
Integrating Performance Analysis in the Uintah
Software Development Cycle

J.DavisondeSt.Germain1, Alan Morris1, StevenG. Parker1,
Allen D. Malony2, andSameerShende2

1 Schoolof Computing,
Universityof Utah�

dav,amorris,sparker � @cs.utah.edu
2 Departmentof ComputerandInformationScience,

Universityof Oregon�
malony,sameer � @cs.uoregon.edu

Abstract. Technology for empiricalperformanceevaluationof parallelprograms
is driven by the increasingcomplexity of high performance computingenviron-
mentsandprogramming methodologies.This paperdescribesthe integrationof
theTAU andXPARE toolsin theUintahcomputational framework. Performance
mappingtechniquesin TAU relatelow-level performancedatato higherlevelsof
abstraction.XPARE is usedfor specifyingregressiontestingbenchmarksthatare
evaluatedwith eachperiodicallyscheduledtestingtrial. Thisprovidesahistorical
panoramaof theevolution of applicationperformance.Thepaper concludeswith
a scalabilitystudythatshows thebenefitsof integratingperformancetechnology
in thedevelopmentof large-scaleparallelapplications.

1 Introduction

Modern scientificsimulationshave become incredibly complex. It is not uncommon
for high-performancesoftwaresystemsto havelargedevelopment teamsinvolving per-
sonnelacrossa broadrangeof expertisewhowork simultaneouslyondifferentpartsof
thesystem.In theseprogramming environments,softwaredevelopersincreasingly turn
to industrialtools for managing thecomplex softwareprocess.Tools for revision con-
trol, automatedtesting,andbug tracking arenow commonplace. Unfortunately, tools
to help achieve the highest performance possibleover a broad rangeof inputs and
hardware configurationsarenot commonly available.As a result,many softwarede-
velopment efforts leave performanceevaluation and improvementuntil the end of a
long,many-stagedevelopmentprocess.Evenif performanceis studiedearly in devel-
opment, tracking theperformanceof thesystemasnew features areaddedis oftentoo
time-consuming.While thecomplexity of thesoftwaredevelopment processmayjus-
tify theseengineeringdecisions. increasedsophisticationin high-performanceparallel
softwareandplatformsrarelyreducesperformancecomplexity asdevelopment anduse
of thesoftwareproceeds.

Certainly, onevery seriousproblemthatarisesis whendevelopersof parallelscien-
tific softwaremakedesigndecisionswithout knowledgeor understandingof theperfor-

manceramifications.Any code decision,however localized,mayhave significantim-
pacton performanceoverall. Theseperformanceinfluencescanbedifficult to observe
andsubtleto understand.If aperformanceengineering methodology is notincorporated
in thesoftwaredesignanddevelopment process,it will beextremelydifficult to achieve
the high-performancegoalsof the project over its lifetime. Moreover, if the method-
ology is not adequately supportedby flexible androbust performancetools, it will be
difficult to addressall performanceproblemsthatarise.

In thispaper, wereport onourefforts to integrateperformanceanalysiscapabilities
into onesuchcomplex scientificsoftwaresystem:the Uintah ComputationalFrame-
work. Thesecapabilitiessupport a performance engineering methodology that aug-
mentsUintah’scurrentsoftwaredesignprocess.WedescribetheUintahsystemin suffi-
cientdetailto highlight thechallenges wehavefacedin performancemeasurementand
analysis,andin tracking, maintaining, andimproving Uintah performance.The TAU
andXPARE toolswedevelopedfor Uintahperformanceengineeringarethendiscussed
in detail.We demonstratetheir benefitsto Uintahperformance analysisandimprove-
mentwith severalexamples.Finally, we outline ourplansfor future work.

2 Background and Motivation

In 1997, theCenterfor theSimulationof AccidentalFiresandExplosions(C-SAFE)[2]
wascreatedat the University of Utah to focus specificallyon providing state-of-the-
art,science-basedtoolsfor thenumerical simulationof accidental firesandexplosions,
especiallywithin the context of handling andstorageof highly flammable materials.
C-SAFEwascreatedby theDepartmentof Energy’s AcceleratedStrategic Computing
Initiative’s (ASCI) Academic Strategic AllianceProgram(ASAP) [1].

C-SAFE’sobjective is to build aproblem-solving environmentin whichfundamen-
tal chemistryandengineering physicsarecoupledfully with non-linearsolvers,opti-
mization,computationalsteering,visualizationandexperimentaldataverification.Such
a systemwould allow betterevaluation of the risks andsafetyissuesassociatedwith
firesandexplosions.However, thesoftwareneeded to model suchreal-world scientific
andengineering problems is very complex, andis furthercompoundedwhenmultiple
simulationcodesmustwork together. Likewise,achieving high performance on large-
scalecomputersystemsis a necessary, but non-trivial goal.

C-SAFE’sUintahProblem SolvingEnvironment [4] is amassively parallel,compo-
nent-based,problemsolvingenvironment (PSE)designed to simulatelarge-scalescien-
tific problems,while allowing the scientistto interactively visualize,steer, andverify
simulationresults.Uintah is derived from the SCIRun3 PSE[9–12], adding support
for a morepowerful componentmodel on distributed-memory parallelcomputers.The
UintahPSEis beingdevelopedspecificallyto studyinteractionsbetweenhydrocarbon
fires,structures,andhigh-energy materials(explosivesandpropellants),suchasthose
shown in Figure1.

In designingtheUintah softwaresystem,we focusedon threeguiding properties.
First, thecomplexities of codecreationfor parallelmachinesshould (asmuchaspos-
3 Pronounced “ski-run.” SCIRunderivesits namefrom the ScientificComputingandImaging

(SCI) Instituteat theUniversityof Utah.

Fig. 1. Visualizationof two differentsimulationsfrom C-SAFE. On the left is a simulationof
a heptanefire. On the right is a simulationof stresspropagation througha block of granular
material.Eachof thesesimulationswereperformedusingtheUintahComputationalFramework
andwereexecutedon 1000processors.

sible)behiddenfrom thescientist.Second,complex simulationcomponentsdeveloped
by thirdpartiesshould betoolsavailablefor scientiststo employ. And third, thescientist
shouldbe ableto visually monitorandsteerhis or hersimulationwhile it is running.
A softwareenvironmentthatefficiently integratesthesepropertiesinto ausablesystem
allowsscientiststo effectively createandusecomplex simulations in aninteractive,ex-
ploratory way. TheUintahPSEis sucha system.It allows scientistsandengineersto
focusonalgorithmdevelopmentanddataanalysisratherthandetailsof theunderlying
softwarearchitecture,withoutsacrificingtheability to realizethefull potentialof large
parallelcomputers.

WhileUintahisprovidesageneral framework in whichawidevariety of largescale,
massively parallelsimulationscanbe conducted,the specificproblem that hasdriven
its creationis the modeling of the interactions betweenhydrocarbon fires, structures
andhigh-energy materials(explosivesandpropellants),asshown in Figure2. In order
to producerealisticsimulationsof theseproblems,we mustutilize large-scaleparallel
computersatmaximum efficiency. For thelargestsimulations,weuseDOEASCI com-
putingresourcesconsistingof thousandsof processors.A typicalsimulationconsistsof
billions of degreesof freedomor more.

During simulationsoftware development at C-SAFE, the needfor performance
analysisbecame very apparent. In particular, performance measurementandanalysis
toolswererequired for threemaintasks:

1. Optimizationof codekernelsfor maximumserialperformance (micro tuning).
2. Analysisof parallelexecution bottlenecks (scalabilitytuning).
3. Understanding the performanceimpactsof code modificationsover the courseof

development(performancetracking).

By integratingtoolsto addressthesetasksin theUintahPSEdevelopment process,we
have createda scalablesimulationenvironmentfor C-SAFE problemswhereperfor-
manceof the overall environment is high andwill not diminish unexpectedlydueto
evolution of theUintahcode.

Figure 2: A Typical C-SAFEProblem

3 Uintah Architecture

TheUintahPSEprovidesa component-basedenvironment for developingparallelsci-
entific applications. Uintah is basedon the component architecture beingdeveloped
by theCommon ComponentArchitecture(CCA) Forum. TheCCA Forum [3] wases-
tablishedto specify a software component architecture that could addressthe needs
of high-performancecomputing. TheCCA architectureaimsto provide higherperfor-
mance,explicit support for multi-dimensionalarrays,andsupport for parallelism.Uin-
tah is a researchvehicle for implementing theseideasandfor exercisingtheir efficacy
oncomplex scientificapplications,suchastheC-SAFEsimulations.

Solving atypicalC-SAFEprobleminvolvesrunning multiplelarge-scalephysically
coupled simulations.For example, to investigate theeffectsof fire on metalstructures,
afluid-dynamics-basedcombustionmodel mightbecoupledwith aparticle-basedsolid
mechanics simulation.Thesimulationmodels mayinvolve representationsof size109

finite volume cellsand108 solid materialpoints.To handle thelargenumber of opera-
tionsnecessaryto processsuchimmensedatasets,we have designedtheUintah Com-

putational Framework (UCF). The UCF is the foundation upon which all C-SAFE
simulationcomponentsaredeveloped.

The UCF is a set of componentsand classesthat build on the Uintah compo-
nentmodel,addingcapabilities suchassemi-automatic parallelism,automaticcheck-
point/restart,load-balancingmechanisms,resourcemanagement,andscheduling. The
UCF exposesflexibility in dynamic application structureby adopting an execution
modelbasedonsoftwareor “macro” dataflow. Computationsareexpressedasdirected
acyclic graphs of tasks, eachof whichconsumessomeinputandproducessomeoutput
(input of somefuture task).Theseinputsandoutputsarespecifiedfor eachpatchin a
structuredgrid. Tasksareorganizedin aUCF datastructurecalledthetaskgraph.

In naturalagreementwith thefunctionalnatureof its puremacro-dataflow execution
model,theUCF presentsdeveloperswith anabstractionof a globalsingle-assignment
memory, with automaticdatalifetime managementandstoragereclamation. Storage
is abstractlypresentedto thescientificprogrammerasa dictionary mapping namesto
values.The valueassociatedwith a namecanbe written only once, andoncewritten
is communicatedby UCF to all tasksawaiting that value.Valuesaretypically array-
structured. Communication is scheduledby a local schedulingalgorithm thatapproxi-
matesthe trueglobally optimalcommunicationschedule. Becauseof theflexibility of
single-assignment semantics,the UCF is free to execute taskscloseto dataor move
datato minimizefuture communication.

The UCF storageabstraction is sufficiently high-level that it can be mapped ef-
ficiently onto both message-passingandshare-memorycommunicationmechanisms.
Threadssharingamemory canaccesstheirinputdatadirectly; single-assignmentdataflow
semanticseliminatetheneedfor complex locking of values.TheUCF is free to opti-
mize allocationof physical memory to minimize remotememory accesses.Threads
running in disjoint addressspacescommunicateby message-passingprotocol, andthe
UCF is freeto optimizesuchcommunicationby messageaggregation.Tasksneednot
beawareof thetransports usedto deliver their inputsand,thus,theUCF hascomplete
flexibility in controlanddataplacementto optimizecommunicationbothbetweenad-
dressspacesandwithin the sharedccNUMA memory hierarchy of the Origin 2000
(or other SMP-baseddistributedmemorysupercomputers). Solving this optimization
problem for C-SAFEsimulations is difficult andis a subjectof ongoing investigation.

An example UCF taskgraph is shown in Figure3. Ovals represent tasks,eachof
which is a simplearrayalgorithm andeasilytreatedby traditional compilerarrayopti-
mizations.Edgesrepresent namedvaluesstoredby theUCF. Solid edgeshave values
definedat eachmaterialpoint (ParticleData)anddashededgeshave values definedat
eachgrid vertex (Grid Data).Variablesdenotedwith aprime(’) havebeenupdateddur-
ing thetime step.Thefigureshows a sliceof theactualUintahMaterialPointMethod
(MPM) taskgraphconcernedwith advancing Newtonianmaterialpoint motion on a
singlepatchfor a singletimestep.

4 Performance Technology Integration

The Uintah PSEandthe UCF presentinterestingchallengesto performanceanalysis
technology andits integration. Thediversity of theUintahsoftware,including theUCF

m

σ
ω

m

m

PositionX
M Mass

Grid Data

Velocity

’

’

Constituents
σ Stress
V

Particle Data

v’
m’

x’

m

m

ω

σ

ω

Acceleration
Integrate

σ
’ v

Motion
Equations Of

Solve

a

Fv

Grid
Particles To
Interpolate Compute

x

Stress Tensor
Compute

Internal Force

v

To Particles And
Interpolate

x

Update
v’

a

v

Figure 3: An ExampleUCF TaskGraph

middleware andsimulationcodemodules,andUintah’s portability objectives requires
performanceinstrumentationandmeasurement tools thatarebothcross-languageand
cross-platform.Theperformancesystemmustalsowork at largescales,andbeableto
analyzeperformancedatacapturedfor thedifferentexecution modes(shared-memory,
messagepassing,mixed-mode)thatUintahsupports.Perhapsthemostimportantcon-
cernis beingableto relatemulti-level performancedatato thehigh-level taskabstrac-
tionsusedwithin Uintahfor simulationprogrammingandduring executionby theUCF
for taskgraph schedulingandstoragemanagement.Without thiscapability, it wouldbe
extremely difficult to pieceapartperformanceeffectsacrossUCF levelsandto identify
thesimulationcomponents responsiblefor differentperformancebehaviors.

4.1 TAU Performance System

Performancetechnology integration in the Uintah PSEis basedon the TAU perfor-
mancesystem[7]. TAU providesrobust technology for performanceinstrumentation,
measurement,andanalysisfor complex parallelsystems.It targetsa general computa-
tion model consistingof shared-memory computing nodeswherecontextsreside,each
providing avirtual addressspacesharedby multiple threadsof execution. Themodel is
general enough to apply to many high-performancescalableparallelsystemsandpro-
gramming paradigms.BecauseTAU enablesperformanceinformationto becapturedat
thenode/context/threadlevels,this informationcanbemappedto theparticular parallel
softwareandsystemexecutionplatform underconsideration.

Figure 4: TAU PerformanceSystemArchitecture

As shown in Figure4, TAU supports a flexible instrumentationmodelthatapplies
at differentstagesof programcompilation andexecution.The instrumentation targets
multiplecodepoints,providesfor mappingof low-levelexecutioneventsto higher-level
performanceabstractions,andworkswith multi-threadedandmessagepassingparallel
computationmodels. Instrumentationcodemakescalls to theTAU measurementAPI.
The TAU measurement library implements performanceprofiling andtracingsupport
for performanceeventsoccurring at function, method, basicblock, andstatementlev-
els duringexecution. Performanceexperimentscanbe composedfrom different mea-
surement modules (e.g.,hardware performance monitors) and measurementscan be
collectedwith respectto user-definedperformancegroups.TheTAU dataanalysisand
presentation utilities offer text-basedandgraphical tools to visualizetheperformance
dataaswell asbridgesto third-partysoftware,suchasVampir[8] for sophisticatedtrace
analysisandvisualization.

4.2 TAU Performance Mapping in Uintah

To evaluate the performanceof Uintah applications, we selectively instrument at the
sourcelevel and the messagepassinglibrary level. Source-level instrumentationoc-
cursat subroutine andmethodboundaries,aswell asat important codesectionsus-
ing TAU user-defined timers(with start/stopsemantics)to highlight the time spentin

Figure 5: TAU PerformanceProfilesWithout Mapping (top) andWith Mapping(bottom)

groups of statements.Messagepassinginstrumentation(usinga MPI interpositionli-
brarybasedon PMPI [6]) shows bothexecution time spentin messagecommunication
andmessagingbehavior with respectto application level routines.Figure5 shows two
profilesof theexecutiontime of different taskswithin theUCF’s parallelschedulerfor
anMPI-only run.Thedisplayswerecreatedby TAU’s parallelprofile visualizer, Racy,
whichcanshow full profile detailsacrossall threadsof execution.Here,theright views
show thedetailedperformanceprofile on “n,c,t (node,context,thread) 0,0,0” (i.e.,MPI
processwith rank0). Theleft views show performancefor all of theMPI processesin
bargraphform.

Togeneratethetoptwo views,weplacedinstrumentationin theMPISchedulerclass
andtheMPI library. Clearly, Taskexecution[MPIScheduler:execute()] (greenbar)takes
up a significantchunk of theoverall executiontime,79.91% of thetotal (exclusive) on
MPI process0. Thetime spentin MPI Waitall() andMPISchedule::gatherParticles is
alsoof significance,but theotherroutinesareof lessconsequence.Unfortunately, these
toptwo viewsgiveonly a roughbreakdown of UCFperformance.While it is important
to seeahighpercentageof timebeingspentexecuting tasks,whatthescientistwantsto
know additionally is thedistributionof theoverall taskexecution timeamong thediffer-
enttypesof tasksperformed.While moredetailedinstrumentation(usinguser-defined
events andtracing) canshow eachinstanceof taskexecution, standardinstrumentation
mechanismshavenomeansto identify tasksemantics(i.e., from whatsimulationcom-
ponent the taskswereproduced). To understandTAU’s solutionto this problem, we
needto describehow UCF operates in moredetail.

During thecomputation,many individualparticlesarebeingpartitionedacrosspro-
cessingelements(processesor threads) andworkedon by thesimulationcomponents
represented in the taskgraph. As work is performedon the particles,a task instance
is createdandscheduled.Eachtaskinstancecorrespondsto somesimulationoperation
(task),suchasinterpolating particlesto thegrid in theMaterialPointMethod,andits
execution is controlledby its taskgraph dependencies.Wecangiveeachtaskinstancea
name(e.g., SerialMPM::interpolateParticlesToGrid) thatidentifiesits domain-specific
characterin the computation (i.e., its specificsimulationtask relationship). The the
number of tasktypesis finite andis typically lessthantwenty in Uintahapplications.
In contrast,therearea large numberof taskinstancescreatedandexecutedduring the
computation.Theassociationof a tasktypewith a taskinstanceoccurs ata timediffer-
entfrom whenthetaskinstanceis finally scheduledandexecuted.

Thus, to provide the desiredperformance view, we mustmapthe performanceof
eachindividual taskinstanceto the tasktypeto which it belongs andthenaccumulate
theperformance dataat thetasklevel. UsingTAU ’s SemanticEntity, Association, and
Attributes(SEAA) modelof performancemapping [13], we form anassociationduring
initializationbetweena timer for eachtask(thetasksemanticentity)andthetaskname
(its semanticattribute).Then,while processingeachtaskinstancein the scheduler, a
methodto querythe taskname(storedwithin the taskinstanceobject)is invokedand
theaddressof the taskname(a staticcharacterstring) is returned. Using this address,
wedoanexternalmaplookup(implementedasahash-table) andretrievetheaddressof
thetimer object(i.e.,a runtime semanticassociation). Oncethe timer is known, it can
bestartedandstoppedaround thecodesegment thatexecutesthetaskinstance.

Thebottomtwoviewsin Figure5show theresultsof thistaskmappingperformance
analysisin Uintah.Clearly, thereis a significantbenefitof theSEAA approachin pre-
sentingperformancedatawith respectto high-level semanticsof theUintahapplication.
Theperformanceof all five simulationmodelcomponents(i.e., tasks)arenow clearly
distinguished in the profile. With the generation of event traces,the benefits areeven
moredramatic asthis taskmapping allows distinctphasesof computationto behigh-
lightedbasedon tasksemantics.This canbeseenin thetracevisualizationin Figure7.
Although we arelooking at individual taskinstancesbeingexecuted,the color-coded
mapping allows usto view theirperformance dataat ahigherlevel.

4.3 Performance Experiment Reporting and Alerting

With the integrationof performancemeasurementsupport in theUintahsoftwaresys-
tem comesthe ability to analyzeperformancethroughout Uintah’s development life-
time. Typically, performanceanalysisis done adhoc,at theconvenienceof thedevel-
oper, andonly whentime permits.Whensuchperformancepracticeis appliedacross
a large, multi-personeffort such as C-SAFE, the resulting“performanceportfolio”
becomesscatteredandtendsto report performanceinformationonly after significant
stagesof developmenthavebeenaccomplishedandsoftwarecommitted.Thedownside
of sucha performance methodology is a disengagement of performance knowledge
from key softwaredesigndecisions.The goal of our work is to more tightly couple
thereporting of performanceexperimentationresultswith timely softwaretestingand

alertingto performanceproblems.We have createdtheXPARE (eXPerimentAlerting
andREporting) systemfor this purpose.

TheUintahsoftwaresystemwasengineeredwith aregressiontestingharnessto reg-
ularly evaluatecorrectness.At thesetimes,minimalperformancebenchmarkingwould
be conductedto determine if total execution time was seriouslydegraded. If so, the
testerwould notify softwaredevelopers,but left it up to themto manually run specific
instrumentedteststo investigatewheretheperformanceproblemslay. TheXPARE sys-
temaugmentstheregressiontesterto conductarangeof performanceexperimentswith
fully-instrumentedcodemodules.Multiple experimentscanbeconductedwith different
instrumentationlayoutsto exercisedifferent coderegionsandbehaviors.TheTAU per-
formancetools areusedfor measurement andanalysis, allowing execution time and
hardware statisticsto beusedto constructa complete performanceportrait.

Oncethe performance experimentshave beenconducted,XPARE will automati-
cally interrogatetheperformancedatato determine notonly if theoverall codehasrun
for longerthanexpected, but alsowhichtasksandprofiled proceduresarepotentialsus-
pects.XPARE accomplishesthis by applying alerting“rulesets”(performance differ-
encethresholds) to ahistorical,multipleexperimentperformancedatabase.Experiment
setscanbeselectedby theuserfrom thedatabasefor evaluation. For eachexperiment
set,specificperformancedatacanbechosenfor analysis.Performanceregressiontest-
ing is thendoneby comparing thecurrentperformancewith thatin theexperimentset,
usingthealertingrulesetsconstructedby theuserto determineperformanceviolations
worthyof report.

TheXPARE systemarchitectureis shown in Figure6,with imagesof theweb-based
interfacesfor experimentselection,performancedataselection,andrulesetdefinition.
As alsoshown, resultsof regressionanalysisareautomaticallyreportedto thesoftware
developers,whocanexplore theperformancedatamore fully through theperformance
reporter, whetheror notsignificantperformanceshiftshavebeendetected.Becausethe
performancedatabasecontains prior performance history, a panoramicview of perfor-
mancechangecanbescrutinizedbasednot only on codealteration,but alsoplatform,
choiceof compiler, differentoptimizations,andotherperformance factors.

By scheduling regularperformanceregressiontests,performanceknowledgecanbe
closelylinkedwith theUintahsoftwaredevelopment cycle.Currently, we useXPARE
to run weeklyperformancetestsof small to medium-scaleexperiments,andmonthly
evaluationsof full-scaleexperiments.Thegeneral constructionof XPARE will allow it
to easilyextend to changesin theUintahcodebaseandto incorporatenew simulation
componentsasthey becomeavailable.

5 Performance Studies

Contemporaryefforts in gathering performancedatahavefocusedon functionby func-
tion analysis. C-SAFE hastaken the somewhat novel approachof gathering perfor-
mancestaticsonanalgorithmic basis.This approachprovidesfour majorbenefits.

1. Dueto theuseof thetaskabstractionin theUCF, it is straightforwardto manually
inserttheprofiling codeat onelocationin thecodeto capturedataon theperfor-
manceof all tasks.

Performance
Reporter

Alerting
Setup

Comparison
Tool

Regression
Analyzer

Web
Server

Experiment
Launch

Mail
Server

Performance
Database

Figure 6: XPARESystemArchitecture andTools

2. Theperformancecharacteristicsof eachof thealgorithmic tasksis clearlydisplayed
in relationto theothersimulationtasks.

3. Scientificprogrammersareallowedto focusonmaking performanceimprovements
at analgorithmic level.

4. UintahComputational Framework developerscaneasilyfind performancebottle-
necksthatarenot directly associatedwith application codes(e.g.;MPI communi-
cations,taskschedulingoverhead,anddataI/O).

Thefirst stepin optimizing Uintahsoftwarewasto manually instrument thecode
basewith hooks to theTAU system.Theevent-tracesgeneratedwereconvertedto the
Vampirtracedataformat andvisualizedusingVampir. Figure7 depicts oneof thefirst
visualizations of an early versionof the Uintah coderunning an MPM simulationon
32 processors.The figure shows six time stepswith the black lines betweenthe time
stepsdepictingthe large MPI communications necessaryto transmitboundary data.
Listedontheright handsideof thewindow areeachof thespecifictasks,delineatedby
major softwarecomponent(e.g.;SerialMPM,MPMICE, DataArchiver, Contact,etc.)
followedby specifictaskname(e.g.;computeStressTensor, relocateParticles,etc.)Each
taskcanbe color codedto easilyview its locationin the time line. On the left hand

Figure 7: MPM SimulationPerformance(TAU /Vampir)

sidearerows displayingtime lines for eachprocess,running in parallelon individual
processorsin thissimulationrun.

Whenfirst viewed, this diagram provided a number of “Aha!” insightsabout the
general behavior of thesimulation. Theseinsightsincluded understanding:

1. theloadimbalanceswe wereexperiencingwith a rudimentaryloadbalancer;
2. thatthecomputeStressTensortaskconstituteda largeportion of theexecution time;

and
3. that therewas a significantamount of MPI overheaddistributed throughout the

computation.

Figure 8 is a zoomed-inview of a singletime stepin the MPM Simulation.This
view providedinsight into theparallelizationof eachof thetasksin a singletime step.
It alsoprovideduswith a visual feedback for how theprocessorswherelining up and
how muchwork eachwasdoing.

Similarly, Figure9 depictsfive time stepsof the “Arches” fire simulationwithin
theUCF. This figureportrays explicitly how muchtime is beingspentin the“pressure
solving” portion of the simulation.(The pressuresolve calculation utilizes a PETSc
linearsolver.) Figure10 is a closeup view of thePressureSolver taskwithin the time
stepandrevealsthat a major portion of the solver’s time is spentin MPI calls. This

Figure 8: MPM Simulation(SingleTimeStep)

visualizationhasled to focusing performanceenhancementresourceson determining
thebestway to usePETScsolvers(including exploring differentpre-conditioners).

Oncecandidatetasksareidentifiedaspotential performance bottlenecks, thetasks
areinspectedfrom bothanalgorithmic view andfrom animplementationview. At this
point,it is sometimes necessaryto performadditional functional instrumentationof the
code.Weusedthismethod of performanceanalysisfrom late2000 throughthefirst half
of 2001to investigate performanceproblems in the Uintah software.This leadto the
parallelscalingimprovements seenin Figure 11. Successive lines on the graphshow
theperformanceimprovementsafterfinding andfixing performancebottlenecks.

After directingour efforts at improving the Unitah scalabilityup to 2000proces-
sors,our focuschangedto otheraspectsof codedevelopment. It wasat this point that
we recognizedtheneedfor theXPARE system.Onceimplemented, it hasallowedus
to monitor the performanceof individual simulationpiecesin addition to the overall
performance.XPARE hasbeendevelopedwith thegoalof keepingtheUintahsystem
efficientasweexpand thesystemandaddnew features.

6 Lessons Learned and Future Work

The integration of performance measurementin the UCF schedulingcomponenthas
beenextremely useful in exposing bottlenecks and inefficiencies. While the perfor-
manceanalysis thusfar hasmainly beendonepost-mortem,Uintah applicationswill
be increasingly adaptive in thefuture andwill require UCF to implement dynamically
adjustingscheduling policies.We planto develop onlineperformancequery andfeed-
backcapabilitiesin TAU thatwill support adaptive Uintahexecution. Also, to enhance
online performance analysis,we aredeveloping a runtime infrastructure to visualize
dynamic, large-scaleperformancedatausingtheSCIRunvisualizationenvironment.

We will alsocontinue to build on the successof performancemapping in Uintah
to attribute execution costsfrom the simulationcomponent parts.We have recently
encounteredtheneedfor moreflexible performancemapping specificationthatallows

Figure 9: ArchesTaskPerformance

Figure 10: ArchesTaskZoomedIn

multiplemappingsattributions(e.g., for mapping execution costsfromcomponentparts
to higher-level tasksandpatches)to beactivesimultaneously. Thecurrent rudimentary
meansto support thesemappingswill beimplementedin more robustforms in thenear
future.Not only is theUCFatarget for performanceintegration,but theindividualsim-
ulationcomponentscanbenefit from performanceanalysis.Wewill begin to workmore
closelywith thedevelopersof C-SAFEsimulationcomponentsoftwareto integrateper-
formancemeasurement,analysis,andregressiontestingin their codes.

With thecompletion of a mixed-mode UCF implementationwill cometheneedfor
performanceanalysisof integratedmulti-threadedandmessage-basedexecution.While
preliminary testshave demonstratedTAU ’s ability to observe threadandcommunica-
tion events in mixed-modeUintahexecution, it will beimportant to develop techniques
for cross-modesharingof instrumentationinformationsothat integrative performance
mapping andanalysisis possible.

1� 10 100� 1000 10000�
of processors

0

1

10

100

1000

T
im

e
(s

ec
on

ds
)

�

Scalability�
Material Point Method�

Linear
March 2000
April 2000

�
May 2000
October 2000
April 2001

�

Figure 11: Parallel PerformanceEvolution

We will greatlyenhancetheexisting prototypeXPARE systemto play an increas-
ingly importantrolein Uintahsoftwareperformanceengineering in thefuture.In partic-
ular, we will concentrateon XPARE’s performancedatabasewhich is currently imple-
mentedin anadhocmanner. TheTAU projectis buildingaperformancedatabaseframe-
work (PerfDBF)thatwill beemployedby XPARE for moreflexible cross-experiment
dataqueryandanalyses.PerfDBFwill allow for the setof analysisoperations to be
easilyextendedby UCF andsimulationcomponentdevelopers.XPARE’s alertingand
reporting toolscanthenincorporatetheseexpandedanalysisoptions to construct more
sophisticatethresholdfunctionsandperformancedataprocessingfor generatingperfor-
mancereports.

7 Acknowledgments

This work wassupportedby theDOE ASCI ASAP Program. Thework at Oregon was
supported by a contract from the DOE 2000 program (AgreementNo. DEFC 0398
ER 259 986) anda sub-contract from the University of Utah’s DOE C-SAFE ASCI
center(AgreementNo.B341493).C-SAFEvisualizationimageswereprovidedbyKurt
ZimmermanandWing Yee.Datasetswerecreatedby ScottBardenhagen,Jim Guilkey,
andRajeshRawat. TheDOE ASCI ASAP programalsoprovidedcomputing time for
thesimulationsshown.

References

1. AcademicStrategic AlliancesProgram.http://www.llnl.gov/asci-alliances.
2. Centerfor theSimulationof AccidentalFiresandExplosions.http://www.csafe.utah.edu.
3. CommonComponent ArchitectureForum.http://www.cca-forum.org.
4. DavisondeSt.Germain,J.,McCorquodale,J.,Parker, S.G.,Johnson,C.R.:Uintah:A Mas-

sively ParallelProblemSolvingEnvironment. HPDC’00:Ninth IEEE InternationalSympo-
siumon High PerformanceandDistributedComputing(2000)

5. Lindlan,K.A., Cuny, J.,Malony, A.D., Shende,S.,Mohr, B.,Rivenburgh,R.,Rasmussen, C.:
Tool Framework for StaticandDynamicAnalysisof Object-OrientedSoftwarewith Tem-
plates.ProceedingsSC’2000,(2000)

6. MessagePassingInterfaceForum:MPI: A MessagePassingInterfaceStandard.International
Journalof SupercomputerApplications(SpecialIssueon MPI) 8(3/4)(1994)

7. Malony, A., Shende,S.:PerformanceTechnology for Complex ParallelandDistributedSys-
tems.In: Kotsis,G., Kacsuk,P. (eds.):Distributedand Parallel SystemsFrom Instruction
Parallelismto ClusterComputing. Proc.3rd Workshopon DistributedandParallelSystems,
DAPSYS2000, Kluwer (2000)37–46

8. Pallas GmbH: VAMPIR: Visualization and Analysis of MPI Resources.
http://www.pallas.de/pages/vampir.htm.

9. Parker, S.G.,Beazley, D.M., Johnson, C.R.: Computational steeringsoftwaresystemsand
strategies. IEEEComputational ScienceandEngineering,4(4) (1997) 50–59

10. Parker. S.G., TheSCIRunProblemSolvingEnvironmentand Computational SteeringSoft-
ware System. PhDthesis,Universityof Utah(1999)

11. Parker, S.G.,Johnson, C.R.: SCIRun:A scientificprogrammingenvironment for computa-
tional steering.Proc.Supercomputing ‘95. IEEEPress(1995)

12. Parker, S.G.,Weinstein,D.M., JohnsonC.R.: TheSCIRuncomputational steeringsoftware
system. In: Arge,E., Bruaset,A.M., Langtangen, H.P., (eds.):ModernSoftwareTools in
ScientificComputing,BirkhauserPress(1997)1–44

13. Shende,S.:TheRoleof InstrumentationandMapping in PerformanceMeasurement.Ph.D.
Dissertation,Universityof Oregon(2001)

14. Shende,S., Malony, A., Ansell-Bell, R.: Instrumentationand Measurement Strategies for
Flexible andPortableEmpiricalPerformanceEvaluation.Proc.InternationalConferenceon
Parallel andDistributedProcessingTechniquesandApplications,PDPTA ’2001, CSREA,
(2001)1150–1156

15. Shende,S.,Malony, A., Cuny, J.,Lindlan,K., Beckman, P., Karmesin,S.:PortableProfiling
andTracingfor ParallelScientificApplicationsusingC++.Proc.SIGMETRICSSymposium
on ParallelandDistributedTools,SPDT’98, ACM, (1998)134–145

