
1. Intr oduction

Understanding the behavior of parallel programs is a
daunting task. Two activities that aid the user in under-
standing the performance characteristics of his/her pro-
gram are profiling and tracing. To understand the
behavior of the parallel program, we must first make its
behavior observable. To do this, we regard the execution
of a program as a sequence of actions, each representing
some significant activity such as the entry into a routine,
the execution of a line of code, a message communica-
tion or a barrier synchronization. These actions become
observable when they are recorded as events. Thus, an
event is an encoded instance of an action [10]. It is the
fundamental unit we use in understanding the behavior
of a program.
More specifically the execution of an event interrupts
the program and initiates one of the following
responses:
• the computation is stopped
• visible attributes of the event are recorded, or
• statistics are collected.
After an event response is completed, control returns to
the program. The response to an event depends on its
use: debugging; tracing; or profiling.

Profiling updates summary statistics of execution when
an event occurs. It uses the occurrence of an event to
keep track of statistics of performance metrics. These
statistics are maintained at runtime as the process exe-

cutes and are stored in profile data files when the pro-
gram terminates. Profiles are subsequently analyzed to
present the user with aggregate summaries of the met-
rics.

Tracing, on the other hand, records a detailed log of
timestamped events and their attributes. It reveals the
temporal aspect of the execution. This allows the user to
see when and where routine transitions, communication
and user defined events take place. Thus, it helps in
understanding the behavior of the parallel program.

Performance analysis based on profiling and tracing
involves three phases:
• instrumentation or modification of the program to

generate performance data,
• measurement of interesting aspects of execution

which generates the performance data and
• analysis of the performance data.

2. Instrumentation

Common to both profiling and tracing is the instrumen-
tation phase where instructions are added to the program
to generate performance data. Instrumentation helps in
identifying the section of code that is executing when an
event is triggered. It is also responsible, during execu-
tion, for measuring the resources consumed and map-
ping these resources to program entities, such as
routines and statements. Relating the code segments

Profiling and Tracing in Linux

Sameer Shende
Department of Computer and Information Science

University of Oregon, Eugene, OR, USA
sameer@cs.uoregon.edu

Abstract
Profiling and tracing tools can help make application parallelization more effective and identify performance bottle-
necks. Profiling presents summary statistics of performance metrics while tracing highlights the temporal aspect of
performance variations, showing when and where in the code performance is achieved. A complex challenge is the
mapping of performance data gathered during execution to high-level parallel language constructs in the application
source code. Presenting performance data in a meaningful way to the user is equally important. This paper presents a
brief overview of profiling and tracing tools in the context of Linux - the operating system most commonly used to
build clusters of workstations for high performance computing.



back to source-code constructs and entities that the user
can comprehend is important.

As shown in Figure 1., instrumentation can be added to
the program at any stage during the compilation/execu-
tion process from user-added calls in the source code to
a completely automated approach. (Events are triggered
by the execution of the instrumentation instructions at
runtime.) Moving down the stages from source code
instrumentation to runtime instrumentation, the instru-
mentation mechanism changes from language specific
to platform specific. Making an instrumentation API
specific to a language for source code instrumentation
may make the instrumentation portable across multiple
compilers and platforms that support the language.
However, the instrumentation may not work with other
languages. Targeting the instrumentation at the execut-
able level ensures that applications written in any lan-
guage that generates an executable would benefit from
the instrumentation on the specific platform. However, it
is more difficult to map performance data back to
source-code entities, especially if the application’s high-
level programming language (such as HPF or ZPL), is
translated to an intermediate language (such as Fortran
or C) during compilation. There is often a trade-off
between what level of abstraction the tool can provide
and how easily the instrumentation can be added.

The JEWEL [19] package requires that calls be added
manually to the source code. While providing flexibility ,
the process can be cumbersome and time consuming. A
preprocessor can generate instrumented source code by
automatically inserting annotations into the original
source. This approach is taken by SvPablo [14] and
AIMS [20] for C and Fortran, and by TAU [15] with
PDT for C++ [18]. Instrumentation can be added by a
compiler as in gprof [5] (with the -pg commandline
switch for the GNU compilers). Instrumentation can
also be added during linking when the executable image
is created by linking multiple object files and libraries
together. Packages that use this method include Vampir-
Trace [13], and PICL [12] for MPI and PVM message
passing libraries. When an inter-process communication
call is executed, the instrumented library acts as a wrap-
per that calls the profiling and tracing routines before
and after calling the corresponding uninstrumented
library call. This is achieved by weak library bindings.
However, often program sources and libraries are
unavailable to the users and it is necessary to examine
the performance of executable images. Pixie [16] and
Atom [17] are tools that rewrite binary executable files
while adding the instrumentation, but are not currently
available under Linux.

All these approaches require the programer to modify
the application, re-compile and re-execute the instru-
mented application to produce the performance data.
Sometimes, re-execution of an application using the per-
formance analysis tool is not a viable alternative while
searching for performance bottlenecks. This is true for
long-running tasks such as database servers. Paradyne
[9] automates the search for bottlenecks in an applica-
tion at runtime by selectively inserting and deleting
instrumentation using the DynInst [7] dynamic instru-
mentation package.

After instrumentation, we execute the program and per-
form measurements, in the form of profiling and tracing
and analyze the data.

3. Profiling

Profiling shows the summary statistics of performance
metrics that characterize the performance of an applica-
tion. Examples of metrics include: the CPU time associ-
ated with a routine; the count of the secondary data
cache misses associated with a group of statements; the
number of times a routine executes; etc. These metrics
are typically presented as sorted lists that show the con-
tribution of the routines. Two main approaches to profil-

Language
specific Source code

Preprocessor

Source code

Compiler

Object code

Linker

Executable

Execution

Libraries

Platform
specific

TAU,
Jewel

TAU/PDT,
AIMS,
SvPablo

gprof

VampirTrace,
PICL

Atom,

Paradyne

Figure 1: Instrumentation options range from lan-
guage specific to platform specific mechanisms.

Pixie



ing include sampled process timing and measured
process timing.

In profiling based on sampling, a hardware interval
timer periodically interrupts the execution. Instead of
time, these interrupts could be triggered by CPU perfor-
mance counters, that measure events in hardware, as
well. Commonly employed tools such as prof [4] and
gprof [5] use time based sampling. When an interrupt
occurs, the state of the program counter (PC) is sampled
and a histogram that represents the frequency distribu-
tion of PC samples is maintained. The program’s image
file and symbol table are used post-mortem to calculate
the time spent in each routine as the number of samples
in a routine’s code range times the sampling period.
Instead of the PC, the callstack of routines can be sam-
pled too. In this case, a table that maintains the time
spent exclusively and inclusively (of called child rou-
tines) for each routine, is updated, when an interrupt
occurs. Then, the exclusive time of the currently execut-
ing routine and the inclusive time of the other routines
that are on the callstack are incremented by the inter-
interrupt time interval. Additionally, in gprof, each time
a parent calls a child function, a counter for that parent-
child pair is incremented. Gprof then shows the sorted
list of functions and their call-graph descendents. Below
each function entry are its call-graph descendents,
showing how their times are propagated to it.

In profiling based on measured process timing, the
instrumentation is triggered at routine entry and exit. At
these points, a precise timestamp is recorded and perfor-
mance metrics comprising of timers and counters are
updated. TAU [15] uses this approach. TAU’s modular
profiling and tracing toolkit features support for hard-
ware performance counters, selectively profiling groups
of functions and statements, user-defined events and
threads. It works with C++, C and Fortran on a variety
of platforms including Linux. Its modules can be assem-
bled by the user during the configuration phase and a
profiling or tracing library can be tailor-made to the
user’s specification. Profiles can be analyzed using racy,
a GUI, as shown in Figure 2. or pprof, a prof-like utility
that can sort and display tables of metrics in text form.

3.1 Hardware Performance Counters
A profiling system needs access to an accurate and a
high-resolution clock. The Intel Pentium(R) family of
processors contains a free-running 64-bit time-stamp
counter which increments once every clock cycle. This
is accessible as Model Specific Registers built into the
processor to profile hardware performance. These regis-
ters can also be used to monitor hardware performance

counters that record counts of processor specific events
such as memory references, cache misses, floating point
operations and bus activity. The Intel PentiumPro(R)
and Pentium II(R) CPUs have two performance counters
available as 32-bit registers that can count at most 66
different events (two at a time). Tools such as pperf [6]
and PCL [1] provide access to these registers under the
Linux operating system. PCL provides a uniform API,
in the form of a library, to access the hardware perfor-
mance counters on a number of platforms. Under Linux,
the counters are not saved on each context switch opera-
tion and PCL recommends performing measurements
on a lightly loaded system. PerfAPI [2] is another
project that will provide a uniform API for accessing
hardware performance counters on different platforms,
including Linux.

Profiling can present the total resources consumed by
program level entities. It can show the relative contribu-
tion of the routines to the profile of the application and
can provide insight in locating performance hotspots.

4. Tracing

Typically, profiling shows the distribution of execution
time across routines. It can show the code locations
associated with specific bottlenecks, but it does not
show the temporal aspect of performance variations.
The advantage of profiling is that statistics can be main-
tained during execution and it requires a small amount
of storage. Tracing the execution of a parallel program
shows when an event occurred and where it occurred, in
terms of the location in the source code and the process
that executed it. An event is typically represented by an
ordered tuple that consists of the event identifier, the
timestamp when the event occurred, where it occurred
(the location may be specified by the node and thread
identifiers) and an optional field of event specific infor-
mation. In addition to the event-trace, a table that maps

Figure 2:TAU’s profile browser tool racy



the event identifier to an event name and its characteris-
tics is also maintained. Tracing involves storing data
associated with an event in a buffer and periodically
writing the buffer to stable storage. This involves event
logging, timestamping, trace buffer allocation and trace
output. The traces can be merged subsequently and cor-
rected for perturbation [10] that may have been caused
due to the overhead introduced by the instrumentation.
Finally, visualization and analysis of event-traces helps
the user understand the behavior of the parallel program.

4.1 Clock Synchronization
Tracing a program that executes on a cluster of worksta-
tions requires access to an accurate and a globally syn-
chronized real-time clock to order the events accurately
with respect to a global time base. Clock synchroniza-
tion can be implemented in hardware, as in shared mem-
ory multiprocessors. It can also be achieved by using
software protocols such as the Network Time Protocol
[11] which synchronizes the clocks to a within a few
milliseconds on a LAN or a WAN, or it can be imple-
mented within the tool environment as in BRISK [19].
For greater accuracy, a GPS satellite receiver may be
used to synchronize the system clock accurately to
within a few microseconds as described in [8]. Profiling
does not require a globally synchronized real-time clock

but tracing does.

5. Performance Analysis and Visualization

Parallel programs produce vast quantities of multi-
dimensional data. Representing this data without over-
whelming the user with unnecessary detail is critical to
the tools’ success. It can be represented effectively using
a variety of visualization techniques [14] such as scatter
plots, Kiviat diagrams, histograms, Gantt charts, interac-
tion matrices, pie charts, execution graphs and tree dis-
plays. ParaGraph [3]is a trace visualization tool that
incorporates the above techniques and has inspired per-
formance views in several other tools. It is available
under Linux and works with PICL traces. It contains a
rich set of visualizations and is extensible by the user.
Vampir [13] is a robust, commercial trace visualization
tool available under Linux. Figure 3. is a Vampir display
of traces generated by TAU. It shows a space-time dia-
gram that highlights when events such as routine transi-
tions take place on different processors. Pablo [14]
provides a user directed-analysis of performance data
visualization by providing a set of performance data
transformation modules that are interconnected graphi-
cally to create an acyclic data analysis graph. Perfor-
mance data flows through this graph and metrics can be

Figure 3: Vampir displays TAU traces from a multi-threaded SMARTS application written in C++



computed by different user-defined modules.

6. Conclusion

This paper presented a brief overview of some profiling
and tracing tools that are available under Linux, and the
techniques that they use for instrumentation, measure-
ment and visualization. Linux is increasingly used by
the scientific community for parallel simulations on
clusters of personal computers. With growing complex-
ity of component based, high performance scientific
frameworks [18] , tools often encounter a “semantic-
gap”. They present performance information that is too
low level and does not relate well with source code con-
structs in the high-level parallel languages used to pro-
gram these clusters. Unless tools can present
performance data in ways that are meaningful to the
user, and are consistent with the user’s mental model of
abstractions, their success will be limited.

7. Acknowledgments

This work was supported by the U.S. Government,
Department of Energy DOE2000 program
#DEFC0398ER259986.

References
[1]R. Berrendorf, H. Ziegler, “PCL - The Performance
Counter Library. A Common Interface to Access Hard-
ware Performance Counters on Microprocessors”, Tech-
nical Report, FZJ-ZAM-IB-9816, Central Institute for
Applied Mathematics, Research Centre Juelich GmbH,
Oct 1998. URL:http://www.fz-juelich.de/zam/PT/
ReDec/SoftTools/PCL/PCL.html
[2]S. Browne, G. Ho, P. Mucci, C. Kerr, “Standard API
for Accessing Hardware Performance Counters”,Poster,
SIGMETRICS Symposium on Parallel and Distributed
Tools 1998. URL:http://icl.cs.utk.edu/projects/papi/.
[3]M. Heath, J. Ethridge, “Visualizing the performance
of parallel programs,” IEEE Software, Vol. 8, No. 5,
1991. URL:http://www.ncsa.uiuc.edu/Apps/MCS/Para-
Graph/ParaGraph.htmls
[4]S. Graham, P. Jessler, M. McKusick, “An Execution
Profiler for Modular Programs”,Software - Practice and
Experience, Vol. 13, pp. 671-685, 1983.
[5]S. Graham, P. Kessler, M. McKusick, “gprof: A Call
Graph Execution Profiler”,Proceedings of SIGPLAN
‘82 Symposium on Compiler Construction, SIGPLAN
Notices, Vol. 17, No. 6, pp. 120-126, June 1982.
[6]M. Goda, “Performance Monitoring for the Pentium
and Pentium Pro Under the Linux Operating Sys-
tem”,1999.URL:http://qso.lanl.gov/~mpg/perfmon.html
[7]J. Hollingsworth, B. Buck, “DyninstAPI Program-
mer’s Guide”, 1998. URL:http://www.cs.umd.edu/

projects/dyninstAPI/
[8]J. Hollingsworth, B. Miller, “Instrumentation and
Measurement”, in The Grid: Blueprint for a New Com-
puting Infrastructure I. Foster and C. Kesselman (Eds.),
Morgan Kaufmann Publishers, San Francisco, pp.339-
365, 1999
[9]B. Miller, M. Callaghan, J. Cargille, J. Holling-
sworth, R. Irvin, K. Karavanic, K. Kunchithapadam and
T. Newhall. IEEE Computer 28(11), pp.37-46 (Novem-
ber 1995).URL:http://www.cs.wisc.edu/~paradyn
[10]A. D. Malony, “Performance Observability”, Ph.D.
Thesis, University of Illinois, Urbana, Also available as
CSRD Report No. 1034, Sept. 1990.
[11]Network Time Protocol, 1999. URL:http://
www.eecis.udel.edu/~ntp/
[12]Oak Ridge National Laboratory, “Portable Instru-
mented Communication Library”,1999. URL:http://
www.epm.ornl.gov/picl
[13]Pallas GmbH, “Vampir - Visualization and Analysis
of MPI Resources”, 1999. URL: http://www.pallas.de/
vampir.html
[14]D. Reed and R. Ribler, “Performance Analysis and
Visualization”, inThe Grid: Blueprint for a New Com-
puting Infrastructure I. Foster and C. Kesselman (Eds.),
Morgan Kaufmann Publishers, San Francisco, pp.367-
393, 1999.URL:http://www-pablo.cs.uiuc.edu/
[15]S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P.
Beckman, and S. Karmesin, “Portable Profiling and
Tracing for Parallel Scientific Applications using C++”,
Proceedings of the SIGMETRICS Symposium on Paral-
lel and Distributed Tools, pp. 134-145, ACM, Aug.
1998. URL:http://www.acl.lanl.gov/tau
[16]Silicon Graphics Inc. Speedshop User’s Guide,
1999.URL:http://techpubs.sgi.com
[17]A. Srivastava, A. Eustace, “Atom: A system for
building customized program analysis tools,” In SIG-
PLAN Conf. on Programming Language Design and
Implementation, pp. 196-205, ACM, 1994.URL:http://
www.research.digital.com/wrl/projects/om/om.html
[18]The Staff, Advanced Computing Laboratory, Los
Alamos National Laboratory, “Taming Complexity in
High-Performance Computing” White paper, Aug 1998.
Available from URL:http://www.acl.lanl.gov/software.
[19]A. Waheed, D. Rover, M. Mutka, H. Smith, and A.
Bakic, “Modeling, Evaluation and Adaptive Control of
an Instrumentation System”,Proceedings of IEEE Real-
Time Technology and Applications Symposium (RTAS
‘97), pp. 100-110, June 1997.URL:http://
www.egr.msu.edu/Pgrt/
[20]J. Yan, “Performance Tuning with AIMS - An auto-
mated Instrumentation and Monitoring System for Mul-
ticomputers”, Proc. 27th Hawaii Intl. Conf. on System
Sciences, Hawaii, Jan. 1994.URL:http://sci-
ence.nas.nasa.gov/Groups/Tools/Projects/AIMS/


