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Abstract In the solution of large-scale numerical problems, 
pamllel computing is becoming simultaneously more important 
and more difictilt. The complex organization of today’s multi- 
processors with several memory hierarchies has forced the sci- 
entiific progmmmer to make a choice between simple but unscal- 
able code and scalable but extremely complex code that does not 
port to other architectures. 

This paper describes how the SMARTS runtime system and 
the POOMA C++ class library for high-performance scientijk 
computing work together to exploit data parallelism in scientific 
applications while hiding the details of managing parallelism 
and data locality from the user. We present innovative algo- 
n’thms, based on the macro-dataflow model, for detecting data 
pamllelism and eficiently executing data-parallel statements on 
shared-memory multiprocessors. We also describe how these al- 
gorithms can be implemented on clusters of SMPs. 

Keywords: Data-parallelism, dependence-driven execution, run- 
time systems, barrier synchronization, loop scheduling, macro- 
dataflow, cache reuse, programming models, object-parallelism, 
data-parallel languages, object-oriented, data locality, scientific 
computation 

1 introduction 

The source of most parallelism in numerical and scien- 
tific applications comes from independent loop iterations in 
data-parallel statements. This paper describes a system for 
discovering independent loop iterations through run-time 
dependence analysis and efficiently executing those itera- 
tions on multiprocessors with deep memory hierarchies. 

Conventional models of data-parallel programming take 
advantage of horizontal parallelism in a stream of data- 
parallel statements. In horizontal data parallelism, the 
participating processors apply the same operations to dif- 
ferent subsections of the data, one operation at a time. A 
barrier synchronization ensures that the next data-parallel 
statement is not started until all the processors are done 
with the current, statement. In contrast, we define vertical 
parallelism as the concurrent execution of multiple data- 
parallel operations while respecting the data dependencies 
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Conventional Data Parallel 

A=B+C*D; 

B=X+Y *A; 

C=D+X*B; 

D=Y+X*C; 

With SMARTS Dataflow 

A=B+C*D; 

B=X+Y*A; 

C=D+X*B; 

D=Y+X*C; 

Figure 1: Horizontal vs. Vertical Execution. Each square 
represents a block of floating point operations. 

among those operations. The “vertical” here refers to the 
vertical direction in the stream of data-parallel statements 
appearing in a program. By exploiting both vertical and 
horizontal parallelism, we can reduce the idle time of par- 
ticipating processors waiting at barrier synchronizations. 
Furthermore, because we are applying multiple operations 
in a depth-first manner, a vertical execution will reuse 
cached data more effectively, as illustrated in Fig. 1. If 
the illustrated arrays do not fit in the machine’s cache, 
horizontal execution forces re-loading the data values at 
each data-parallel operation. In contrast, vertical execu- 
tion applies multiple operations to the same data before 
that data leaves the cache. Compiler optimizations such as 
loop fusion [6, 15, 291 and loop interchange [29, l] restruc- 
ture the source code to achieve the same end. However, 
these transformations cannot be applied in the presence of 
more complicated dependencies between the statements, 
a restriction that we wish to remove by using a macro- 
dataflow model. 

In earlier papers, it was argued that a vertical execu- 
tion improves temporal locality [26] and increases paral- 
lelism [25]. In this paper, we describe a macro-dataflow 
approach for automating vertical execution by generating 
and executing a dependence graph representing the depen- 
dencies among the data-parallel operations. The remain- 
der of the paper is organized as follows: Sections 3 and 5 
describe how SMARTS, the Shared Memory Asynchronous 
RunTime System, extends the master-slave programming 
model and the single-program-multiple-data (SPMD) model 
to permit a vertical execution. Having described the run- 
time system, Sec. 7 shows how POOMA, a framework 
for scientific applications, uses the runtime system to en- 
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capsulate parallelism and the details of data locality for 
the application developer. Section 8 then compares the 
performance of different methods using vertical and hori- 
zontal execution on a shared-memory multiprocessor. Our 
ultimate goal is to run on clusters of SMPs. Section 9 
describes how the same algorithm can be implemented to 
use both shared-memory and message passing, and argues 
that a vertical execution model is particularly well suited 
for hiding latency. 

2 Related Work 

Due to the higher degree of parallelism that asynchro- 
nous systems contain, the dataflow concept has appeared 
in many works. One issue that distinguishes the various 
works is the unit, or granularity, of the parallelism. A 
very fine granularity requires a significantly different de- 
sign than does a coarse-grain computation. For example, 
dataflow computers such as the Manchester Dataflow Ma- 
chine [9, lo] relied on special hardware to orchestrate par- 
allelism at the level of individual floating-point arithmetic 
operations. 

Most modern computer architectures do not have such 
special support hardware, and thus the dataflow concept 
is often implemented in software at a much coarser grain; 
i.e. macro-dataflow. In the tradition of true dataflow mod- 
els, much of the work on macro-dataflow approaches, such 
as the work by Babb [2], Mentat [8, 71, and Cilk [3], has 
emphasized functional parallelism. 

For data-parallel applications, functional parallelism has 
the disadvantage that the functional decomposition deter- 
mines the granularity of parallelism. Finding the appro- 
priate decomposition is often a difficult and inappropriate 
task for data-parallel applications. 

In contrast, SMARTS determines the granularity of com- 
putation based on the decomposition, or layout, of the 
arrays, a much easier task because the user separately 
specifies data and functional definitions. This also has the 
advantage that the granularity can be determined dynam- 
ically, as in our earlier work [25]. A functional decomposi- 
tion, in contrast, statically fixes the granularity when the 
functions are defined. 

These difficulties have led to other approaches that use 
entire loops as nodes in dependence graphs, as in the work 
by Tang [23], Sisal [5], and the autoscheduling work by 
Moreira and Polychronopoulus [I3]. A horizontal loop 
scheduler, such as guided-self scheduling [18], might then 
schedule these loops. In SMARTS, iterations within and 
across loops can be scheduled simultaneously because a 
node in the generated dependence graph, known as a iter- 
cite, is an iteration subspace, not the entire loop. 

We have used granularity to classify related works. An- 
other dimension for comparison is the extent of user in- 
volvement in synchronizing the units of computation. Com- 
piler methods are attractive because they involve no user 
intervention for optimizations. Strictly compile-time meth- 
ods [24, 281 restructure the loop and generate new code 
to improve locality and parallelism. For example, loop 
fusion takes two consecutive data-parallel statements (or 
loops) and combines them into one, such that each itera- 
tion of the loop applies both of the operations. Another 
transformation, loop interchange, swaps the inner loop of 
a nested loop with the outer loop to take advantage of 
better data locality in a vertical execution. While having 
the desired effect of better cache reuse, these methods are 
limited in that the compiler can only apply them when the 
dependencies are simple and apparent. 

In general, while compile-time methods have the advan- 
tage that they incur little run-time overhead and that the 
automation frees the user from the details of locality and 
parallelism, they are limited in that compilers cannot apply 
many interesting optimizations that depend on the knowl- 
edge of dynamic information. Compile-time optimizations 
cannot be applied to situations where the time it takes to 
complete an operation varies at run-time, a common case 
on cache-based and parallel computers. Other methods, 
such as Cilk and Mentat, require the user to explicitly state 
the interaction and synchronization between the units of 
parallelism. SMARTS, used with a data-parallel package 
like POOMA, frees the application programmer from being 
concerned with interaction and synchronization, which we 
believe are the most difficult parts of parallel processing. 

A compiler method that has some of the same goals 
as SMARTS is the OSCAR compiler by Kasahara and 
Yoshida [ll, 121. A s in SMARTS, the OSCAR compiler 
generates a dependence graph to improve locality and in- 
crease parallelism by using a macro-dataflow execution. 
Favorable performance of the compiler running on the OS- 
CAR multiprocessor makes an argument for macro-dataflow 
processing with data localization. 

An important distinction between SMARTS and OS- 
CAR is that OSCAR compiler generates the graph during 
compile-time, whereas the SMARTS does all its work at 
run-time. Run-time graph generation has the advantage 
that it can determine some data dependencies that would 
not be possible to analyze during compile-time. Not know- 
ing the values of variables, compile-time graph genera- 
tion must make conservative assumption about dependen- 
cies between loop iterations. Furthermore, SMARTS does 
not require that the index range of loops in data-parallel 
statements have the same cardinality, allowing the run- 
time system to determine interloop data dependencies for 
problems like Multigrid solvers where consecutive data- 
parallel statements apply operations to different grid sizes 
or varying index ranges. 

Because SMARTS need only generate a dependence graph 
for a particular instance or an execution of a program, the 
task of generating graphs is much simpler. For example, 
SMARTS does not need to include control dependencies in 
the dependence graph. Note that the choice to generate 
graph at run-time does not involve simply delaying the ap- 
plication of compile-time methods until run-time because 
this choice influences the type of algorithms that is sensible 
and efficient enough to be done while the program is run- 
ning. Section 4 describes an efficient algorithm for graph 
generation which we have found to incur little overhead. 

3 Master-Slave Work Queue Model 

This section describes the master-slave work-queue model 
and its extension to take advantage of vertical parallelism. 
In the master-slave model, there is a single thread of con- 
trol (the master thread) that distributes work to slave 
threads. In the case of executing data-parallel expressions, 
the master thread distributes loop iterations to the waiting 
slave threads. 

In its simplest form, the actual number of iterations to 
be distributed can be described by an iteration descriptor 
containing the range of loop iterations. Because all threads 
must be working on a single data-parallel operation at a 
time, the operation does not need to be specified in each 
descriptor. A common way to distribute work is to enqueue 
the descriptors on a work queue, to be dequeued by idle 
processors. 
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Descriptor 

Figure 2: SCHE: Single Control Thread, Horizontal Exe- 
cution. 

AfEinity scheduling, which has been shown to give fa- 
vorable performance on NUMA architectures [17], uses 
per-processor work queues to improve data locality and 
to avoid contention for a global queue. Each element in 
the work queue consists of an iteration descriptor and a 
CPU number that represents the affinity of data to that 
CPU. An idle processor looks for work in its own queue 
and executes the iterations described by the descriptor. If 
its local queue is empty, the idle process steals work from 
a remote queue of another processor. For the purpose 
of classification, we will call this simple method (shown 
in Fig. 2) SCHE, Single Control Horizontal Execution. 
Note that the control thread does not execute the loop 
iterations but simply describes what to compute. The 
run-time system, which knows the load distribution on 
the different CPUs and the affinity hint in the descriptor, 
decides where to actually execute the iterations. 

In SMARTS, we take the idea of deferring execution 
a step further. Unlike the SCHE model, in which the 
descriptor is ready to run when the control thread hands 
it off to the run-time system, a SMARTS iterate is not 
ready to run until the run-time system has determined 
that all of the iterate’s dependencies have been satisfied. 
This gives the run-time system another degree of freedom: 
the freedom to determine an order of operations, within 
the constraints of the dependencies, that improves cache 
data reuse and parallelism. 

To incorporate vertical parallelism into the work-queue 
model, we need to add a few extensions. First, because we 
wish to execute multiple operations simultaneously or in an 
interleaved fashion, the work queue must be a polymorphic 
queue of descriptors containing not only the <iteration 
range ,CPU> tuple, but also the operation that SMARTS 
is to perform when dependencies are satisfied. Our im- 
plementation uses a modified descriptor that contains an 
operation, iteration range, and CPU. This descriptor is 
represented by a C++ object that we call a SMARTS 
iterate. When an idle processor finds an iterate in the work 
queue, it removes it from the work queue and executes it on 
its domain by calling its (virtual) run method. By associ- 
ating operations with data and using a polymorphic queue, 
we can interleave the execution of iterations from different 
data-parallel statements or schedule multiple loops (as also 
described in [16, 25, 261). Because each iterate has all 
the information necessary to execute, iterates from many 
different data parallel statements can be in existence and 
ready to run at the same time. 

. . ; . . . . . .- 

Figure 3: Single Control Thread, Vertical Execution. 

4 Graph Generation and Execution 

Another extension to SCHE is required to ensure that the 
data dependencies between the data parallel operations are 
not violated. Figure 3 schematically shows the new model. 
A SMARTS iterate must not run until earlier iterates that 
use the same data have finished. Thus, the iterates make 
reservations with the data to which they require access. 
These reservations are handled by another C++ class, the 
SMARTS data-object. The data-objects grant reservations 
in FIFO order, and iterates are eligibie for execution when 
all of their reservations have been granted. When an iter- 
ate finishes, it notifies the associated data-objects that it is 
done, allowing each data-object to grant other reservations. 
We now discuss how iterate and data-object descriptors 
interact to build and use the dependence graph. 

SMARTS maintains two types of descriptors, iterates 
representing the operation and data-objects representing 
the data. 

A data-object is a gatekeeper for each block of data that 
is potentially shared between different iterates. It receives 
requests from iterates for read or write access and stores 
them in a FIFO queue. It grants one write request at a 
time, or any number of sequential read requests at a time. 
In our implementations, data-object is a concrete C++ 
class, Smarts: :DataObject, that can be used via either 
inheritance or composition. 

Iterates are represented by subclasses of Smarts: : Iterate 
Iterate subclasses represent the work to be done for a spe- 
cific domain of a specific data parallel expression. The sub- 
class constructor requests appropriate access to the data- 
objects involved in the subexpression, and those data-objects 
notify the Iterate base class when they are available. 
When all of the data-objects have signaied that they are 
available, the iterate becomes runnable and enrolls itself 
in the proper queue for execution. 

Using these classes, execution of data parallel state- 
ments proceeds in the following steps. 

When data parallel objects are constructed, they are 
decomposed into blocks, each of which is given a data- 
object. At construction time the queue of reservations in 
each data-object is empty. The format of the data and 
what it represents is determined by the library or language; 
SMARTS acts only as a gatekeeper. 

The master thread later executes statements involving 
these data parallel objects. Let us call a given statement 
S,, which uses J, data parallel objects, Paj , each of which 
has Naj data-objects. Se is evaluated on the domain OS,. 

For example, suppose the first data parallel statement, 
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class Iterate { 
public: 

Iterate(...); 
CPU affinity(); 
IterDesc range; 

protected: 
DataObject *read; 
DataObject write; 
void operation(); 

); 

class DataObject { 
public: 
DataObject( .) 
CPU affinity(); 
DataDesc dataRegion; 
boo1 request(Iterate,Type); 
release(); 

private: 
Fifo RequestQueue; 

1; 

Figure 4: Iteration and data descriptors in SMARTS. 

SI, is 
A=B+C*D, 

where each of A, B, C and D are defined on [l..lOO] and 
are each decomposed into five equal pieces. Then DS1 = 
[l..lOO], Jr = 4, and Nrj = 5 for all j. 

To evaluate S,, the master thread builds a set of K, 
SMARTS iterates, I&, each of which has a domain D&k, 
the union of which is DS, and the intersection of which is 
empty. The domains DI,k are chosen so that each of I& 
uses exactly one data-object for each of Paj. 

In many cases, the decompositions of the data parallel 
objects are chosen to align. If that is the case, we will 
have K, = N,j for all j. That is, the number of iterates 
will be the same as the number of data-objects in each of 
the terms in the expression. If the decompositions of the 
data parallel objects are arbitrarily different, the number 
of iterates K, could be as high as nj Naj, 

The master thread’s responsibility for statement S, is 
to create K, iterates, .Iaa. When constructing each of 
those iterates, reservations are made with the data-objects 
that the iterates will use. If all of an iterate’s data-objects 
are available, the iterate goes immediately to a runnable 
queue. Otherwise, the iterate waits until its data-objects 
notify it that they are available. 

At that point, the master thread’s responsibility for 
statement S, is done, and it is free to go on to &+I. 

The slave threads’ responsibility is to pull iterates out of 
the runnable queue and execute them. All data dependen- 
cies have been satisfied for iterates in the runnable queue, 
so the slave threads don’t need to check dependencies. 

After an iterate is executed, it is destroyed by the slave 
thread, and the destructor releases the reservations on the 
data-objects that it used. Releasing a reservation pulls it 
off the front of the data-object’s FIFO queue of reserva- 
tions. If that reservation was the last of a block of read 
requests, then the following write request will be granted, 
and if it was a write request, the following single write or 
block of reads will be granted. If other read requests had 
been granted and are still outstanding, no new requests 
are granted. 

If new requests were granted, they may have been the 
last ones required by some iterates. Those iterates would 
then move to the runnable queue, to be picked up by slave 
threads. 

The overall pattern then is one of the master thread 
constructing iterates, those iterates making reservations 
with data-objects, slave threads executing and destroying 
iterates, and that destruction triggering the release of new 
iterates for execution. Figures 5 and 6 illustrate this cycle. 

Because the dependencies impose a partial order on the 
execution of the iterates, rather than a full order, there 

ORIGINAL CODE WRITTEN IN A DATA-PARALLEL LANGUAGE 
Array A(1 OO), K( loo), F(100) //three data arrays 
SO: A = 2’ K - I; /! data parallel statements (the language hides the loop within) 
Sl: F=A+K; //flow dependencies on A from statement SO 
$2: K=F-A; //anti-flow dependencies on K from Sl, flow dependency on A 

DATA STRUCTURES NEEDED FOR SMARTS: 
Using a block size of 25, we have 4 blocks for each array. We need Iterates for 
each statement and Data Objects for each array. 
SOIterate SO[O..3]; // 4 Iterates for statement SO, each representing 25 iterations. 
S I Iterate S I [0..3], // 4 Iterates for statement Sl , created by operator; of S I 
S2Iterate S2[0..3]; // 4 Iterates for statement S2, created by operator= of S2 

DataObjectA DA[O..3]; // 4 DataObjects for array A, each representing 25 array elems. 
DataObjectK DK[0..3]; I/ 4 DataObjects for army K, contained within array object K 
DataObjectF DF[0..3]; // 4 DataObjects for array F, contained within array object F 

DATA 
H3JECTS 

REQUEST QUEUES 
Snapshot of request queues of 
DataObjects for the three 
statements (maintained by 

Iterate S2[O]‘s Request for 
Read(R) to DataObject DA[O] 

Figure 5: Snapshot of the SMARTS requests queues. 

may be many iterates available for execution at any given 
time. It turns out that there is a simple and effective 
technique to execute the iterates in an order that optimizes 
for cache reuse. Right after an iterate finishes, the data 
that it used is likely to be in cache, and one would like to 
run other iterates that will also use that data. If, when 
iterates are moved to the runnable queue, they are placed 
at the head of that queue, they will very likely need data 
that has just been used, and thus will achieve cache locality 
with very low computational overhead. 

The programming model and scheduling algorithm that 
we described above is an extension of the aflinity-work- 
queue scheduling method to include vertical parallelism or 
out-of-order execution. We will call this extended method 
SCVE, single control (thread), vertical execution. In the 
next section, we similarly extended the SPMD model of 
computation to use vertical execution; that is, we describe 
MCVE, multiple control vertical execution. 

5 Multiple Control Threads 

In the conventional SPMD model of programming, a pro- 
grammer spawns as many threads as there are processors. 
Each thread executes the same program, but computes on 
different sections of arrays and other data structures based 
on its unique thread identifier. For example, a parallel 
computation on a one-dimensional array of size N by P 
threads would involve each thread computing on a block 
of the array indexed by (I * $..(.I + 1) * $) where I is the 
thread identifier. The model is synchronous in the sense 
that every thread must perform a barrier synchronization 
after every data parallel statement. 

305 



class SOIterate : public Iterate { 
public: 

Iterate(int I, GRAIN) { 
begin = I*GRAIN, 
end = (I+I)*GRAIN-I; 
DO-A[I] -> request(this, Write); 
DO-D[I] -> request(this, Read); 

operation0 { 
for (int I=begin; I < end; I++) 

A[I] = 2*D[I]- 1; 

private: 
int begin; 
int end; 

DataObject DO_A[0..3], DO-D[0..3]; 
. . . 
beginGeneration 

for (I=O; 14; I++) 
SMARTS::handoff(new SOIterate(I,25)); 

endGeneration{); 

Figure 6: Code to interface with SMARTS for data-parallel 
statement, A = 2*D-1. 

I 

_. . . - . . . . . 

Figure 7: Single Control Thread, Vertical Parallelism. 

Vertical parallelism can be introduced into this mo- 
del. As shown in Fig. 7, the back-end remains similar to 
the back-end for SPVE model, except that the front-end, 
which generates the graph, needs to synchronize with other 
control threads. Because the SPVE model has only a single 
thread of control, there wits no possibility of the iterates 
requesting data-objects out of order, a necessary condi- 
tion for correct generation of the graph. With multiple 
control threads, we guarantee that no iterates from sub- 
sequent data-parallel statements make reservations with 
data-objects by keeping the master threads synchronized. 
Consequently no requests from statement, N + 1 would be 
honored by the data-object prior to honoring requests from 
statements O..N. 

6 Task Parallelism 

We have focused our discussion on data-parallelism be- 
cause this is the novel aspect of our run-time system. We 
also support task parallelism by providing efficient user- 
level threads, with each thread containing a stream of data 
parallel statements. Dependencies between data-parallel 

statements from different task-parallel threads are auto- 
matically handled by the runtime system without having 
the user place explicit synchronization primitives. We be- 
lieve that while user-level threads are inappropriate for 
data-parallelism, they are both natural and efficient for 
specifying general concurrent control flow. 

7 Detection of Parallelism Using POOMA 

The POOMA (Parallel Object-Oriented Methods and Ap- 
plications) framework [19] is a C++ class library for high 
performance scientific computations. POOMA includes 
data-parallel array and particle classes that hide the details 
of parallelism from the user. Several large applications cur- 
rently use POOMA, including a multi-material hydrody- 
namics code and a particle-in-cell-based linear accelerator 
modeling code. 

The original POOMA implemented parallelism in a lock- 
step fashion, using message passing. POOMA II, a major 
redesign aimed at improving flexibility and performance, 
includes thread-based evaluation and ability to use SMARTS 
Switching to the SMARTS data-flow model was a natural 
choice for several reasons. Most of the POOMA applica- 
tions are currently run on clusters of SMPs. SMARTS per- 
mits a programming paradigm that uses shared memory to 
share data objects within a box instead of message passing. 
Furthermore, the data-flow model allows overlapping of 
communication with computation, hiding communication 
latency (which can be a significant factor for some of the 
more communication intensive applications). It is possi- 
ble to implement latency-tolerant computation with asyn- 
chronous message passing, but the SMARTS programming 
model simplifies this task tremendously. Finally, as this 
paper demonstrates, SMARTS potentially increases cache 
reuse, allowing POOMA codes to run faster in both serial 
and threaded environments. 

The details of generating SMARTS iterates that eval- 
uate the data-parallel expressions are completely hidden 
from the user. POOMA codes are written using high level 
data parallel statements. For example, 

#include “Pooma/Arrays . h” 

// Jacobi iteration 
void maincint argc,char* argvcl) 
c 

Pooma: : initialize(argc,argv); 

int n=iOO; 
Array<2> V(n,n) ,b(n,n) ; 

v = 0.0; 
b = 0.0; 
b(n/2,n/2) = -1.0; 

Interval<i> I(l,n-2) ,J(l,n-2); 

for (int iter = 0; iter < 100; ++iter) C 
V(1.J) = 0.25* ((V(I+I,J) + V(I-1,J) + 

V(I,J+l) + V(I,J-1) - b(I,J)); 
1 
Pooma: :finalizeO; 

) 

Evaluation is performed by the array’s assignment opera- 
tor. Instead of performing the operations as they appear, 
POOMA uses expression templates [27] to construct ex- 
pression objects that are passed to the assignment oper- 
ator. These objects contain references to all arrays and 
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scalars in the expression, and encode the form of the ex- 
pression in a template argument. Arbitrary transforma- 
tions can be performed on the expression at compile-time 
using template meta-programs [4]. Traditionally, expres- 
sion templates are used to transform statements like A = 
B + C into efficient loops like: 

Performance of Log&tic Map Test Problem 

8D 

for (i=O; i< n; ++i) 
ACi.1 = B[i] f C[i]; 

POOMA defers evaluation to an evaluator object, which in 
turn can generate the iterates that are passed to SMARTS. 
The dependency information is generated using the expres- 
sion template mechanism to say, “for each array on the 
right-hand side, request a read lock” and “request a write 
lock for the array being assigned to.” 

10 - 

To decompose problems in parallel, POOMA provides 
an array type that contains multiple blocks. Each block 
contains its own SMARTS data-object, so that multiple 
iterates can simultaneously act on a given array, provided 
that they act on separate blocks. In the multi-block case, 
POOMA generates at least one iterate for each block on 
the left-hand side and generates read requests for all the 
blocks that are touched on the right-hand side. 

03 
0 so0 1bbo 150) *ml 

Pmblem si9x (II x n) 

-serial - blocked + blocked+smarts 

Figure 8: Performance for a trivially parallel example: 
Applying the logistic map to arrays. SMARTS allow us 
to get uniform performance, as problems become too large 
to fit in cache. 

80 
Performanceof Stencil Test Problem 

8 Experimental Results 

This section describes our experience with SMARTS and 
POOMA on a shared-memory multiprocessor, the SGI Ori- 
gin 2000. We show sequential speedups from better reuse 
of cached data, parallel speedup due to the asynchrony of 
the macro-dataflow model, and performance analysis using 
TAU [21]. 

60 

50 
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20 

8.1 Sequential Cases 10 I 

To separate the performance benefits of temporal locality 
from parallelism, we initially restrict our experiments to 
sequential cases. First, we considered a trivially parallel 
example where we applied a logistic map for several iter- 
ations to an entire array. In POOMA, this is expressed 
as 

0 I 4 

0 500 1000 1500 2000 
Problem size (n x n) 

- serial - blocked - bktcked+smarts 

for (i = 0; i < n; ++i) I 
b = k * a * (1.0 - a); 
a = b; 

3 

Figure 9: Performance for a simple stencil operation. 
Even with more complex dependencies, SMARTS provides 
better performance for large problems. 

where a and b are POOMA arrays and k is a constant. The 
SMARTS iterate for a given block in each of the arrays 
only has dependencies on the corresponding block in the 
other array. Thus we can execute the entire loop for a 
given block before moving to the other blocks. Figure 8 
compares three cases: The case labeled “serial” was im- 
plemented using arrays that contained a single block of 
memory, and SMARTS was not used. For small prob- 
lem sizes, this case runs the fastest because there is no 
additional overhead, but once the arrays no longer fit in 
level-two cache the performance drops by more than a 
factor of two. We implemented the “blocked” case using 
arrays that contained 100 x 100 blocks of data, but again, 
we did not use SMARTS. Since each block needs control 
code for a loop, multi-block arrays introduce additional 
overhead. However, this overhead becomes less significant 
for larger problem sizes as cache effects become dominant. 
Finally, the case labeled “blocked+smarts” uses SMARTS 
to schedule the iterates for arrays with 100 x 100 blocks. 
SMARTS introduces additional overhead to generate and 
enforce dependencies, but, as in the “blocked” case, the 

benefits of cache reuse quickly overshadow this overhead 
as we increase the problem size. As shown in the figure, 
we are able to sustain almost a constant MFLOPS as we 
increase the problem size, leading eventually to a twofold 
speedup over a naive implementation. 

For the previous example, it may be possible for some 
compilers to recognize that a loop-interchange can gener- 
ate code that traverses the iteration subspace vertically. 
However, for applications with more complex data depen- 
dencies, this would not be possible. Stencil expressions 
provide such an example. The results in Fig. 9 are for a 
simple three-point stencil operation performed on a two- 
dimensional array. The POOMA code for the loop is 

for (i = 0; i < n; ++i) ( 
b(I,J) = c*(a(I+l,J) + a(I,J) + a(I-1,J)); 
a = b; 

3 

where a and b are arrays, I and 3 are POOMA index 
objects and G is a constant. Using SMARTS for large 
problems gives superior results, but because of the over- 
head that SMARTS and POOMA introduce, we do not 
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see a constant MFLOPS rate as we increase the problem 
size. 

8.2 Parallel Speedups 

To study scaling of applications using SMARTS, we com- 
pared the performance of Red/Black SOR with various 
methods on a 32 processor SGI Origin 2000. We looked at 
four methods: 

l SCHE: (Single control thread, horizontal execution). 
In our implementation of SCHE, we used affinity 
scheduling with multiple work queues. 

l SCVE: (Single control thread, vertical execution) is 
currently our fastest implementation of vertical par- 
allelism. It is a macro-da&low extension of the afhn- 
ity scheduler. 

l MCHE: (Multiple control threads, horizontal execu- 
tion) is an implementation of the SPMD model. We 
spawn as many threads as there are processors and 
each thread is bound to a particular CPU. 

l MCVE: (Multiple control threads, vertical execution) 
is an experimental implementation of vertical execu- 
tion built by extending the SPMD model. This ex- 
perimental implementation has not been fine-tuned 
for performance. 

In each of the methods above, we used a Morton or- 
der [20] to block-decompose the two-dimensional data ma- 
trix. Figure IO shows the relative performance of the 
four methods on an otherwise idle machine. Speedups 
are relative to the best sequential method. To measure 
the time taken for each run, we took an average of 10 
trials. Results were statistically significant with the 95% 
confidence interval being no greater than ~1.87 seconds 
with an average of 45.8 seconds on runs with 32 processors. 
As shown in the figure, both implementations of vertical 
executions continue to get close to linear speedup for large 
number of processors. MCHE does well for small num- 
ber of processors because of its low overhead and good 
data locality for this static application. However, as we 
increased the number of processors, the cost of barrier 
synchronizations prevented this method from scaling. We 
were able to get the best performance with the SCVE 
method with a speedup of about 28 on a 32 processor run. 

8.3 Performance Analysis 

We used the Tuning and Analysis Utilities (TAU) to an- 
alyze the performance of SMARTS. TAU uses timing in- 
strumentation that is triggered at function entry and exit. 
The instrumentation is responsible for name registration, 
maintaining the function database, the callstack [22], and 
statistics. The overhead of this instrumentation is propor- 
tional to the frequency of triggers. For a single threaded 
program running on an SGI Origin 2000, the overhead 
associated with profiling is 0.8 microseconds for each entry 
and for each exit of a profiled block of code. For multi- 
ple SMARTS threads, the overhead was 4 microseconds 
for each entry and for each exit. From the profile data 
collected, TAU’s profile analysis procedures can generate 
a wealth of performance information for the user. It can 
show the exclusive and inclusive time spent in each func- 
tion with nanosecond resolution. For templated entities, 
it shows the breakup of time spent for each instantiation. 
Other data includes how many times each function was 
called, how many profiled functions were invoked by each 
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Figure 10: Speedups for different methods for Red/Black 
SOR with problem size of 4096x4096. 

function, and what the mean inclusive time per call was. 
On systems where available, TAU can also use hardware 
performance counters. 

Figure 11’ shows the TAU tool, rucy, displaying the 
breakdown of the time spent in functions and templates 
for the Red/Black SOR example running on 32 processors 
using the SCVE scheduler. The figure shows where each 
processor spent its time. The method IterateExprl:run() 
and IterateExpr2::runO refer to the red and black phases 
of computation, respectively. The other methods are sys- 
tem overheads. According to figure, the total amount 
time spent on system overheads was only 3.49%, indicating 
that run-time graph generation does not have significant 
overhead costs. 

9 Future and Continuing Work 

We have described how the SMARTS run-time system is 
implemented in shared-memory multiprocessors. Because 
the current technology for shared-memory interconnects 
does not scale to more than about 250 processors, we 
believe that the future of high-performance computing will 
be clusters of SMPs. These, however, create a challenging 
programming environment for application developers be- 
cause neither the shared-memory model using threads nor 
the SPMD model with explicit message passing are suffi- 
cient to efficiently use the available hardware. Since the 
interface to SMARTS only involves the creation and the 
execution of graphs, an interface that is abstract enough 
to hide the details of the underlying memory model, the 
end-user need not see whether communication is within or 
across SMPs. 

Another difficulty with data-parallel applications on clus- 
ters of SMPs is that the high communication latency re- 
quires that computation overlap communication. Con- 
ventional models use lightweight threads to achieve this 
overlap. We believe that the SMARTS run-time system 
improves upon this model in two important ways. First, 
the unit of concurrency in SMARTS, the SMARTS iterate, 
is much lighter than threads because iterates do not need 

‘Other figures analyzing this example are available at 
http://vuv.acl.lanl.gov/tau/users/smarts 
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Figure 11: Profile of Red/Black SOR using SCVE scheduler displayed in RACY, a TAU profile visualization tool. 

to save and restore contexts. Consequently the cost of 
switching to another computation while waiting for com- 
munication is much cheaper. Second, the asynchrony of 
SMARTS permits a higher degree of parallelism, which 
gives the system something to do while waiting for com- 
munication. It is not sufficient to just be able to switch 
to a different thread efficiently; it is also necessary to have 
something to switch to! Figure 12 uses a one-dimensional 
stencil application to compare the amount of computation 
(shaded region) that an SMP box could be doing while 
waiting for communication using SMARTS with the max- 
imum amount of inter-communication computation using 
a conventional model. The stencil code corresponding to 
the diagram is 

for (i. = 0; i < 10; ++i) C // time steps 
a(1.J) = c*(a(I+l,J) + a(I,J> + a(I-1,J)); 

I 

In the conventional model (using horizontal execution), 
communication with the neighboring box must occur on 
every time step. In contrast, SMARTS allows us to ag- 
gressively compute some iterations from subsequent time- 
steps, restrained only by dependencies in the application. 
In the SMARTS version, each block of computation is 
initially ready to compute at the very first time step. As- 
suming that the communication from the boxes on the left 
and right side of the picture takes an infinite amount of 
time, we could still compute all but the leftmost block and 
rightmost block in the second time step. Similarly, at each 
of the subsequent time steps, we would continue computing 
the inner blocks of the array to form the pyramidal shape 
in the figure. 

10 Conclusion 

The growing inability of memory systems to keep up with 
processors makes computational overhead less of a factor 

Time Step Computation in Horizontal Execution 

Time Step Computation in Vertical Execution 

Figure 12: Maximum Inter-Communication Computation 
for Id-Stencil. 

in the total execution time. These technological trends ne- 
cessitate a re-evaluation of the models of execution: meth- 
ods and algorithms that were previously unusable because 
of their computational overhead now seem favorable and 
worth further investigation. This paper introduced a mech- 
anism for improving the locality and parallelism of sci- 
entific appiications by using vertical execution in which 
loop iterations of consecutive data-parallel statements are 
executed in an interleaved fashion. While this model does 
indeed incur more overhead, this overhead is insignificant 
compared to the relatively high cost of memory access. 
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Another important type of overhead is the amount of 
time required for the scientific programmer to parallelize 
and to optimize his application for data locality. The 
SMARTS run-time system and the POOMA framework 
shield the end-users from these details, allowing them to 
make more efficient use of their expertise. 
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