier synchronizations.
Furthermore, because we are applying multiple operations
in a depth-first manner, a vertical execution will reuse
cached data more effectively, as illustrated in Fig. 1. If
the illustrated arrays do not fit in the machine’s cache,
horizontal execution forces re-loading the data values at
each data-parallel operation. In contrast, vertical execu-
tion applies multiple operations to the same data before
that data leaves the cache. Compiler optimizations such as
loop fusion [6, 15, 291 and loop interchange [29, l] restruc-
ture the source code to achieve the same end. However,
these transformations cannot be applied in the presence of
more complicated dependencies between the statements,
a restriction that we wish to remove by using a macro-
dataflow model.

In earlier papers, it was argued that a vertical execu-
tion improves temporal locality [26] and increases paral-
lelism [25]. In this paper, we describe a macro-dataflow
approach for automating vertical execution by generating
and executing a dependence graph representing the depen-
dencies among the data-parallel operations. The remain-
der of the paper is organized as follows: Sections 3 and 5
describe how SMARTS, the Shared Memory Asynchronous
RunTime System, extends the master-slave programming
model and the single-program-multiple-data (SPMD) model
to permit a vertical execution. Having described the run-
time system, Sec. 7 shows how POOMA, a framework
for scientific applications, uses the runtime system to en-

302

capsulate parallelism and the details of data locality for
the application developer. Section 8 then compares the
performance of different methods using vertical and hori-
zontal execution on a shared-memory multiprocessor. Our
ultimate goal is to run on clusters of SMPs. Section 9
describes how the same algorithm can be implemented to
use both shared-memory and message passing, and argues
that a vertical execution model is particularly well suited
for hiding latency.

2 Related Work

Due to the higher degree of parallelism that asynchro-
nous systems contain, the dataflow concept has appeared
in many works. One issue that distinguishes the various
works is the unit, or granularity, of the parallelism. A
very fine granularity requires a significantly different de-
sign than does a coarse-grain computation. For example,
dataflow computers such as the Manchester Dataflow Ma-
chine [9, lo] relied on special hardware to orchestrate par-
allelism at the level of individual floating-point arithmetic
operations.

Most modern computer architectures do not have such
special support hardware, and thus the dataflow concept
is often implemented in software at a much coarser grain;
i.e. macro-dataflow. In the tradition of true dataflow mod-
els, much of the work on macro-dataflow approaches, such
as the work by Babb [2], Mentat [8, 71, and Cilk [3], has
emphasized functional parallelism.

For data-parallel applications, functional parallelism has
the disadvantage that the functional decomposition deter-
mines the granularity of parallelism. Finding the appro-
priate decomposition is often a difficult and inappropriate
task for data-parallel applications.

In contrast, SMARTS determines the granularity of com-
putation based on the decomposition, or layout, of the
arrays, a much easier task because the user separately
specifies data and functional definitions. This also has the
advantage that the granularity can be determined dynam-
ically, as in our earlier work [25]. A functional decomposi-
tion, in contrast, statically fixes the granularity when the
functions are defined.

These difficulties have led to other approaches that use
entire loops as nodes in dependence graphs, as in the work
by Tang [23], Sisal [5], and the autoscheduling work by
Moreira and Polychronopoulus [I3]. A horizontal loop
scheduler, such as guided-self scheduling [18], might then
schedule these loops. In SMARTS, iterations within and
across loops can be scheduled simultaneously because a
node in the generated dependence graph, known as a iter-
cite, is an iteration subspace, not the entire loop.

We have used granularity to classify related works. An-
other dimension for comparison is the extent of user in-
volvement in synchronizing the units of computation. Com-
piler methods are attractive because they involve no user
intervention for optimizations. Strictly compile-time meth-
ods [24, 281 restructure the loop and generate new code
to improve locality and parallelism. For example, loop
fusion takes two consecutive data-parallel statements (or
loops) and combines them into one, such that each itera-
tion of the loop applies both of the operations. Another
transformation, loop interchange, swaps the inner loop of
a nested loop with the outer loop to take advantage of
better data locality in a vertical execution. While having
the desired effect of better cache reuse, these methods are
limited in that the compiler can only apply them when the
dependencies are simple and apparent.

In general, while compile-time methods have the advan-
tage that they incur little run-time overhead and that the
automation frees the user from the details of locality and
parallelism, they are limited in that compilers cannot apply
many interesting optimizations that depend on the knowl-
edge of dynamic information. Compile-time optimizations
cannot be applied to situations where the time it takes to
complete an operation varies at run-time, a common case
on cache-based and parallel computers. Other methods,
such as Cilk and Mentat, require the user to explicitly state
the interaction and synchronization between the units of
parallelism. SMARTS, used with a data-parallel package
like POOMA, frees the application programmer from being
concerned with interaction and synchronization, which we
believe are the most difficult parts of parallel processing.

A compiler method that has some of the same goals
as SMARTS is the OSCAR compiler by Kasahara and
Yoshida [ll, 121. A s in SMARTS, the OSCAR compiler
generates a dependence graph to improve locality and in-
crease parallelism by using a macro-dataflow execution.
Favorable performance of the compiler running on the OS-
CAR multiprocessor makes an argument for macro-dataflow
processing with data localization.

An important distinction between SMARTS and OS-
CAR is that OSCAR compiler generates the graph during
compile-time, whereas the SMARTS does all its work at
run-time. Run-time graph generation has the advantage
that it can determine some data dependencies that would
not be possible to analyze during compile-time. Not know-
ing the values of variables, compile-time graph genera-
tion must make conservative assumption about dependen-
cies between loop iterations. Furthermore, SMARTS does
not require that the index range of loops in data-parallel
statements have the same cardinality, allowing the run-
time system to determine interloop data dependencies for
problems like Multigrid solvers where consecutive data-
parallel statements apply operations to different grid sizes
or varying index ranges.

Because SMARTS need only generate a dependence graph
for a particular instance or an execution of a program, the
task of generating graphs is much simpler. For example,
SMARTS does not need to include control dependencies in
the dependence graph. Note that the choice to generate
graph at run-time does not involve simply delaying the ap-
plication of compile-time methods until run-time because
this choice influences the type of algorithms that is sensible
and efficient enough to be done while the program is run-
ning. Section 4 describes an efficient algorithm for graph
generation which we have found to incur little overhead.

3 Master-Slave Work Queue Model

This section describes the master-slave work-queue model
and its extension to take advantage of vertical parallelism.
In the master-slave model, there is a single thread of con-
trol (the master thread) that distributes work to slave
threads. In the case of executing data-parallel expressions,
the master thread distributes loop iterations to the waiting
slave threads.

In its simplest form, the actual number of iterations to
be distributed can be described by an iteration descriptor
containing the range of loop iterations. Because all threads
must be working on a single data-parallel operation at a
time, the operation does not need to be specified in each
descriptor. A common way to distribute work is to enqueue
the descriptors on a work queue, to be dequeued by idle
processors.

303

Descriptor

Figure 2: SCHE: Single Control Thread, Horizontal Exe-
cution.

AfEinity scheduling, which has been shown to give fa-
vorable performance on NUMA architectures [17], uses
per-processor work queues to improve data locality and
to avoid contention for a global queue. Each element in
the work queue consists of an iteration descriptor and a
CPU number that represents the affinity of data to that
CPU. An idle processor looks for work in its own queue
and executes the iterations described by the descriptor. If
its local queue is empty, the idle process steals work from
a remote queue of another processor. For the purpose
of classification, we will call this simple method (shown
in Fig. 2) SCHE, Single Control Horizontal Execution.
Note that the control thread does not execute the loop
iterations but simply describes what to compute. The
run-time system, which knows the load distribution on
the different CPUs and the affinity hint in the descriptor,
decides where to actually execute the iterations.

In SMARTS, we take the idea of deferring execution
a step further. Unlike the SCHE model, in which the
descriptor is ready to run when the control thread hands
it off to the run-time system, a SMARTS iterate is not
ready to run until the run-time system has determined
that all of the iterate’s dependencies have been satisfied.
This gives the run-time system another degree of freedom:
the freedom to determine an order of operations, within
the constraints of the dependencies, that improves cache
data reuse and parallelism.

To incorporate vertical parallelism into the work-queue
model, we need to add a few extensions. First, because we
wish to execute multiple operations simultaneously or in an
interleaved fashion, the work queue must be a polymorphic
queue of descriptors containing not only the <iteration
range ,CPU> tuple, but also the operation that SMARTS
is to perform when dependencies are satisfied. Our im-
plementation uses a modified descriptor that contains an
operation, iteration range, and CPU. This descriptor is
represented by a C++ object that we call a SMARTS
iterate. When an idle processor finds an iterate in the work
queue, it removes it from the work queue and executes it on
its domain by calling its (virtual) run method. By associ-
ating operations with data and using a polymorphic queue,
we can interleave the execution of iterations from different
data-parallel statements or schedule multiple loops (as also
described in [16, 25, 261). Because each iterate has all
the information necessary to execute, iterates from many
different data parallel statements can be in existence and
ready to run at the same time.

. . ;-

Figure 3: Single Control Thread, Vertical Execution.

4 Graph Generation and Execution

Another extension to SCHE is required to ensure that the
data dependencies between the data parallel operations are
not violated. Figure 3 schematically shows the new model.
A SMARTS iterate must not run until earlier iterates that
use the same data have finished. Thus, the iterates make
reservations with the data to which they require access.
These reservations are handled by another C++ class, the
SMARTS data-object. The data-objects grant reservations
in FIFO order, and iterates are eligibie for execution when
all of their reservations have been granted. When an iter-
ate finishes, it notifies the associated data-objects that it is
done, allowing each data-object to grant other reservations.
We now discuss how iterate and data-object descriptors
interact to build and use the dependence graph.

SMARTS maintains two types of descriptors, iterates
representing the operation and data-objects representing
the data.

A data-object is a gatekeeper for each block of data that
is potentially shared between different iterates. It receives
requests from iterates for read or write access and stores
them in a FIFO queue. It grants one write request at a
time, or any number of sequential read requests at a time.
In our implementations, data-object is a concrete C++
class, Smarts: :DataObject, that can be used via either
inheritance or composition.

Iterates are represented by subclasses of Smarts: : Iterate
Iterate subclasses represent the work to be done for a spe-
cific domain of a specific data parallel expression. The sub-
class constructor requests appropriate access to the data-
objects involved in the subexpression, and those data-objects
notify the Iterate base class when they are available.
When all of the data-objects have signaied that they are
available, the iterate becomes runnable and enrolls itself
in the proper queue for execution.

Using these classes, execution of data parallel state-
ments proceeds in the following steps.

When data parallel objects are constructed, they are
decomposed into blocks, each of which is given a data-
object. At construction time the queue of reservations in
each data-object is empty. The format of the data and
what it represents is determined by the library or language;
SMARTS acts only as a gatekeeper.

The master thread later executes statements involving
these data parallel objects. Let us call a given statement
S,, which uses J, data parallel objects, Paj , each of which
has Naj data-objects. Se is evaluated on the domain OS,.

For example, suppose the first data parallel statement,

304

class Iterate {
public:

Iterate(...);
CPU affinity();
IterDesc range;

protected:
DataObject *read;
DataObject write;
void operation();

);

class DataObject {
public:
DataObject(.)
CPU affinity();
DataDesc dataRegion;
boo1 request(Iterate,Type);
release();

private:
Fifo RequestQueue;

1;

Figure 4: Iteration and data descriptors in SMARTS.

SI, is
A=B+C*D,

where each of A, B, C and D are defined on [l..lOO] and
are each decomposed into five equal pieces. Then DS1 =
[l..lOO], Jr = 4, and Nrj = 5 for all j.

To evaluate S,, the master thread builds a set of K,
SMARTS iterates, I&, each of which has a domain D&k,
the union of which is DS, and the intersection of which is
empty. The domains DI,k are chosen so that each of I&
uses exactly one data-object for each of Paj.

In many cases, the decompositions of the data parallel
objects are chosen to align. If that is the case, we will
have K, = N,j for all j. That is, the number of iterates
will be the same as the number of data-objects in each of
the terms in the expression. If the decompositions of the
data parallel objects are arbitrarily different, the number
of iterates K, could be as high as nj Naj,

The master thread’s responsibility for statement S, is
to create K, iterates, .Iaa. When constructing each of
those iterates, reservations are made with the data-objects
that the iterates will use. If all of an iterate’s data-objects
are available, the iterate goes immediately to a runnable
queue. Otherwise, the iterate waits until its data-objects
notify it that they are available.

At that point, the master thread’s responsibility for
statement S, is done, and it is free to go on to &+I.

The slave threads’ responsibility is to pull iterates out of
the runnable queue and execute them. All data dependen-
cies have been satisfied for iterates in the runnable queue,
so the slave threads don’t need to check dependencies.

After an iterate is executed, it is destroyed by the slave
thread, and the destructor releases the reservations on the
data-objects that it used. Releasing a reservation pulls it
off the front of the data-object’s FIFO queue of reserva-
tions. If that reservation was the last of a block of read
requests, then the following write request will be granted,
and if it was a write request, the following single write or
block of reads will be granted. If other read requests had
been granted and are still outstanding, no new requests
are granted.

If new requests were granted, they may have been the
last ones required by some iterates. Those iterates would
then move to the runnable queue, to be picked up by slave
threads.

The overall pattern then is one of the master thread
constructing iterates, those iterates making reservations
with data-objects, slave threads executing and destroying
iterates, and that destruction triggering the release of new
iterates for execution. Figures 5 and 6 illustrate this cycle.

Because the dependencies impose a partial order on the
execution of the iterates, rather than a full order, there

ORIGINAL CODE WRITTEN IN A DATA-PARALLEL LANGUAGE
Array A(1 OO), K(loo), F(100) //three data arrays
SO: A = 2’ K - I; /! data parallel statements (the language hides the loop within)
Sl: F=A+K; //flow dependencies on A from statement SO
$2: K=F-A; //anti-flow dependencies on K from Sl, flow dependency on A

DATA STRUCTURES NEEDED FOR SMARTS:
Using a block size of 25, we have 4 blocks for each array. We need Iterates for
each statement and Data Objects for each array.
SOIterate SO[O..3]; // 4 Iterates for statement SO, each representing 25 iterations.
S I Iterate S I [0..3], // 4 Iterates for statement Sl , created by operator; of S I
S2Iterate S2[0..3]; // 4 Iterates for statement S2, created by operator= of S2

DataObjectA DA[O..3]; // 4 DataObjects for array A, each representing 25 array elems.
DataObjectK DK[0..3]; I/ 4 DataObjects for army K, contained within array object K
DataObjectF DF[0..3]; // 4 DataObjects for array F, contained within array object F

DATA
H3JECTS

REQUEST QUEUES
Snapshot of request queues of
DataObjects for the three
statements (maintained by

Iterate S2[O]‘s Request for
Read(R) to DataObject DA[O]

Figure 5: Snapshot of the SMARTS requests queues.

may be many iterates available for execution at any given
time. It turns out that there is a simple and effective
technique to execute the iterates in an order that optimizes
for cache reuse. Right after an iterate finishes, the data
that it used is likely to be in cache, and one would like to
run other iterates that will also use that data. If, when
iterates are moved to the runnable queue, they are placed
at the head of that queue, they will very likely need data
that has just been used, and thus will achieve cache locality
with very low computational overhead.

The programming model and scheduling algorithm that
we described above is an extension of the aflinity-work-
queue scheduling method to include vertical parallelism or
out-of-order execution. We will call this extended method
SCVE, single control (thread), vertical execution. In the
next section, we similarly extended the SPMD model of
computation to use vertical execution; that is, we describe
MCVE, multiple control vertical execution.

5 Multiple Control Threads

In the conventional SPMD model of programming, a pro-
grammer spawns as many threads as there are processors.
Each thread executes the same program, but computes on
different sections of arrays and other data structures based
on its unique thread identifier. For example, a parallel
computation on a one-dimensional array of size N by P
threads would involve each thread computing on a block
of the array indexed by (I * $..(.I + 1) * $) where I is the
thread identifier. The model is synchronous in the sense
that every thread must perform a barrier synchronization
after every data parallel statement.

305

class SOIterate : public Iterate {
public:

Iterate(int I, GRAIN) {
begin = I*GRAIN,
end = (I+I)*GRAIN-I;
DO-A[I] -> request(this, Write);
DO-D[I] -> request(this, Read);

operation0 {
for (int I=begin; I < end; I++)

A[I] = 2*D[I]- 1;

private:
int begin;
int end;

DataObject DO_A[0..3], DO-D[0..3];
. . .
beginGeneration

for (I=O; 14; I++)
SMARTS::handoff(new SOIterate(I,25));

endGeneration{);

Figure 6: Code to interface with SMARTS for data-parallel
statement, A = 2*D-1.

I

_. . . -

Figure 7: Single Control Thread, Vertical Parallelism.

Vertical parallelism can be introduced into this mo-
del. As shown in Fig. 7, the back-end remains similar to
the back-end for SPVE model, except that the front-end,
which generates the graph, needs to synchronize with other
control threads. Because the SPVE model has only a single
thread of control, there wits no possibility of the iterates
requesting data-objects out of order, a necessary condi-
tion for correct generation of the graph. With multiple
control threads, we guarantee that no iterates from sub-
sequent data-parallel statements make reservations with
data-objects by keeping the master threads synchronized.
Consequently no requests from statement, N + 1 would be
honored by the data-object prior to honoring requests from
statements O..N.

6 Task Parallelism

We have focused our discussion on data-parallelism be-
cause this is the novel aspect of our run-time system. We
also support task parallelism by providing efficient user-
level threads, with each thread containing a stream of data
parallel statements. Dependencies between data-parallel

statements from different task-parallel threads are auto-
matically handled by the runtime system without having
the user place explicit synchronization primitives. We be-
lieve that while user-level threads are inappropriate for
data-parallelism, they are both natural and efficient for
specifying general concurrent control flow.

7 Detection of Parallelism Using POOMA

The POOMA (Parallel Object-Oriented Methods and Ap-
plications) framework [19] is a C++ class library for high
performance scientific computations. POOMA includes
data-parallel array and particle classes that hide the details
of parallelism from the user. Several large applications cur-
rently use POOMA, including a multi-material hydrody-
namics code and a particle-in-cell-based linear accelerator
modeling code.

The original POOMA implemented parallelism in a lock-
step fashion, using message passing. POOMA II, a major
redesign aimed at improving flexibility and performance,
includes thread-based evaluation and ability to use SMARTS
Switching to the SMARTS data-flow model was a natural
choice for several reasons. Most of the POOMA applica-
tions are currently run on clusters of SMPs. SMARTS per-
mits a programming paradigm that uses shared memory to
share data objects within a box instead of message passing.
Furthermore, the data-flow model allows overlapping of
communication with computation, hiding communication
latency (which can be a significant factor for some of the
more communication intensive applications). It is possi-
ble to implement latency-tolerant computation with asyn-
chronous message passing, but the SMARTS programming
model simplifies this task tremendously. Finally, as this
paper demonstrates, SMARTS potentially increases cache
reuse, allowing POOMA codes to run faster in both serial
and threaded environments.

The details of generating SMARTS iterates that eval-
uate the data-parallel expressions are completely hidden
from the user. POOMA codes are written using high level
data parallel statements. For example,

#include “Pooma/Arrays . h”

// Jacobi iteration
void maincint argc,char* argvcl)
c

Pooma: : initialize(argc,argv);

int n=iOO;
Array<2> V(n,n) ,b(n,n) ;

v = 0.0;
b = 0.0;
b(n/2,n/2) = -1.0;

Interval<i> I(l,n-2) ,J(l,n-2);

for (int iter = 0; iter < 100; ++iter) C
V(1.J) = 0.25* ((V(I+I,J) + V(I-1,J) +

V(I,J+l) + V(I,J-1) - b(I,J));
1
Pooma: :finalizeO;

)

Evaluation is performed by the array’s assignment opera-
tor. Instead of performing the operations as they appear,
POOMA uses expression templates [27] to construct ex-
pression objects that are passed to the assignment oper-
ator. These objects contain references to all arrays and

306

scalars in the expression, and encode the form of the ex-
pression in a template argument. Arbitrary transforma-
tions can be performed on the expression at compile-time
using template meta-programs [4]. Traditionally, expres-
sion templates are used to transform statements like A =
B + C into efficient loops like:

Performance of Log&tic Map Test Problem

8D

for (i=O; i< n; ++i)
ACi.1 = B[i] f C[i];

POOMA defers evaluation to an evaluator object, which in
turn can generate the iterates that are passed to SMARTS.
The dependency information is generated using the expres-
sion template mechanism to say, “for each array on the
right-hand side, request a read lock” and “request a write
lock for the array being assigned to.”

10 -

To decompose problems in parallel, POOMA provides
an array type that contains multiple blocks. Each block
contains its own SMARTS data-object, so that multiple
iterates can simultaneously act on a given array, provided
that they act on separate blocks. In the multi-block case,
POOMA generates at least one iterate for each block on
the left-hand side and generates read requests for all the
blocks that are touched on the right-hand side.

03
0 so0 1bbo 150) *ml

Pmblem si9x (II x n)

-serial - blocked + blocked+smarts

Figure 8: Performance for a trivially parallel example:
Applying the logistic map to arrays. SMARTS allow us
to get uniform performance, as problems become too large
to fit in cache.

80
Performanceof Stencil Test Problem

8 Experimental Results

This section describes our experience with SMARTS and
POOMA on a shared-memory multiprocessor, the SGI Ori-
gin 2000. We show sequential speedups from better reuse
of cached data, parallel speedup due to the asynchrony of
the macro-dataflow model, and performance analysis using
TAU [21].

60

50

40

30

20

8.1 Sequential Cases 10 I

To separate the performance benefits of temporal locality
from parallelism, we initially restrict our experiments to
sequential cases. First, we considered a trivially parallel
example where we applied a logistic map for several iter-
ations to an entire array. In POOMA, this is expressed
as

0 I 4

0 500 1000 1500 2000
Problem size (n x n)

- serial - blocked - bktcked+smarts

for (i = 0; i < n; ++i) I
b = k * a * (1.0 - a);
a = b;

3

Figure 9: Performance for a simple stencil operation.
Even with more complex dependencies, SMARTS provides
better performance for large problems.

where a and b are POOMA arrays and k is a constant. The
SMARTS iterate for a given block in each of the arrays
only has dependencies on the corresponding block in the
other array. Thus we can execute the entire loop for a
given block before moving to the other blocks. Figure 8
compares three cases: The case labeled “serial” was im-
plemented using arrays that contained a single block of
memory, and SMARTS was not used. For small prob-
lem sizes, this case runs the fastest because there is no
additional overhead, but once the arrays no longer fit in
level-two cache the performance drops by more than a
factor of two. We implemented the “blocked” case using
arrays that contained 100 x 100 blocks of data, but again,
we did not use SMARTS. Since each block needs control
code for a loop, multi-block arrays introduce additional
overhead. However, this overhead becomes less significant
for larger problem sizes as cache effects become dominant.
Finally, the case labeled “blocked+smarts” uses SMARTS
to schedule the iterates for arrays with 100 x 100 blocks.
SMARTS introduces additional overhead to generate and
enforce dependencies, but, as in the “blocked” case, the

benefits of cache reuse quickly overshadow this overhead
as we increase the problem size. As shown in the figure,
we are able to sustain almost a constant MFLOPS as we
increase the problem size, leading eventually to a twofold
speedup over a naive implementation.

For the previous example, it may be possible for some
compilers to recognize that a loop-interchange can gener-
ate code that traverses the iteration subspace vertically.
However, for applications with more complex data depen-
dencies, this would not be possible. Stencil expressions
provide such an example. The results in Fig. 9 are for a
simple three-point stencil operation performed on a two-
dimensional array. The POOMA code for the loop is

for (i = 0; i < n; ++i) (
b(I,J) = c*(a(I+l,J) + a(I,J) + a(I-1,J));
a = b;

3

where a and b are arrays, I and 3 are POOMA index
objects and G is a constant. Using SMARTS for large
problems gives superior results, but because of the over-
head that SMARTS and POOMA introduce, we do not

307

see a constant MFLOPS rate as we increase the problem
size.

8.2 Parallel Speedups

To study scaling of applications using SMARTS, we com-
pared the performance of Red/Black SOR with various
methods on a 32 processor SGI Origin 2000. We looked at
four methods:

l SCHE: (Single control thread, horizontal execution).
In our implementation of SCHE, we used affinity
scheduling with multiple work queues.

l SCVE: (Single control thread, vertical execution) is
currently our fastest implementation of vertical par-
allelism. It is a macro-da&low extension of the afhn-
ity scheduler.

l MCHE: (Multiple control threads, horizontal execu-
tion) is an implementation of the SPMD model. We
spawn as many threads as there are processors and
each thread is bound to a particular CPU.

l MCVE: (Multiple control threads, vertical execution)
is an experimental implementation of vertical execu-
tion built by extending the SPMD model. This ex-
perimental implementation has not been fine-tuned
for performance.

In each of the methods above, we used a Morton or-
der [20] to block-decompose the two-dimensional data ma-
trix. Figure IO shows the relative performance of the
four methods on an otherwise idle machine. Speedups
are relative to the best sequential method. To measure
the time taken for each run, we took an average of 10
trials. Results were statistically significant with the 95%
confidence interval being no greater than ~1.87 seconds
with an average of 45.8 seconds on runs with 32 processors.
As shown in the figure, both implementations of vertical
executions continue to get close to linear speedup for large
number of processors. MCHE does well for small num-
ber of processors because of its low overhead and good
data locality for this static application. However, as we
increased the number of processors, the cost of barrier
synchronizations prevented this method from scaling. We
were able to get the best performance with the SCVE
method with a speedup of about 28 on a 32 processor run.

8.3 Performance Analysis

We used the Tuning and Analysis Utilities (TAU) to an-
alyze the performance of SMARTS. TAU uses timing in-
strumentation that is triggered at function entry and exit.
The instrumentation is responsible for name registration,
maintaining the function database, the callstack [22], and
statistics. The overhead of this instrumentation is propor-
tional to the frequency of triggers. For a single threaded
program running on an SGI Origin 2000, the overhead
associated with profiling is 0.8 microseconds for each entry
and for each exit of a profiled block of code. For multi-
ple SMARTS threads, the overhead was 4 microseconds
for each entry and for each exit. From the profile data
collected, TAU’s profile analysis procedures can generate
a wealth of performance information for the user. It can
show the exclusive and inclusive time spent in each func-
tion with nanosecond resolution. For templated entities,
it shows the breakup of time spent for each instantiation.
Other data includes how many times each function was
called, how many profiled functions were invoked by each

Parallel Speeups of Different Methods

15 -

Speedup

IO -

I I I I I I

0 5 10 15 20 25 30 35

Number of CPUs

Figure 10: Speedups for different methods for Red/Black
SOR with problem size of 4096x4096.

function, and what the mean inclusive time per call was.
On systems where available, TAU can also use hardware
performance counters.

Figure 11’ shows the TAU tool, rucy, displaying the
breakdown of the time spent in functions and templates
for the Red/Black SOR example running on 32 processors
using the SCVE scheduler. The figure shows where each
processor spent its time. The method IterateExprl:run()
and IterateExpr2::runO refer to the red and black phases
of computation, respectively. The other methods are sys-
tem overheads. According to figure, the total amount
time spent on system overheads was only 3.49%, indicating
that run-time graph generation does not have significant
overhead costs.

9 Future and Continuing Work

We have described how the SMARTS run-time system is
implemented in shared-memory multiprocessors. Because
the current technology for shared-memory interconnects
does not scale to more than about 250 processors, we
believe that the future of high-performance computing will
be clusters of SMPs. These, however, create a challenging
programming environment for application developers be-
cause neither the shared-memory model using threads nor
the SPMD model with explicit message passing are suffi-
cient to efficiently use the available hardware. Since the
interface to SMARTS only involves the creation and the
execution of graphs, an interface that is abstract enough
to hide the details of the underlying memory model, the
end-user need not see whether communication is within or
across SMPs.

Another difficulty with data-parallel applications on clus-
ters of SMPs is that the high communication latency re-
quires that computation overlap communication. Con-
ventional models use lightweight threads to achieve this
overlap. We believe that the SMARTS run-time system
improves upon this model in two important ways. First,
the unit of concurrency in SMARTS, the SMARTS iterate,
is much lighter than threads because iterates do not need

‘Other figures analyzing this example are available at
http://vuv.acl.lanl.gov/tau/users/smarts

308

scheoum-
3.95% E msan

iterats~Exprl::run() void ()
iterate ExQR::iterate ExQRfl void lint. int. int. S
iterate~&2::run() void i) -
-startoff() void (Thread 7
main0 int (int, char-1

.-,-.. -,-,.
n,c,t 0,0,2
n,c.t 0.0.3
n,c,t 0,0,4
n,c,t 0.0.5
n,c,t 0‘0,6
n.c,t OJ3.7
n,c,t op,s
n,c,t O:O,Q
n,c,t O.O,l
n,c,t O,O,l
n,c,t 0.0.1

Iitsrate-Exprl::run() void 0
crate_Expr2::run() void ()
:heduie...privats(j void [J

0.46%] iterate<FastAsyno::notify() void (void:

4.279
3.7’1%
32Q%
3.6%
3.69%
296%

3.61%

n,c,t 0,024

_. ,n.c.t 90.25,

027%]itsralecFastAsyno::execute[) votd 0 3.31%

I

n,c,t o,o,i
3.63% n,c.t 0.0,2
3.01% n,c,t 0,0,2
3.36% n,t,t O:O,Z

4.3to/ n,c,t 0,O.Z

Figure 11: Profile of Red/Black SOR using SCVE scheduler displayed in RACY, a TAU profile visualization tool.

to save and restore contexts. Consequently the cost of
switching to another computation while waiting for com-
munication is much cheaper. Second, the asynchrony of
SMARTS permits a higher degree of parallelism, which
gives the system something to do while waiting for com-
munication. It is not sufficient to just be able to switch
to a different thread efficiently; it is also necessary to have
something to switch to! Figure 12 uses a one-dimensional
stencil application to compare the amount of computation
(shaded region) that an SMP box could be doing while
waiting for communication using SMARTS with the max-
imum amount of inter-communication computation using
a conventional model. The stencil code corresponding to
the diagram is

for (i. = 0; i < 10; ++i) C // time steps
a(1.J) = c*(a(I+l,J) + a(I,J> + a(I-1,J));

I

In the conventional model (using horizontal execution),
communication with the neighboring box must occur on
every time step. In contrast, SMARTS allows us to ag-
gressively compute some iterations from subsequent time-
steps, restrained only by dependencies in the application.
In the SMARTS version, each block of computation is
initially ready to compute at the very first time step. As-
suming that the communication from the boxes on the left
and right side of the picture takes an infinite amount of
time, we could still compute all but the leftmost block and
rightmost block in the second time step. Similarly, at each
of the subsequent time steps, we would continue computing
the inner blocks of the array to form the pyramidal shape
in the figure.

10 Conclusion

The growing inability of memory systems to keep up with
processors makes computational overhead less of a factor

Time Step Computation in Horizontal Execution

Time Step Computation in Vertical Execution

Figure 12: Maximum Inter-Communication Computation
for Id-Stencil.

in the total execution time. These technological trends ne-
cessitate a re-evaluation of the models of execution: meth-
ods and algorithms that were previously unusable because
of their computational overhead now seem favorable and
worth further investigation. This paper introduced a mech-
anism for improving the locality and parallelism of sci-
entific appiications by using vertical execution in which
loop iterations of consecutive data-parallel statements are
executed in an interleaved fashion. While this model does
indeed incur more overhead, this overhead is insignificant
compared to the relatively high cost of memory access.

309

Another important type of overhead is the amount of
time required for the scientific programmer to parallelize
and to optimize his application for data locality. The
SMARTS run-time system and the POOMA framework
shield the end-users from these details, allowing them to
make more efficient use of their expertise.

Acknowledgements

The research described here was performed under the aus-
pices of DOE and by Los Alamos National Laboratory
under contract No. W-7405-Eng-36 and by University of
Oregon under the DOE2000 (#DEFC0398ER259986) pro-
gram.

References

PI

PI

I31

[41

I51

@I

[71

PI

PI

[lOI

P11

WI

J.R. Allen and K. Kennedy. Automatic loop interchange.
ACM SIGPLAN Notices, 19(6):233-246, June 1985.

Robert Babb. Parallel Processing With Large-Grain Data
Flow Techniques. IEEE Computer, 17(7):55-61, July 1984.

Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall, and
Yuli Zhou. Cilk: An Efficient Multithreaded Runtime
Svstem. In Proceed&as of the Fifth ACM SIGPLAN
Sbmposium on Principles &d Pm&e of Parallel Pro-
gmmming, San Barbara, California, July 1995.

James A. Crotinger, Julian Cummings, Scott Haney,
William Humphrey, Steve Karmesin, John Reynders,
Stephen Smith, and Timothy J. Williams. Generic Pro-
gramming in POOMA and PETE. In Proceedings of
the Ragstuhl Seminar on Generic Programming, to be
published in Lecture Notes in Computer Science. Springer-
Verlag, 1999.

John T. Feo and David C. Cann. A Report on the Sisal
Language Project. Jounal of Parallel and Distributed
Computing, 10(4):&X-89, December 1990.

Guang R. Gao, Russ Olsen, Vivek Sarkar, and Radhika
Thekkath. Collective Loop Fusion for Array Contraction.
In 1992 Workshop on Languages and Compilers for Paral-
lel Computing, number 757 in Lecture Notes in Computer
Science, pages 281-295, New Haven, Conn., August 1992.
Berlin: Springer Verlag.

A. S. Grimshaw. Easy to Use Object-Oriented Parallel
Programming with Mentat. IEEE Computer, pages 39-51,
May 1993.

A. S. Grimshaw, W. T. Strayer, and P. Narayan. Dynamic
Object-Oriented Parallel Processing. IEEE Parallel and
Distributed Technology: Systems and Applications, pages
33-47, May 1993.

J. Gurd, C. C. Kirkham, and A. P. W. Boehm. The Manch-
ester Prototype Dataflow Computer. Communication of
the ACM, 28:34-52, January 1985.

J. Gurd, C. C. Kirkham, and A. P. W. Boehm.
The Manchester Dataflow Computing System, pages
516,517,519,520,529. North-Holland, 1987.

H. Kasahara and H. Honda and A. Mogi and A. Ogura and
K. Fujiwara and S. Narita. A Multi-Grain Parallelizing
Compilation Scheme for OSCAR (Optimally Scheduled
Advanced Multiprocessor). In 1991 Workshop on Lan-
guages and Compilers for Parallel Computing, number
589 in Lecture Notes in Computer Science, pages 281-
295, Santa Clara, California, August 1991. Berlin: Springer
Verlag.

Hironori Kasahara and Akimasa Yoshida. A Data-
localization Compilation Scheme Using Partial-static Task
Assignment for Fortran Coarse-grain Parallel Processing.
Pamllel Computing, 24:579-596, 1998.

[I31

1141

P51

WI

P71

WI

PI

P-4

WI

P21

[231

P41

P51

[=I

1271

P31

PI

Jose Moreira and Constantine Polychronopoulos. Au-
toscheduling in a Shared Memory Multiprocessor. In
Proceedings of the IEEE/USP International Workshop on
High Performance Computing Compilers and Tools for
Parallel Processing, March 1994.

S. Karmesin, J. Crotinger, J. Cummings, S. Haney,
W. Humphrey, J. Reynders, S. Smith, and T. J. Williams.
Array Design and Expression Evaluation in POOMA II.
In D. Caromel, R.R. Oldehoeft, and M. Tholburn, editors,
Computing in Object-Oriented Parallel Environments, vol-
ume 1505 of Lecture Notes in Computer Science, pages
231-238. Springer-Verlag, 1998.

Ken Kennedy and Kathryn S. McKinley. Maximizing Loop
Parallelism and Improving Data Locality via Loop Fusion
and Distribution. In 1999 Workshop on Languages and
Compilers for Parallel Computing, number 768 in Lecture
Notes in Computer Science, pages 301-320, Portland, Ore.,
August 1993. Berlin: Springer Verlag.

Induprakas Kodukula and Keshav Pingali. Transforma-
tions For Imperfectly Nested Loops. In Supercomputing,
Nov 1996.

E.P Markatos and T. J. LeBlanc. Load Balancing vs
Locality Management in Shared Memory Multiprocessors.
In Zntl. Conference on Parallel Processing, pages 258-257,
St. Charles, Illinois, August 1992.

C. D. Polochronopoulous and D. Kuck. Guided Self-
Scheduling: A Practical Scheduling Scheme for Paral-
lel Supercomputers. IEEE Transactions on Computers,
36(12):1425-1439, December 1987.

J.V.W. Reynders, P.J. Hinker, J.C. Cummings, S.R. Atlas,
S. Banerjeee, W.F. Humphrey, S.R. Karmesin, K. Keahey,
M. Srikant, and M. Tholburn. Pooma. In G.V. Wilson and
P. Lu, editors, Parallel Progmmming Using C++. MIT
Press, 1996.

Hanan Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1990.

S. Shende, A.D. Malony, J. Cuny, K. Lindlan, P. Beckman,
and S. Karmesin. Portable Profiling and Tracing for
Parallel Scientific Applications using C++. In Proceedings
of the 2nd SIGMETRICS Symposium on Parallel and
Distributed Tools, pages 134-145. ACM, 1998.

S. Shende, A.D. Malony, and S. Hackstadt. Dynamic Per-
formance Callstack Sampling: Merging TAU and DAQV.
In B. KBgstriim et al., editors, Applied Parallel Computing,
PARA ‘98, Lecture Notes in Computer Science, No. 1541,
pages 515-520. Springer-Verlag, 1998.

P. Tang and P.C. Yew. Processor Self-Scheduling for
Multiple Nested Parallel Loops. In Proc. Int. Conf. on
Parallel Processing, pages 528-535. IEEE, August 1986.

J. Torres, E. Ayguadi, J. Labarta, and M. Valero.
Loop Parallelization: Revisiting Framework of Unimodular
Transformations. In Proceedings of thd Fourth Euromicro
Workshop on Parallel and Distributed Processing, IEEE
Computer Society, pages 420-427, January 1996.

Suvas Vajracharya and Dirk Grunwald. Dependence-
Driven Run-Time System. In Proceedings of Language and
Compilers for Parallel Computing, pages 168-176, 1996.

Suvas Vajracharya and Dirk Grunwald. Loop Re-ordering
and Pre-fetching at Runtime. In High Performance Net-
working and Computing, November 1997.

T.L. Veldhuizen. Expression Templates. C++ Report,
7(5):26-31, June 1995.

Michael Edward Wolf. Improving locality and parallelism
in nested loops. PhD thesis, Stanford University, August
1992. *

M.J. Wolfe. Optimizing supercompilers for supercomput-
ers. PhD thesis, Univ. Illinois, Urbana, April 1987. Rep.
329.

310

