
Knowledge Engineering for Model-based
Parallel Performance Diagnosis

Li Li and Allen D. Malony, {lili,malony}@cs.uoregon.edu
 http://www.cs.uoregon.edu/research/tau

Computer and Information Science Department, University of Oregon, Eugene, OR

Abstract

Scientific parallel programs often undergo significant
performance tuning before meeting performance expectation.
Performance tuning naturally involves a diagnosis process -
locating performance bugs that make a program inefficient and
explaining them in terms of high-level program design. We
present a systematic approach to generating performance
knowledge for automatically diagnosing parallel programs. Our
approach exploits program semantics and parallelism embedded
in computational models to search and explain bugs. We first
describe how to extract performance knowledge from parallel
models. Second, we represent the knowledge in such a way that
diagnosis can be carried out in an automatic manner. We then
present Hercule - a prototype automatic performance diagnosis
system - and our evaluation system for validating diagnosis
results. Our experience diagnosing Master-Worker programs
show that model-based performance knowledge can provide
effective guidance for locating and explaining performance bugs
at a high level of program abstraction.

Introduction

Two observations of existing important performance
measurement and analysis tools particularly motivate our work:

• The performance feedbacks provided by the tools tend to be
descriptive information about parallel program execution at low
level of program abstraction.

• The design of performance experiments, examining
performance data, and evaluating performance against the
expected to identify performance bugs are not well automated
and not necessarily guided by a diagnosis strategy.

Our approach to performance diagnosis is based on parallel
computational models.

Metric
specifications

Experiment
Specifications

Metric
computing

rules

Performance
factors

Refined
performance

models

+

Knowledge Base
Performance metric set
Abstract event library

Performance factor set

A high-level view of model-based iterative perfor-
mance diagnosis process. The use of model knowledge
is annotated on the process steps.

Set targeting
Performance metric

Specify experiments

Generate performance
data(profile/trace)

Compute performance
metrics

Evaluate against the
expected

Explainable with
performance

factors?
Stop

searching

Refine search
space

Stop
searching

No Yes

+

+

symptoms normal

Generation of Model-based
Performance Knowledge

refinePerformance composition
and coupling descriptions

Algorithmic performance
modeling

 Representing
Computational Model

 Defining
Performance
Metrics

 Modeling
Performance

 Modeling
Inference step

Model-based metrics at
different abstract levels

extend instantiateAlgorithmic-specific
metrics

Implementation-
spec. metrics

extend

instantiate

Performance
factor lib.

Performance bug search
and cause inference

Metric-driven
diagnosis

Algorithm-
Spec. factors

A computational model is
a recurring algorithmic
and communication
pattern in parallel
computing, e.g., Master-
Worker, Pipeline.

Representation of Performance
Knowledge

 Performance knowledge is generated
 at three levels – model, algorithm, and
 implementation level. We extract model-
 based knowledge and store it in a
 knowledge base. Algorithm and
 implementation variants can derive
 specific knowledge from the basic model
 knowledge.

How do we represent performance knowledge in a
knowledge base so that diagnosis process can be performed
with minimum user intervention and algorithm- and
implementation-specific performance information can be
readily derived and incorporated into the system?

we create an inference tree that represents our bottom-up
performance diagnosis approach and formalizes a structured
knowledge invocation process.

•The root of the tree represents the symptom that we are
going to diagnose.

•Branch nodes represent intermediate observations that we have
achieved so far and need further performance evidences to
explain,.

•Leaf nodes represent an explanation of the root symptom in
terms of high-level performance factors.

•Readily incorporate knowledge generated from algorithm
variants through adding branches at appropriate tree levels.

•An example inference tree of a Master-Worker model is
presented in the figure below.

master_seq%

wait_setup% wait_bn%

wait_final.%

c1 c6

tidle ≤ τ idle
master master tidle > τ idle

master master

Nreq ≤ τ req Nreq > τ req

c2

c3 c4

c5

low
efficiency

init.% final.%communication% wait_time%

frequency

volume

: symptoms
: intermediate
 observations
: causes
: inference steps

master

masterτidle : tolerance
for severity of
master idle.

τ req : tolerance
for severity of
master bottleneck.

c1: Sequential initialization and finalization at the master accounts
for lost cycles of the worker.

c2: master setup task overhead is significant, which means the
speed of master processing request is pretty slow.

c3: During the execution the master ware rarely idle. The worker
spent quite time waiting in master bottleneck, but only a few
worker requests got stuck in the bottlenecks. The situation indicates
that master processing request speed is slow. In other words, task
setup cost is expensive relative to task computation cost.

c4: During this execution, the master was rarely idle, which implies
that there is little room for rescheduling to improve performance.
The facts that the worker spent quite time waiting in master
bottlenecks and a number of worker requests got stuck at the
master imply that the amount of workers used exceeds the needed,
given the master processing speed and the input problem size.

c5: Master idle time is significant. There is room for improving
performance by rescheduling. Adjusting task assignment order in a
way that keeps the mater busy while avoiding bottlenecks.

c6: Time imbalance is significant. Try to normalize the last task
finish time of all workers.

Hercule - A Prototype Automatic
Performance Diagnosis System

• Knowledge base in Hercule consists of abstract event library,
metric set, and performance factors for each individual
computational model.

• Event recognizer and metric evaluator accept user-defined
abstract event descriptions and performance metric definitions
for algorithm-specific performance evaluation.

• Inference engine repeatedly fires rules with original and derived
performance information until no more new facts can be
produced, thereby realizing automatic performance reasoning.

• We use a “black box” parallel system to validate Hercule diagnosis
results in a controlled manner. Candidate performance problems
are injected to the system. Hercule, being only informed of the
computational model the parallel program is patterned on,
reaches diagnosis conclusions. We compare the conclusions
against the problems introduced at the start to validate.

Experiments and Results

A problematic Master-Worker program run with 7
processes on a SMP cluster with 16 dual processor
nodes connected through gigabyte switches.

dyna6-166:~/PerfDiagnosis/classes lili$./model_diag MW.clp
Begin diagnosing
... ...
Level 1 experiment - collect data for computing worker efficiencies.
__
Worker 3 is least utilized, whose efficiency is 0.385.
__
Level 2 experiment - collect data for computing initialization,
communication, finalization costs, and waiting (idle) time of worker 3.
__
Waiting time of worker 3 is significant.
__
Level 3 experiment - collect data for computing individual waiting
time fields.
__
Among lost cycles of worker 3, 14.831% is spent waiting for the last
worker to finish its computation (time imbalance).
__
Master processing time for assigning task to workers is significant
relative to average task processing time, which causes workers to
wait a while for task assignments. Among lost cycles of worker 3,
34.301% is spent waiting for master setting up task assignment.
__
Among lost cycles of worker 3, 39.227% is spent waiting for the
master to process other workers' requests in bottlenecks. This is
because master processing time for assigning task is expensive
relative to average task processing time, which causes some
workers to queue up waiting for task assignment.
__

Hercule diagnosis results output

Conclusions

We describe a systematic approach to generating
and representing performance knowledge for the
purpose of automatic performance diagnosis. The
methodology makes use of operation semantics
and parallelism found in parallel computational
models as a basis for performance bug search and
explanation. Four major categories of knowledge
are identified: abstract events that describe model
behaviors, performance modeling, model-specific
metrics, and performance cause inference steps.
A knowledge base is engineered by inputting
expert information in each category for parallel
models of interest. The methodology also
addresses the adaptability of knowledge
generation to algorithm and implementation
variants. One important objective of our work is
to study how diagnosis knowledge is represented.
In this work, we showed the use of inference tree
for formalizing a structured knowledge
invocation process for automatic knowledge
diagnosis. We also demonstrate the use of
prototype Hercule parallel performance diagnosis
system on a representative programming
paradigm, Master-Worker. Our preliminary
results show that model-based performance
knowledge provides effective guidance for
locating and explaining performance bugs at a
high level of program abstraction.

Algorithmic-specific
events

Implementation-spec.
events

extend instantiate

event2
Abstract
events

event1

pe
rf.

 d
at

a
ex

pe
rim

en
t

sp
ec

ifi
ca

tio
ns

diagnosis results

problems explanations
candidate
problems = ?

“Black box” parallel system

fa
ul

t
in

jec
tio

n

Hercule

Computational
models

model knowledgealgorithm-
spec. info

modelParallel
program

knowledge base

inference engine

inference rules

event
recognizer

metric
evaluator

master

workers
time-
imbalance

master bottlenecks task_setup, if master
task_processing, if workers

master master

