Profiling and Tracing in Linux

Sameer Shende
Department of Computer and Information Science
University of Oegon, Eugne OR, USA
sameer@cs.uegon.edu

Abstract
Profiling and tracing tools can help nea&pplication parallelization morefettive and identify performance bottle-
necks. Profiling presents summary statistics of performance metrics while tracing highlights the temporal aspect of
performance ariations, shaing when and where in the code performance is setlieA compl& challenge is the
mapping of performance datatbered during>ecution to high-ieel parallel language constructs in the application
source code. Presenting performance data in a meanirafitbvwhe user is equally important. This paper presents a
brief overview of profiling and tracing tools in the cortef Linux - the operating system most commonly used to
build clusters of wrkstations for high performance computing.

1. Intr oduction cutes and are stored in profile data files when the pro-
gram terminates. Profiles are subsequently analyzed to

Understanding the bewar of parallel programs is a present the user with aggete summaries of the met-

daunting task. Wo actvities that aid the user in under-
standing the performance characteristics of his/her pro-
gram are profiling and tracingoTinderstand the
behaior of the parallel program, we must first redats
behaior obserable. D do this, we rgard the gecution

of a program as a sequence of actions, each representi

some significant aatity such as the entry into a routine, and user definedzents tale place. Thus, it helps in

t_he e<ecut|on_of aline of c_odg, amessage communica- understanding the bebiar of the parallel program.
tion or a barrier synchronization. These actions become

obsenable when thg are recorded awvents. Thus, an

event is an encoded instance of an action [10]. It is the

fundamental unit we use in understanding the Wieha

of a program.

More specifically thexecution of aneent interrupts

the program and initiates one of the fallng

responses:

» the computation is stopped

» visible attriutes of the eent are recorded, or

» statistics are collected

After an eent response is completed, control returns to Common to both profiling and tracing is the instrumen-

the program. The response to &erg depends on its tation phase where instructions are added to the program

use: debgging; tracing; or profiling. to generate performance data. Instrumentation helps in
identifying the section of code that iseguting when an

Profiling updates summary statistics géeution when event is triggered. It is also responsible, durirgagi-

an e/ent occurs. It uses the occurrence of\aneto tion, for measuring the resources consumed and map-

keep track of statistics of performance metrics. These ping these resources to program entities, such as

statistics are maintained at runtime as the process e routines and statements. Relating the codensats

Tracing, on the other hand, records a detailed log of
timestamped\ents and their attriies. It reeals the
temporal aspect of theecution. This allas the user to
e when and where routine transitions, communication

Performance analysis based on profiling and tracing

involves three phases:

* instrumentation or modification of the program to
generate performance data,

¢ measurement of interesting aspectsxafcation
which generates the performance data and

« analysis of the performance data.

2. Instrumentation

back to source-code constructs and entities that the user

can comprehend is important.

As shavn in Figure 1., instrumentation can be added to
the program at anstage during the compilatiom&cu-
tion process from usexdded calls in the source code to
a completely automated approach.€Bgts are triggered
by the &ecution of the instrumentation instructions at
runtime.) Masing down the stages from source code
instrumentation to runtime instrumentation, the instru-
mentation mechanism changes from language specific
to platform specific. Making an instrumentation API
specific to a language for source code instrumentation
may male the instrumentation portable across multiple
compilers and platforms that support the language.
However, the instrumentation may noovk with other
languages. digeting the instrumentation at theeeut-
able level ensures that applications written iry dan-
guage that generates ateeutable wuld benefit from

the instrumentation on the specific platformwteer, it

is more dificult to map performance data back to
source-code entities, especially if the applicaidngh-
level programming language (such as HPF or ZPL), is
translated to an intermediate language (sucloesan

or C) during compilation. There is often a tradé-of
between what leel of abstraction the tool can pide

and hov easily the instrumentation can be added.

The JEWEL [19] package requires that calls be added
manually to the source code. While yirhng flexibility,
the process can be cumbersome and time consuming.
preprocessor can generate instrumented source code
automatically inserting annotations into the original
source. This approach is takby SvRblo [14] and

AIMS [20] for C and rtran, and by AU [15] with

PDT for C++ [18]. Instrumentation can be added by a
compiler as in gprof [5] (with the -pg commandline
switch for the GNU compilers). Instrumentation can
also be added during linking when theeeutable image
is created by linking multiple object files and libraries
together Packages that use this method inclu@enyir-
Trace [13], and PICL [12] for MPI and PVM message
passing libraries. When an inf@rocess communication

_ _TAU,

Source code jgyel

Languag
specific

D

_TAU/PDT,
AIMS,
SvPRablo

Source code

_gprof

Object code
o — _VampirTrace
Libraries PICL
_ | _Atom,
Executable Pixie
_Paradyne

i

Platform
specific

Figure 1:Instrumentation options range from lan-
guage specific to platform specific mechanisms.

All these approaches require the programer to modify
the application, re-compile and rgegute the instru-
ented application to produce the performance data.

tg’ometimes, rex@cution of an application using the per-

formance analysis tool is not a viable altenatihile
searching for performance bottlenecks. This is true for
long-running tasks such as databaseessnRradyne

[9] automates the search for bottlenecks in an applica-
tion at runtime by seleestely inserting and deleting
instrumentation using the DynInst [7] dynamic instru-
mentation package.

After instrumentation, wexecute the program and per-
form measurements, in the form of profiling and tracing
and analyze the data.

call is executed, the instrumented library acts as a wrap-

per that calls the profiling and tracing routines before
and after calling the corresponding uninstrumented
library call. This is achied by weak library bindings.
However, often program sources and libraries are
unavailable to the users and it is necessarytene
the performance ofxecutable images. Pixie [16] and
Atom [17] are tools that verite binary eiecutable files
while adding the instrumentationtare not currently
available under Linux.

3. Profiling

Profiling shavs the summary statistics of performance
metrics that characterize the performance of an applica-
tion. Examples of metrics include: the CPU time associ-
ated with a routine; the count of the secondary data
cache misses associated with a group of statements; the
number of times a routinxecutes; etc. These metrics

are typically presented as sorted lists thatstie con-
tribution of the routines.Wo main approaches to profil-

ing include sampled process timing and measured = eionoui o
. . File Order Help |
process timing. T

5.4 0.0336 370
= Fleldiayout::setup(void (NDindex<2Us>, &_dim_tag, Int) profile. =0

In profiling based on sampling, a haehe interal
timer periodically interrupts thexecution. Instead of e e
time, these interrupts could be triggered by CPU perfor- | &= e Loos_tie | 5.5335‘5%5;5:%
mance counters, that measuverds in hardare, as : rerene b

well. Commonly emplged tools such as prof [4] and
gprof [5] use time based sampling. When an interrupt
occurs, the state of the program counter (PC) is sampled
and a histogram that represents the frequelistribu-
tion of PC samples is maintained. The progsamage
file and symbol table are used post-mortem to calculate
the time spent in each routine as the number of samples Figyre 2: TAU’s profile bravser tool rag
in a routine$ code range times the sampling period.
Instead of the PC, the callstack of routines can be sam-<ounters that record counts of processor speciénte
pled too. In this case, a table that maintains the time such as memory references, cache misses, floating point
spent &clusively and inclusiely (of called child rou- operations andus actity. The Intel PentiumPro(R)
tines) for each routine, is updated, when an interrupt and Pentium II(R) CPUs ka two performance counters
occurs. Then, thexelusive time of the currentlyxecut- available as 32-bit gisters that can count at most 66
ing routine and the incluge time of the other routines different @ents (tvo at a time). @ols such as pperf [6]
that are on the callstack are incremented by the-inter and PCL [1] preide access to thesegisters under the
interrupt time interal. Additionally, in gprof, each time Linux operating system. PCL prides a uniform API,
a parent calls a child function, a counter for that parentin the form of a libraryto access the har@ne perfor-
child pair is incremented. Gprof then si®the sorted mance counters on a number of platforms. Under Linux,
list of functions and their call-graph descendents.\Belo the counters are not\&al on each contéswitch opera-
each function entry are its call-graph descendents, tion and PCL recommends performing measurements
shaving how their times are propaged to it. on a lightly loaded system. PerfAPI [2] is another

project that will preide a uniform API for accessing
In profiling based on measured process timing, the hardware performance counters onféeient platforms,
instrumentation is triggered at routine entry axitl ét including Linux.
these points, a precise timestamp is recorded and perfor-
mance metrics comprising of timers and counters are Profiling can present the total resources consumed by
updated. AU [15] uses this approachAU’s modular program lgel entities. It can shothe relatve contritu-
profiling and tracing toolkit features support for hard- tion of the routines to the profile of the application and
ware performance counters, seleely profiling groups can preide insight in locating performance hotspots.
of functions and statements, usiefined gents and
threads. It wrks with C++, C and értran on a ariety 4. Tracing
of platforms including Linux. Its modules can be assem-_ . . o .
bled by the user during the configuration phase and a 'I_'yplcally, profllmg shevs the distrilation of e<et_:ut|on
profiling or tracing library can be tailonade to the time across routines. It can shthe code locations

users specification. Profiles can be analyzed using rac associated with specific bottleneclet i do_es_ not
a GUI, as shan in Figure 2. or pprof, a prof-kkutility shav the temporal aspect of performanegiations.

that can sort and display tables of metrics it term. The ad\ant_age of pr_of|I|ng IS that S.tat'St'CS can be main-
tained during ¥ecution and it requires a small amount

of storage. Tacing the recution of a parallel program
3.1Hardware Rerformance Counters shavs when anwent occurred and where it occurred, in
A profiling system needs access to an accurate and a terms of the location in the source code and the process
high-resolution clock. The Intel Pentium(Rinfily of that executed it. An eent is typically represented by an
processors contains a free-running 64-bit time-stamp ordered tuple that consists of theet identifier the

counter which increments onceeey clock gcle. This timestamp when thevent occurred, where it occurred

is accessible as Model Specificgiaters lilt into the (the location may be specified by the node and thread
processor to profile harduwe performance. Thesegi®- dentifiers) and an optional field ofent specific infor-

ters can also be used to monitor haadwperformance mation. In addition to thevent-trace, a table that maps

[TEn s EEEE

File Global Displays

Process Displays

Preferences Extras

abe.pv: done

abe.pv:

15.41s 15.42s

4TS MM idmain{) int {(int, char **)
i i
Process
Process 26
i i
36

Process

Process 4CabIteraﬁe<Scheduler>::run(ﬁ

Global Timeline

AbcIterate<Scheduler>:

AbcIterate<Scheduler>:

15.43s

; ETAU_DEFAULT
TAU_USER3
BETAU_USER?2

:runf{)

6

:runt}

x— TAU_DEFAULT

TAU_USER2

; TAU_USER3
100%/100%

YT

: Global Activity Chart (0.0s-19. 8975)

B IpLE .

B TAU_DEFAULT
B TAU_USER2
TAU_USER3

TAU_UTILITY

100% 100% 100% 100%

Figure 3: Vampir displays AU traces from a multi-threaded SMAR application written in C++

the event identifier to anvent name and its characteris-
tics is also maintained.racing irvolves storing data
associated with arvent in a lffer and periodically
writing the luffer to stable storage. Thisvilves &ent
logging, timestamping, traceiffer allocation and trace
output. The traces can be med subsequently and cor-
rected for perturbation [10] that mayJesbeen caused
due to the wverhead introduced by the instrumentation.
Finally, visualization and analysis ofent-traces helps
the user understand the beioa of the parallel program.

4.1 Clock Synchronization
Tracing a program thakecutes on a cluster oforksta-

but tracing does.

5. Performance Analysis and Vsualization

Parallel programs producest quantities of multi-
dimensional data. Representing this data witheat-o
whelming the user with unnecessary detail is critical to
the tools’ success. It can be representittfely using
a\variety of visualization techniques [14] such as scatter
plots, Kiviat diagrams, histograms, Gantt charts, interac-
tion matrices, pie chartsxecution graphs and tree dis-
plays. RraGraph [3]s a trace visualization tool that
incorporates the ale techniques and has inspired per-
formance vievs in s&eral other tools. It iswvailable

tions requires access to an accurate and a globally synynder Linux and wrks with PICL traces. It contains a

chronized real-time clock to order theeats accurately
with respect to a global time base. Clock synchroniza-
tion can be implemented in hardee, as in shared mem-
ory multiprocessors. It can also be agkikby using
software protocols such as the Netk Time Protocol
[11] which synchronizes the clocks to a within & fe
milliseconds on a LAN or a AN, or it can be imple-
mented within the tool efronment as in BRISK [19].
For greater accurgca GPS satellite reasir may be
used to synchronize the system clock accurately to

rich set of visualizations and igtensible by the user
Vampir [13] is a robst, commercial trace visualization
tool available under Linux. Figure 3. is aWpir display

of traces generated byAT. It shavs a space-time dia-
gram that highlights whervents such as routine transi-
tions tale place on dferent processorsablo [14]
provides a user directed-analysis of performance data
visualization by preiding a set of performance data
transformation modules that are interconnected graphi-
cally to create an gclic data analysis graph. Perfor-

within a fav microseconds as described in [8] Proflllng mance data fles through this graph and metrics can be
does not require a globally synchronized real-time clock

computed by dferent usedefined modules.

6. Conclusion

This paper presented a briefeoview of some profiling
and tracing tools that areailable under Linux, and the
techniques that tlyause for instrumentation, measure-
ment and visualization. Linux is increasingly used by
the scientific community for parallel simulations on
clusters of personal computersitigroning comple-

ity of component based, high performance scientific
framaworks [18] , tools often encounter a “semantic-
gap”. They present performance information that is too
low level and does not relate well with source code con
structs in the high-leel parallel languages used to pro-
gram these clusters. Unless tools can present
performance data inays that are meaningful to the
user and are consistent with the usariental model of
abstractions, their success will be limited.

7. Acknowledgments

This work was supported by the U.S. Gnment,
Department of Engy DOE2000 program
#DEFCO0398ER259986.

References

[1]R. Berrendorf, H. Zigler, “PCL - The Performance
Counter LibraryA Common Interdice to Access Hard-
ware Performance Counters on MicroprocessoresthT
nical Report, FZJ-ZAM-IB-9816, Central Institute for
Applied Mathematics, Research Centre Juelich GmbH,
Oct 1998. URLhttp://www.fz-juelich.de/zam/PT/
ReDec/Softdols/PCL/PCL.html

[2]S. Browne, G. Ho, PMucci, C. Kerr, “Standard API
for Accessing Hardare Performance Counters{ster
SIGMETRICS Symposium oar&llel and Distrituted
Tools 1998. URLhttp://icl.cs.utk.edu/projects/papi/
[3]M. Heath, J. Ethridge, “igualizing the performance
of parallel program$]EEE Software, \6l. 8, No. 5,
1991. URLhttp://www.ncsa.uiuc.edu/Apps/MCSHFRa-

Graph/RraGraph.htmls
[4]S. Graham, RlesslerM. McKusick, ‘An Execution

Profiler for Modular ProgramsSoftwae - Practice and
Experience\Vol. 13, pp. 671-685, 1983.

[5]S. Graham, FKessler M. McKusick, “gprof: A Call
Graph Excution Profiler” Proceedings of SIGPLAN
‘82 Symposium on Compiler Construction, SIGPLA
Notices Vol. 17, No. 6, pp. 120-126, June 1982.
[6]M. Goda, “Performance Monitoring for the Pentium
and Pentium Pro Under the Linux Operating Sys-
tem”,1999.URLhttp://gso.lanl.ge/~mpg/perfmon.html
[713. Hollingsworth, B. Buck, “DyninstAPI Program-
mer’s Guide”, 1998. URlhttp://www.cs.umd.edu/

N

projects/dyninstAPI/

[8]J. Hollingsvorth, B. Miller, “Instrumentation and
Measurement”, in The Grid: Blueprint for aM&€om-
puting Infrastructure I. &ster and C. Ksselman (Eds.),
Morgan Kaufmann Publishers, San Francisco, pp.339-
365, 1999

[9]1B. Miller, M. Callaghan, J. Cgille, J. Holling-
sworth, R. Irvin, K. Karaanic, K. Kunchithapadam and
T. Newhall. [IEEE Compute28(11), pp.37-46 (Nem-
ber 1995).URLhttp://www.cs.wisc.edu/~paradyn
[10]A. D. Malory, “Performance Obseability”, Ph.D.
Thesis, Untersity of Illinois, Urbana, Alsoailable as
CSRD Report No. 1034, Sept. 1990.

J11]Network Time Protocol, 1999. URhitp:/
www.eecis.udel.edu/~ntp/

[12]0ak Ridge National LaboratagryPortable Instru-
mented Communication Library”,1999. URittp://
www.epm.ornl.ge/picl

[13]Pallas GmbH, “\ampir - Msualization and Analysis
of MPI Resources”, 1999. URlhttp://wwwpallas.de/
vampithtml

[14]D. Reed and R. RibletPerformance Analysis and
Visualization”, inThe Grid: Blueprint for a N& Com-
puting Infrastructue I. Foster and C. Ksselman (Eds.),
Morgan Kaufmann Publishers, San Francisco, pp.367-
393, 1999.URLhttp://www-pablo.cs.uiuc.edu/

[15]S. Shende, A. D. MalgnJ. Cury, K. Lindlan, P
Beckman, and S. Karmesin, “Portable Profiling and
Tracing for Rrallel Scientific Applications using C++”,
Proceedings of the SIGMETRICS SymposiumeaoalP
lel and Distrituted Dols pp. 134-145, &M, Aug.
1998. URLhttp://wwwacl.lanl.ge/tau

[16]Silicon Graphics Inc. Speedshop UsedBuide,
1999.URLhttp://techpubs.sgi.com

[17]A. Srivastaa, A. Eustace Atom: A system for
building customized program analysis tobls, SIG-
PLAN Conf. on Programming Language Design and
Implementation, pp. 196-2050M, 1994.URLhttp://
www.research.digital.com/wrl/projects/om/om.html
[18]The Staf, Advanced Computing Laboratoryos
Alamos National LaboratoryTaming Complgity in
High-Performance Computing” White papaug 1998.
Available from URLhttp://www.acl.lanl.ga/software
[19]A. Waheed, D. Reer, M. Mutka, H. Smith, and A.
Bakic, “Modeling, Ealuation and Adapte Control of
an Instrumentation SystenProceedings of IEEE Real-
Time Bdnolagy and Applications Symposium &
‘97), pp. 100-110, June 1997.URittp:/
www.egr.msu.edu/Pgrt/

[20]J. Yan, “Performance tning with AIMS - An auto-
mated Instrumentation and Monitoring System for Mul-
ticomputers”,Proc. 27th Hawaii Intl. Confon System
SciencesHawaii, Jan. 1994 .URlkttp://sci-
ence.nas.nasa.gGroups/Dols/Projects/AIMS/

