Capturing Performance Knowledge
for Automated Analysis

Kevin A. Huck®, Oscar HernandézVan Buif, Sunita Chandrasekargn
Barbara ChapmadnAllen D. Malony*, Lois Curfman Mclnnesand Boyana Norrfs
*Computer and Information Science Department, University of Oregon
Eugene, OR 97403-1202 Email: khuck,malony@cs.uoregon.edu
fDepartment of Computer Science, University of Houston
Houston, TX 77204-3010 Email: oscar, chapman@cs.uh.edu, van.bui@mail.uh.edu
fCentre for High Performance Embedded Systems, Nanyang Technological University
Singapore, 637553 Email: suni0003@ntu.edu.sg

§Mathematics and Computer Science Division, Argonne National Laboratory

Argonne, IL 60439 Email: curfman,norris@mcs.anl.gov

Abstract—Automating the process of parallel performance with parallel program development environments. While the
experimentation, analysis, and problem diagnosis can enhance “heavy lifting” analysis will occur in the performance system,
environments for performance-directed application development, it is the ability to encode general expertise and case-specific

compilation, and execution. This is especially true when paramet- thods that all d | t tools to direct Vsi
ric studies, modeling, and optimization strategies require large MeN0GS that allows development 1ools 1o direct analysis

amounts of data to be collected and processed for knowledge Strategies to problem solving needs. There are two key re-
synthesis and reuse. This paper describes the integration of search challenges. The first is in designing flexible analysis
the PerfExplorer performance data mining framework with components and usable interfaces for their integration. The
the OpenUH compiler infrastructure. OpenUH provides auto- gacond is in engaging the parallel programming and tuning

instrumentation of source code for performance experimentation environments to use the knowledae-based analvsis automation
and PerfExplorer provides automated and reusable analysis g Yy

of the performance data through a scripting interface. More ~Ccapabilities.

importantly, PerfExplorer inference rules have been developed This paper describes the integration of the PerfExplorer [9]
to recognize and diagno§e performance.characteristics importa_mt performance data mining system with the OpenUH [13]
for optimization strategies and modeling. Three case studies compiler infrastructure. The union provides OpenUH auto-

are presented which show our success with automation in . . .
OpenMP and MPI code tuning, parametric characterization, MStrumentation of source code for performance experimenta-

and power mode”ng_ The paper discusses how the integration tion and automated analySiS of the performance results USing
supports performance knowledge engineering across applications PerfExplorer scripts. More importantly, PerfExplorer inference

and feedback-based compiler optimization in general. rules are developed to recognize and diagnose performance
characteristics important for OpenUH modeling and optimiza-
tion strategies.

Accurate parallel performance analysis is a complicatedTo demonstrate the benefits of automating analysis meth-
and intimidating task for even an experienced performanoes, two case studies are presented on OpenMP and MPI
analyst. On the one hand, the management of multi-experimeontle tuning, one targeting load balance problems (a multiple
performance data from parametric studies and the applicgquence alignment application) and another targeting data
tion of multi-step processes involving various statistical, datacality problems (a fluid dynamics application). In both,
mining, and meta-analysis operations can introduce errorgtie goal is to capture the optimization process and insight
done manually. On the other, lack of support for analysgained by the manual tuning of these applications in the
automation translates ultimately to the loss of knowledgérm of PerfExplorer analysis scripts and inference rules. The
earned through experience, about successful performance approach is validated by comparing the optimized code to
gineering practices — what analysis methods are useful the unoptimized. A third case study is reported for the fluid
what performance problems, how performance models afgnamics application, but in the context of power modeling.
obtained and validated, and how to interpret performanétere PerfExplorer scripts and inference rules demonstrate how
results relative to opportunities for optimization. Advancemeuiptimizing various functions affects the power consumption in
in parallel performance problem solving and its integratiothe hardware.
in optimization frameworks will depend on creating analysis This paper is organized as follows. Section | gives an
workflows and capturing expert rules for automated use. introduction to our automation framework. Section Il provides

Effective performance analysis automation requires perfa-brief introduction to the tools and gives a description on their
mance tools which support data management, process scriptegration in this project. Section Il illustrates the example
ing, and knowledge engineering, as well as their integratigmoblems and corresponding graphs and results. Related work

I. INTRODUCTION

create a rulebase for processing

ruleHarness = RuleHarness.useGlobalRules(
"openuh/OpenUHRules.drl")

load a trial

trial = TrialMeanResult(Utilities.getTrial(
"Fluid Dynamic", "rib 45", "1_8"))

calculate the derived metric

stalls = "BACK_END_BUBBLE_ALL"

cycles = "CPU_CYCLES"

operator = DeriveMetricOperation(trial, stalls,
cycles, DeriveMetricOperation.DIVIDE)

derived = operator.processData().get(0)

rule "Stalls per Cycle"
when f : MeanEventFact (
m : metric == "(BACK_END_BUBBLE_ALL /
CPU_CYCLES)",
h : higherLower == MeanEventFact.HIGHER,
s @ severity > 0.10, e : eventName,
a : mainValue, v : eventValue,
factType == "Compared to Main")
then
System.out.printin("Event " + e + " has
a higher than average stall / cycle rate");
System.out.printin("\tAverage stall /

compare values to average for application cycle: " + a);
for event in derived.getEvents(): System.out.printin("\tEvent stall /
MeanEventFact.compareEventToMain(derived, cycle: " + v);
mainEvent, derived, event) System.out.printin("\tPercentage of total
process the rules runtime: " + s);
ruleHarness.processRules() end
Fig. 1. Sample Jython script. Fig. 2. Sample JBoss Rules rule.

is discussed in Section IV. The paper concludes with a discddiis simple example loads some inference rules, loads a
sion on how the integration supports performance knowledtf@al from PerfDMF, derives an inefficiency metric, and then
engineering across applications and feedback-based compilempares each event's exclusive value with the inclusive value
optimization in general. of main before processing the rules, where an event is defined
as any instrumented code region.

The second relevant new feature in PerfExplorer is the
In this section, we briefly overview the design of Perfintegration of the JBoss Rules inference engine for rule
Explorer 2.0 and the OpenUH compiler infrastructure, argrocessing. The rules which interpret the performance results
describe our approach to their integration. are easily constructed and modified, and an expert system

for explaining parallel performance data can be constructed.

A. PerfExplorer 2.0 PerfDMF and PerfExplorer have been extended for better

Instrumentation and measurement tools such as TAU [1&]pport of performance context, or metadata, and rules can be
can collect very detailed performance data from parallebnstructed which include the metadata to justify conclusions
applications. The potential sizes of datasets and the negisbut the performance data. An example rule is shown in
to assimilate results from multiple experiments makes it Rigure 2. This example rule will fire for any and all events
challenge to both process the information and discover and wvhich have a higher than average stall per cycle rate, and also
derstand new insights about performance. In order to perfoeacount for at least 10% of the total run time.
analysis on collections of TAU performance experiment data,]
we developed PerfExplorer, a framework for parallel perfoB- OpenUH Compiler
mance data mining and knowledge discovery. The frameworkThe OpenUH [13] compiler is a branch of the open
architecture enables the development and integration of datairce Open64 compiler suite for C, C++, and Fortran 95,
mining operations that can be applied to parallel performansepporting the 1A-64, 1A-32e, and Opteron Linux ABI and
profiles. PerfExplorer is built on PerfDMF, a data managemesiandards. OpenUH provides complete support for OpenMP
framework which provides a library to access the parall@l5 compilation and its runtime library. The major functional
profiles and save analysis results in a relational databaparts of the compiler are the front ends, the inter-language
PerfDMF includes support for nearly a dozen performandeterprocedural analyzer (IPA) and the middle-end/back end,
profile formats, including TAU. PerfExplorer is integrated wittwhich is further subdivided into the loop nest optimizer
existing data mining toolkits, and allows for extensions usin@NO), auto-parallelizer (with an OpenMP optimization mod-
those toolkits. ule), global optimizer (WOPT), and code generator (CG).

In the latest release of PerfExplorer, we have added two n&ach of these modules supports frequency-based feedback
features which will aid in automated analysis and are relevatitected optimizations. OpenUH has five levels of a tree-based
to this paper. First, we have added a scripting interface fimtermediate representation (IR) called WHIRL to facilitate the
process control. The scripting interface is in Jython, which implementation of different analysis and optimization phases.
a full Python interpreter written in Java. Because PerfExplorbtost compiler optimizations are implemented on a specific
is a Java application, all of the application objects are availablével of WHIRL. OpenUH has been enhanced to support the
to the script interface, but we limit the access to a smalleequirements of TAU, Kojak and PerfSuite by supporting an
subset API. With the interface, it is straightforward to derivinstrumentation API for source code and OpenMP runtime
new metrics, perform analysis, and automate the processiitgary support.
of performance data. An example script is shown in Figure 1. One of the keys to the integration of these components is the

Il. DESIGN

ability of the compiler to instrument source code. The reviséltAU profiles are stored in a PerfDMF repository. This data is
version of OpenUH provides a complete compile-time instr@nalyzed with PerfExplorer, and the diagnoses and explana-
mentation module that works at different compilation phaséisns are passed on to the user as performance suggestions.
and covers a variety of program constructs (e.g. procedurbsthe future, we hope to integrate the tools with a feedback
loops, branches, callsites). We have designed a languagptimization loop to improve the compiler cost models, but
independent compiler instrumentation API that can be useddorrently we require manual changes to the source code.
instrument complete applications written in C, C++, Fortran, Previously, feedback optimizations have been used to im-
OpenMP and MPI [8]. MPI operations are instrumented vigrove runtime behavior for control - improving branches,
PMPI rather than by the compiler. OpenMP constructs ahequently executed control flow paths, and loop optimizations
handled via runtime library instrumentation, where the forkbased on counting the number of times a path or a loop gets
join events and implicit and explicit barriers are captured [2¢xecuted. By using feedback suggestions from PerfExplorer,
All these types of instrumentation are related to each othare believe we can improve the performance of the application
For example, procedure and control flow instrumentation apg providing runtime analysis data (with hardware counter
essential for relating the MPI and OpenMP-related output teformation) to the cost model estimation, which is currently
the execution path of the application, or for understanding hamenstrained to using only static analysis data. By improving the
constructs behave inside these regions. cost models we can guide the compilation process to prefer
The instrumentation module can be controlled via compiler transformation that reduces power consumption, or which
flags, specifying the types of regions we want to instrumentduces cache misses, or improves computational density.
It is invoked at different phases during compilation to provide
feedback to IPA, LNO, WOPT, the OpenMP translation, or . RESULTS
CG. The compiler instrumentation retains a mapping identifier Our case studies were conducted on the Altix 300 and Altix
that can be used to relate performance data back to B&00. We collected the performance characteristics in the Altix
intermediate representation at a given optimization phase. T3&0 and perform production runs in the Altix 3600 with higher
compiler currently supports feedback for branch, loop, amtimber of processors. The Altix 300 is a distributed-shared
control flow optimizations, and callsite counts to improvenemory system consisting of 8 nodes with two Itanium 2
inlining. All these optimizations are frequency-based and thggocessors each. The Altix 3600 consists of 256 nodes, with
work is being done as an initial step towards providing total of 512 processors. A single address space is seen by
feedback to the internal cost-models of the compiler. all the processors/nodes and its global memory is based on
Some compiler optimization modules compute a cost modelcache-coherent Non-Uniform Memory Access (ccCNUMA)
to guide the optimization strategies. For example, the loopneygstem implemented via the NUMAIink. Each node has a local
optimizer has an explicit processor model, a cache model amémory; two nodes are connected via a memory hub to form
a parallel overhead model. OpenUH static cost modeling [28]computational brick (C-brick). The C-bricks are connected
evaluates different combinations of loop optimizations, usinga memory routers in a hierarchical topology. The Itanium 2
constraints to avoid an exhaustive search. The processor mdi#ddison) processor has 16 KB of Level 1 instruction cache
includes instruction scheduling and register pressure, andaisd 16 KB of Level 1 data cache. The L2 cache is unified (both
based on the processor’s computational resources, latenaissruction and data) and is 256 KB. The Level 3 cache is also
and registers. The cache model helps to predict cache misseied. The different characteristics of the main components
and the cycles required to start up inner loops. The paralt#lthe Itanium 2 processor can be measured via the hardware
model was designed to support automatic parallelization bgunters.
evaluating the cost involved in parallelizing a loop, and to i .
decide which loop level to parallelize. The parallel moddl Multiple Sequence Alignment
accounts for threaded fork-join and reduction overhead. Molecular biologists frequently compute multiple sequence
The cost model can be customized for specific optimizati@ignment (MSA) to compare protein sequences with unknown
goals. Currently, it can focus on reducing cache missdenctionality to a set of known sequences to detect functional
register pressure, instruction scheduling, pipeline stalls asidnilarities[31]. The steady growth in the size of sequence
parallel overheads. databases means that the comparisons require increasingly sig-
nificant scan times. Because the time and space complexities
for MSA are in the order of the product of the lengths of
The ultimate goal with this tool integration is to improvehe sequences, many heuristic alignment methods have been
the performance of applications compiled with OpenUH, usirdeveloped. Among them, progressive alignment is a widely
feedback suggestions from PerfExplorer to improve cost modeded heuristic. The popular MSA program ClustalW([21] is
optimizations and OpenMP parameterization. Figure 3 shoase such example. It consists of three stages: distance ma-
what this integration would look like in a completed formtrix, guided tree, and progressive alignment along the tree.
and how the tools inter-operate currently. Source code Tde main purpose of MSA is to infer homology between
compiled with OpenUH, which also does instrumentation arsquences. Profiling of the ClustalW program on a single
code generation. The instrumented application is executed, gmdcessor showed that almost 90% of the time is spent in

C. Tool Integration

Instrumented
Application

Source Code

TAU Profiles

Current
I

Future

PerfDMF

User
Recommendations

Analysis
Results

PerfExplorer

Inference
Rules

Analysis
Scripts

Fig. 3. PerfExplorer integrated with OpenUH. Future capabilities will bypass the need for manual changes to the source code by the user.

the first stage. (i.e. computing the distance matrix of thend then computed the ratio of the standard deviation to the
three stages). This ClustalW first stage is based on the Smitean. Because the outer loop was waiting for the inner loop
Waterman algorithm, a dynamic programming approach that complete, we also wanted to detect that for a parent-child
computes the optimal local alignment of two sequences. Fudllationship in the callgraph, an increase in the time spent in
details of the MSA stages and the SW algorithm can lke inner loop meant a shorter time spent in the outer loop.
obtained from [21] and elsewhere. We parallelized the SWhat was done by correlating the times spent in the loops and
algorithm using OpenMP for the main computational loopgetting a high negative correlation. We also wanted to compute
but did not get a solution that scaled for large numbers tiie amount of useful work done in the outer loop, which would

threads. indicate if threads were working or were waiting at the barrier

To improve OpenMP performance, we used schedd@r other threads to finish.
clauses to specify how the iterations of the main loop shouldThe load imbalance detection rule is activated when the
be allocated to the threads. Among the different schedulif@gflowing facts are true. First, two loops have a high standard
mechanisms, we app“ed static and dynamic Schedu”ng éﬂViation to mean rati0>(025), which indicates that they are
different protein sequences and varied dynamic chunk sizegpalanced across the threads. Second, the loops occupy more
drill down to a suitable scheduling strategy that scaled. In thgan5% of the total runtime, which indicates the severity that
process, we found thatatic even(the default), andlynamic this load imbalance has on the runtime. Third, the events are
evenscheduling experienced load imbalances. Uneven tadl@sted - that is, one of the events calls the other in the call
were distributed to the processing units, as shown in Figugéaph. Fourth, on a per-thread basis, the times in the events
4(a). As for the chunk sizes scheduled for each thread, @€ highly negatively correlated - that is, a thread that finishes
found that the imbalance was due to uneven distribution #te inner loop early will spend more time in the outer loop
work. Because the parallel loops in the algorithm were atW@iting at the barrier, whereas a thread which spends more
very coarse grained level containing four nested loops, sm#me in the inner loop will spend less time in the barrier. When
chunk sizes gave the best speedup. Larger chunk sizes talhdhese facts are asserted true, the rule will fire and the user
to change the scheduling behavior to be more like the stafidll be indicated of the problem, and the suggested scheduling
even behavior. When applying the right dynamic schedulingfiange.
the load imbalances were reduced and scaling efficiency was
increased up to 80% with 128 threads on a 1000 sequenceBeGenIDLEST

when using & chunk size of one. Figure 4(b) shows the scalingseneralized Incompressible Direct and Large-Eddy Simula-
behavior of different schedules on up to 16 threads. tions of Turbulence (GenIDLEST)[20] solves the incompress-
In order to capture this analysis with PerfExplorer, wéle Navier-Stokes and energy equations and is a comprehen-
developed a script which performed a load balancing test sife and powerful simulation code with two-phase dispersed
the code. For each instrumented region, or event, we computiedv modeling capability, turbulence modeling capabilities,
the mean and standard deviation of time across all threadad boundary conditions to make it applicable to a wide range

Scaling Efficiency of Multiple String Alignment, 400 Sequences
1.000

0.975
0.950
0.925

© 0.900

v

S 0.875

£

& 0.850

[

2 0.825

©

5 0.800

& 0.775
0.750
0.725
0.700

B
Lg]
=
L
g e
o
0 -
=
T
7

Outer loo L 2 g 8 1
Threads

Inner IOOP = Ideal ¢ dynamic, chunk=1 + dynamic, chunk=2 dynamic, chunk=4

dynamic, chunk=8 static

(a) Load imbalance in inner and outer loops, 16 threads. (b) Relative Efficiency of MSAP Application. A dynamic schedule with a

chunk size of 1 is nearly 93% efficient using 16 processors.

Fig. 4. MSAP scaling behavior for a 400 sequence problem set.

of real world problems. It uses an overlapping multi-blockrocessors respectively,MP1_Isend andMPI_lIreceive
body-fitted structured mesh topology in each block combiningalls are invoked on each processor with 2 on-processor copies,
it with an unstructured inter-block topology. The multiblocknoting that these are done in parallel across MPI processes.
approach provides a basic framework for parallelization, whidthowever, when using standalone OpenMP (with 8 threads for
can be exploited by SPMD parallelism using MPI, OpenMB5rib and 16 or 32 threads for 90rib), all boundary updates
or a hybrid. In a representative problem withcomputational are copies in shared memory initiated by the master thread.
blocks, it can use up te MPI processors or equivalently Hence there are 30 on-processor copies for 45rib and 126 on-
n OpenMP threads or various combinations of MPI-OpenMjprocessor copies for 90rib, all initiated by the master thread.
without loss of generality. Further, within each block, “virtual Our methodology is part of an application tuning cycle
cache blocks” are used. The “virtual” blocks are not explicitlthat consists of iterative application runs that enable scalable
reflected in the data structure but are used in two-level Athstrumentation and feedback optimizations, as follows:
ditive or Multiplicative Schwarz preconditioners for solving Profiling with Selective InstrumentatiorDur selective in-
linear systems. In addition to the favorable preconditioningirumentation method [7] is designed to create a scoring
properties, the small “cache” blocks also allow efficient ussechanism for regions of interest based on their importance
of cache on hierarchical memory systems in modern chip the code and call graph. We want to avoid instrumenting
architectures[27]. The virtual cache blocks also provide aiagions of code that have small weights (e.g. few basic blocks,
additional level of parallelism. statements) and are invoked many times. In this run we
Two test cases which investigate the internal cooling éécus on procedure level instrumentation. The goal of the
turbine blades are presented here: a fully-developed flow irirdtial run is to determine where the processor bottlenecks
45-degree ribbed internal cooling duct using Detached Eddyre located. Depending on whether the application is integer
Simulations (45rib); and another case with the same geomeutry floating-point based, we select: Wall Clock Time, Total
but with a 90 degree rib and using the method of Larg€ycles (equivalent), Total Stall Cycles and either number of
Eddy Simulations (90rib). The former has a grid consistinfipating point or integer instructions. The formula to calculate
of 128x80x64 decomposed into 8 blocks of 128x80x8 and tiiee inefficiency for this purpose is:
latter has a grid of 128x128x128 decomposed |r_1to 32 blocks Inef ficiency = Floating Point_Operations *
of 128x128x4. The two cases are executed using both MPI (Total_Stall_Cycles/Total_Cycles)
and OpenMP on up to 8 and up to 32 processors of the SGI - - -

Altix, for the 45 and 90 degree problems, respectively. This formula is calculated using PerfExplorer for each re-
In the code framework each computational block has ghagibn being measured. The regions with the highest inefficiency
cells at inter-block boundaries and also at periodic boundari&® the regions that the programmer and compiler should focus
which are used in the flow direction. Ghost cell updates @n optimizing.
each processor employ asynchronous MPI communicationgCollection of in-depth performance information for the
and involve two additional temporary buffers that enabliaefficient regions in profiling moddn this run we do not turn
some overlapping of th#PI_Isend and MPI_lreceive on all the instrumentation, but only instrument specific code
operations for greater efficiency. regions or procedures of interest, collecting more fine-grain
In the 45rib and 90rib examples executing on 8 and 16 MRiformation. This includes instrumenting loops, branches,

calls, and possibly individual statements. During this run wehe rule for the second metric was to look for events which
collect hardware counters to perform the processor bottlendtwkd 90% or more of their stalls caused by floating-point stalls
analysis. The general formula we have adopted for this purpasememory stalls. The same six events, plus two more, were
is the following based on Jarp [10]: identified as having a high percentage of stalls from those two
sources. We constructed a third script to examine the causes
Total_Stall_Cycles = L1D_Cache_Misses + b

B n M Jicti 7 o Mi of the memory stalls. The script was primarily concerned with
ranch_Musprediction + Instruction_Musses + the numbers of L3 cache misses and the ratio of local memory
Stack Engine_stalls + Floating_Point_Stalls +

e , s references to remote memory references.

Pipeline_Inter_Register_Dependencies + The performance slowdown is mostly caused by a data lo-
Processor_Frontend_Flushes cality difference between the two versions. This was indicated

We primarily collect performance data for stall cycles from they higher number of L3 cache misses and latencies in the
L1D Cache Misses and Floating Point Stalls (on the Iltaniur@penMP version, as opposed to the MPI version. Figure 5(a)
the floating-point registers are fed directly from level 2 cacheghows that the main computation procedutssgstab
If 90% of the stalls are due to these two causes, we igndtéf_coeff , matxvec , pc,pc_jac_glb (among others)
other sources of stalls in the formula. If that is not the casé9 not scale. Data locality is important for achieving good
we will have to perform additional runs to calculate the othdterformance in the SGI Altix. SGI Altix provides the default
components of the formula. The 90% is a general guidelifiést-touchpolicy for placing data, in which a page of memory
based on behavior seen in different applications. is allocated/moved to the local memory of the first process to

Memory Analysis Metricsin the same way as the secondiccess the page. The use of a default first-touch policy has
run, we use hardware counters to perform the memory bottiorked very well on a single threaded or MPI processes code

neck analysis based on the following formula: on many NUMA platforms, but may lead to poor performance
with OpenMP. In MPI all the memory accesses are to local

Memory_Stalls = (L2_data_references_L2_all — memory by default. OpenMP has the flexibility to use the
L2 _misses) * L2_Memory_Latency + (L2_misses — first-touch policy to place data in the different nodes since the
L3_missed) x L3_Memory_Latency + (L3_misses — data are not explicitly mapped to processors as with MPI. In
Number_of_remote_memory_accesses) x addition, OpenMP has a privatization feature where data can

Local_Memory_Latency + be defined as local to each thread.
(Number_of_remote_memory_accesses) x The final major source of performance degradation is caused
Remote_memory_access_latency + TLB_misses * by the procedureexchange var__ as seen in Figure

TLB_miss_penalty 5(a). This procedure is responsible for driving the exchange

of data in the ghost cells. Because one of its subroutines
(mpi_send_recv_ko) is sequential, it limits the scalability
of the application. In the old implementation of the boundary
The coefficients in this formula are the different latenciegpdate procedure, which was primarily written for the MPI
(in cycles) for the different levels of memory for the Itanium %aradigm, the on-processor copies were done sequentially
processor (Madison), and the interconnection latencies of #iace most of the work was distributed over MPI processes.
SGI NumaLINK 4 for local and remote memory accesses. Tlowever, this became a major bottleneck in the OpenMP
value for remote memory latency accesses is an estimationpafadigm. Four of the events from the previous script were
the worst-case scenario for a pair of nodes with the maximugentified as having a lower ratio of local to remote memory
number of hops and is system dependent. references than the application on average. One of these
In this case study we wanted to understand why tleents.exchange_var__ , represented 31% of the runtime,
OpenMP implementation of this application does not scaéend was scaling very poorly, which confirms its sequential
when compared to the MPI implementation in the SGI Altixnature and its local data.
The OpenMP version lagged by a factor of 11.16 behind its Since PerfExplorer was able to determine that the main
MPI counterpart for the case of 90rib and 3.48 for the 45riproblem in the computational procedures were L3 misses
case. The unoptimized OpenMP version of the applicatiamd remote memory accesses (when compared to MPI) we
does not scale at all as seen in Figure 5(b). discovered that the application was initializing most of its data
We constructed PerfExplorer scripts to derive the metricsequentially, resulting in data being placed on one node. We
and created rules to examine the results. For the first metfizged all the initializations by parallelizing the initialization
we constructed a script which loaded the data, derived tlomps to make sure we place the data correctly across proces-
inefficiency metric, and then a rule searched for events wislors.
high inefficiency. We used the script and accompanying rulesTo remedy the exchange var _ problem the on-
to examine a 16-thread run of the OpenMP implementatigmocessor copies were parallelized by eliminating two inter-
on the 90rib problem, six procedures with poor scaling weraediate steps in the update procedure: that of filling the inter-
identified with a higher than average stall-per-cycle rate. Weediate send buffer with data to be copied and copying this
constructed a second script which derived the total stall metrmuffer into an intermediate receive buffer, which are inherently

Remote_Memory_Accesses_Ratio =
Number_of_remote_memory_accesses/L3_misses

GenIDLEST Scalability: Unoptimized OpenMP, 90 deg. ribs Scaling Efficiency of GenIDLEST, 90 degree ribs

1.0 1.0 B

0.9 0.9

0.8 0.8
9 >
S e 207
L2 0.6 3
= £06
v 0.5 w 0.5
— v .
504 %
[} S 0.4
%03 &

0.2 03

0.1 0.2

0.1
1 2 4 8 16
Threads 1 2 4 8 16
= |deal * MAIN__ bicgstab_ cg_implct__ diff_coeff__ sl
exchange_var__ matxvec_ pc_ pc_jac_glb__ <« sgs_test_filter__ = Fluid Dynamic - Optimized MPI ¢ Fluid Dynamic - Optimized OpenMP
= write_tecplot__ Fluid Dynamic - Unoptimized OpenMP Ideal
(a) Speedup per event, unoptimized OpenMP. (b) Speedup of optimized and unoptimized OpenMP, and optimized MPI.

Fig. 5. GenIDLEST scaling behavior for 90rib problem.

serial operations. In the optimized version, an OpenMP d®DP) for the processor. The power for each component is
parallel loop is applied to the blocks residing on the processeeighted based on the access rates for each component. Eq. 2
(8 for 45rib and 32 for 90rib) and direct copies are initiatedomputes the total power consumed by the processor and is
from the send buffer to the destination array. based on the sum of the power consumed lbpmponents and
After optimization, both the MPI and OpenMP baseline pethe idle power. For multiprocessor or multicore systems, the
formance improved, and the OpenMP implementation scaltsfal power across all processing elements can be modeled by
nearly as well as MPI, as seen in 5(b). The performansemming the total power computed in Eq. 2 for each processor
difference between the MPI and OpenMP implementatios core.
become minimal, in the range of 15% for 90rib and 16.8%
for 4_5rib which is a big improvemgnt from the unoptimizeq Power(C;) = AccessRate(C;)+
version. The lesson learned here is that we need to provide
feedback to the compiler to tell it that it should focus on
improving the L3 optimizations by targeting reduction of n
the cycles predicted in the cache model. We must also feed Total Power = ZPower(Ci) + IdlePower)]
back information to the inter-procedural array region analyzer i=0

0 mgke sure that all the data are initialized and .accgsser\iNe implemented PerfExplorer scripts to obtain power dis-
c_onS|stentIy across procedures to improve data '°°a"tY V'aé%gation and energy consumption estimates and analysis. We
flrst-touc_:h policy. The feedback presented to the user inclu 2d GenIDLEST running the 90rib dataset as a power/energy
suggestions for thexchange_var__ procedure. case study. Different levels of standard optimizations for
. . the OpenUH compiler were applied ranging from OO0 (all

C. Power Modeling with GenIDLEST optimizpations are dFi)sabIed) to O%p(applies gtJhegmost aggregsive

With rising energy costs for managing and running supesptimizations including loop nest optimizations). The appli-
computing systems, there is an increasing need for more intation was run in parallel with MPI on 16 processors on the
grated tool infrastructures that support both performaaog Altix 300.
power monitoring and analysis capabilities. In addition to the The results from the case study show that power dissipation
robust, performance-centric, automated analysis capabilitiesgeherally increases with higher optimization levels while en-
PerfExplorer shown thus far, we investigate how PerfExplorergy decreases as more aggressive compiler optimizations are
may be applied for power analysis. applied (see Table). These results are consistent with previous

In our study of modeling processor power consumption arstiudies that examine the effects of compiler optimizations on
energy efficiency, we use PerfExplorer to compute a powpower and energy efficiency [22], [17]. Also consistent with
metric based on [23]. The power metric is based on hardwaeprevious research study [22], we find that the instruction
performance counters and on the on-die components of twunt is directly proportional to energy consumption and a
processor (see Equation 1 and Equation 2). In Eqg. 1, povemilar relationship exists between instructions per cycle (IPC)
is computed for each compone@t] of the processor. The and power dissipation. A higher instruction count translates to
maximum power value is the published thermal design powerore work for the CPU and so energy increases. Optimizations

1
Architectural Scaling(C;) * MaxPower @)

such as common subexpression elimination and copy propaintime information, which may be specific to a given in-
gation that decrease the number of instructions are generallgnce of a program’s execution, helps the compiler direct
beneficial when compiling for energy efficiency. In the case @k efforts to frequently executed regions of code and make
compiling for power efficiency, optimizations that increase thigetter judgments on what set of optimizations can improve
overlap in instruction execution while keeping the instructiothe code. There is a large body of work, including our own,
count fairly constant (and therefore increasing IPC) resulisat focuses on offline optimizations. Systems such as GEM,
in higher power consumption. Examples of optimizations th&#IPACT, SUIF, OpenUH, DCPI, FX!32 Morph, GCC, Alpha
may increase power dissipation include software pipelininGompaq Compilers, SGI compilers, and PROMISE perform
instruction scheduling, and vectorization. high-level and object-level optimizations. Typical optimiza-
Compilers apply different sets of standard optimizations tiobns include feedback-directed inlining, partial dead code
each level. For a given study based on our power modeljmination, instruction scheduling, code reordering and loop
results will differ dependent on the compiler. The results hepptimizations. Several sets of runtime information based on
are specific for the OpenUH compiler or a compiler thdtaining sets of input data may be used to characterize the
applies similar optimizations at each level. Table | showspical runtime behavior of the application. Other systems
that at optimization O1, we get an increase in power, &cus on online code re-optimizations via software with the
well as a decrease in energy. At O1, minimal optimizatiortelp of hardware. Dynamo, Cursoe, IA32EL, PIN, re-optimize
such as instruction scheduling and peephole optimizationkject code, ADAPT [26], Tempo, DyC, and 'C all create spe-
are applied to straight-line code. These optimizations witialized versions of the code during runtime. Little work has
expectedly have an effect on both power and energy. At G&en devoted to a dynamic compilation system that works for
the more aggressive optimizations significantly decrease penMP. Studies have shown that is feasible to optimize codes
total instruction count (e.g. dead store elimination and partiaith performance information for new multicore architectures.
redundancy elimination) and so we get a significant decres@®MP [3] has been proposed to target OpenMP. stOMP
in energy consumption and a small drop in power dissipatidiocuses orvalue phasingoptimizing code in a parallel region
At the most aggressive level of optimization (O3), loop nefiased on the current values of shared values. Recent work
optimizations (such as vectorization and loop fusion/fissioexperimented with different OpenMP scheduler configurations
are enabled leading to increases in instruction execution ovat-the parallel region and loop level in OpenMP codes [30].
lap and therefore increases in power dissipation. Given tBptimizing at the loop level resulted in better performance, but
results from this case study, PerfExplorer might be able ted to very high runtime overheads mostly from the decision
direct either the compiler or programmer to optimize for lovalgorithm applied to selecting the OpenMP work scheduling
power, low energy, or both using inference rules. The resultfgorithm for a loop. None of these approaches use a com-
from Table | suggest that O0 should be enabled for low powéaination of performance analysis and modeling to provide
03 enabled for low energy, and O2 for both power and enerfgedback to the compiler. Marathe [15] presented a tool for
efficiency for the OpenUH compiler. Compiling for low energyprofile-guided automatic page placement for ccNUMAs. The
can be important for embedded and scientific applicatiorapproach is low level, compiler independent but dependent on
whereas compiling for low power has more significant longaput data provided to the application.
term effects in terms of system reliability and reduced cooling The use of performance problem solving in automated

and operational costs for large-scale servers. analysis depends on having rich tools for exploring the rela-
tionship between performance and computation behavior. The
¥etri0 (138 5 3%% 5 Oc;Zl 03 FINESSE [16] tool demonstrates the use of overhead analysis
ime . . . 0.049 ; ; :
Instructions Completed 10| 0a71| o059 oo0ss to gxplaln ex_perlmental ob;ervatlons b_asgd on models of. exe-
Instructions Issued 10| 0472 | 0.063| 0.061 cution behavior. The benefit was prescriptive in that it provides

Instructions Completed Per Cycle 1.0 | 1.397 | 0.857 | 1.209 a basis for successive refinement in program development to
Instructions Issued Per Cycle | 1.0 | 1.400 | 0909 | 1316 | payter performing solutions. FINESSE targets shared-memory

Watts 10| 1.025| 1.001| 1.029 e : .)
Joules 10| 0346 | 0071| 0.050 optimization of a molecular dynamics application. KappaPi
FLOP/Joule 1.0 | 2.867 | 13.684 | 19.305 (Knowledge-based Automatic Parallel Program Analyzer for
TABLE | Performance Improvement) [11] and KappaPi2 are tools for
GENIDLEST RELATIVE DIFFERENCES FOR DIFFERENT OPTIMIZATION dete_Ctm,g known performance, bOttleneCkS In PVM and MPI
SETTINGS USING 16 MPIPROCESSES ON A0RIBLET PROBLEM. applications. The tools determine causes by applying inference
OPTIMIZATION LEVEL OO0IS THE BASELINE. rules to the analysis of trace files. The causes are then related
back to the source code and include recommendations to the
user.

Our work on Poirot [14] considered general support for
automating performance diagnosis in parallel tools, and the

Feedback optimizations include a variety of techniques thidercule[12] tool showed how performance diagnosis can be
aim to improve the execution behavior of a program basédilt on computational model-centric rules for finding symp-
on information on its current or previous runtime behaviotoms of and explanations for common performance problems

IV. RELATED WORK

in applications, such atad imbalance insufficient paral- is a high level power analysis framework for multicore NoC
lelization andscheduling overheadsince performance prob- architectures. LUNA has been employed by the compiler to
lems are diagnosed in the context of the application’s paraltgnerate power profiles in the network that were used to
model, possible solutions for correcting the inefficiencies caenerate directives which are stored at each router to direct
be proposed. In contrast to our current work, Hercule analyzé® operation of dynamic-voltage-scalable (DVS) links. The
event trace files, not profiles, and lacks support for analysEOPPER project[1] applies dynamic compilation strategies for
scripting. dynamic power management. They introduce techniques for
EXPERT[19] is an automatic event-trace analysis tool faompiler controlled dynamic register file reconfiguration and
MPI and OpenMP applications. It searches the traces farofile-driven dynamic clock frequency and voltage scaling. At
execution patterns indicating low performance and quanthe application layer, PowerPack[4] provides library routines
fies them according to their severity. The patterns targdtat allow users to embed ACPI calls in applications and
both problems resulting from inefficient communication anteduce the CPU’s processing speed via DVS. Very few tools
synchronization as well as from low CPU and memorgrovide an automated framework that would enable the non-
performance. SCALASCA[6] parallelizes the EXPERT tracexpert to successfully apply these optimization techniques to
analysis methods and provides the CUBE[28] graphical viewachieve low energy consumption and power dissipation rates
for highlighting performance problems in relation to threads their applications.
of execution and metrics. CUBE implements Performance
Algebra, a technique for performing difference, merge and
aggregation operations on parallel performance profile data. In V. CONCLUSION
contrast to these tools, PerfExplorer provides support for trans-)
lating performance problems and metrics into performanceAutomated performance analysis depends both on the pro-
knowledge and rules, and for integrating these performang@Ssing of multi-experiment performance data and on expert
analytics capabilities into automated analysis environmentsknowledge to direct the processing, interpret the results, and
Performance Assertions[25] have been developed to confipipvide decision support. The research reported here repre-
that the empirical performance data of an application or co§gNts our first attempt to integrate PerfExplorer's capabili-
region meets or exceeds that of the expected performance.figy for capturing and automating performance analysis with
using the assertions, the programmer can relate expected g#ls for performance-directed modeling and optimization.
formance results to variables in the application, the executid® flexible programmatic support for analysis scripting and
configuration (i.e. number of processors), and pre-evaluatdte-based knowledge engineering in PerfExplorer has proven
variables (i.e. peak FLOPS for this machine). This technig@ccessful in the integration with the OpenUH compiler sys-
allows users to encode their performance expectations f§M and now sets the stage for more sophisticated feedback-
regions of code, confirm these expectations with empiricirécted compiler optimizations.
data, and even make runtime decisions about componen®ur future work will explore several opportunities. The cost
selection based on this data. The use of performance assertidgglel calculation for OpenUH can be modified to integrate
requires extensive annotation of source code, and relies on f¢edback from runtime performance to generate more accurate
application developer's experience and intuition in knowingost models. Different optimization priorities may apply, such
where to insert the assertions, and what kind of performana& improving caching/memory strategies or utilizing processor
result to expect. functional units more effectively. The parallel model should
Several strategies exist for reducing total power dissipatb& improved to feed in information to detect imbalances due
and energy consumed by a microprocessor. Power and end@yydifferent amounts of work per thread in parallel loops.
saving techniques can be applied at the level of circuitd/e also need to feed information with regard to sources
architectures, system software, and at the application layer[2af.overhead and their causes, such as time spent in atomic
Power analysis and optimizations at the system software a@igerations, locking, and critical sections, and their correlation
application layers have not been adequately explored, but soiédhe distribution of work in parallel sections and number of
progress has been made in recent times. Seng and Tullsenft/@ads. In addition, there are strategies for variable privatiza-
studied the effects of power and energy savings for botien and first touch policies to reduce the number of remote
standard compiler optimizations and individual optimization®iemory references that can be better informed by automated
on the Pentium 4. Their experiments suggest that compierformance analysis.
ing for the best performance is equated with high energyWe plan to extend our performance and power inference
savings. Valluri and John[22] performed a similar but moraules with PerfExplorer and integrate the results with the
in-depth study on the Alpha 21264 processor. They four@penUH compiler cost model, thus enabling users to target
that optimizations that improve performance by reducing thlmptimizations based on both performance and power models.
instruction count are optimized for low energy. They alsBurthermore, we will also extend our models to consider
found that optimizations that improve performance by irthe impacts of architecture characteristics and application
creasing the amount of overlap in execution of instructiomsetadata on compilation strategies for improved power and
increase average power dissipation in the processor. LUNAjergy efficiency.

ACKNOWLEDGMENTS [14]

University of Oregon research is sponsored by contracts DE-
FG02-07ER25826 and DE-FG02-05ER25680 from the MICS
program of the U.S. DOE, Office of Science and NSF graHf!
#CCF0444475. University of Houston research is sponsored
by the NSF grants #CCF-0444468 and #CCF-0702775. Re-
search at Argonne National Laboratory is supported throug%@
CISE-BPC supplement under NSF grant #0444345 and D
contract DE-AC02-06CH11357. We would like to thank Dr.
Danesh Tafti from the Mechanical Engineering DepartmeHt]
of Virginia Tech for providing us a good description of the
GenIDLEST application and useful insights to facilitate the

process of optimization. 18]

REFERENCES

[1] A. Azevedo, R. Cornea, |. Issenin, R. Gupta, N. Dutt, A. Nicolau,
and A. Veidenbaum, “Architectural and compiler strategies for dynam{d9]
power management in the copper project,”IWIA '01: Proceedings
of the Innovative Architecture for Future Generation High-Performance
Processors and Systems (IWIA'01) Washington, DC, USA: IEEE
Computer Society, 2001, p. 25.

[2] V. Bui, O. Hernandez, B. Chapman, R. Kufrin, D. Tafti, and P. Gopalkrf20]
ishnan, “Towards an implementation of the openmp collector api,” in
PARCQ 2007.

[3] M. Burcea and M. Voss, “A runtime optimization system for OpenMP,[21]
in WOMPAT 2003, pp. 42-53.

[4] K. W. Cameron, R. Ge, and X. Feng, “High-performance, power-aware
distributed computing for scientific applicationsgComputer vol. 38,
no. 11, pp. 40-47, 2005. [22]

[5] N. Eisley, V. Soteriou, and L.-S. Peh, “High-level power analysis for
multi-core chips,” iINCASES '06: Proceedings of the 2006 internationa(23]
conference on Compilers, architecture and synthesis for embedded
systems New York, NY, USA: ACM, 2006, pp. 389—400.

[6] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr, “Scalable parallel
trace-based performance analysis,”Rroc. 13th European PVM/MPI [24]
Users’ Group Meetingser. LNCS, vol. 4192. Bonn, Germany: Springer,
September 2006, pp. 303-312.

[71 O. Hernandez, H. Jin, and B. Chapman, “Compiler support for eff{25]
cient instrumentation,” irParCo '07: Proceedings of the International
Conference ParCo 2007 Julich, Germany: NIC-Directors, 2007, pp.
661-668.

[8] O. Hernandez, F. Song, B. Chapman, J. Dongarra, B. Mohr,
S. Moore, and F. Wolf, “Instrumentation and compiler optimizations
for mpi/openmp applications,” international Workshop on OpenMP [26]
(IWOMP 2006) 2006.

[9] K. A. Huck, A. D. Malony, S. Shende, and A. Morris, “Scalable,[27]
automated performance analysis with tau and perfexploreiPaiallel
Computing (ParCa)Aachen, Germany, 2007.

[10] S. Jarp, “A methodology for using the itanium-2 performance counte[28]
for bottleneck analysis,” HP Labs, Tech. Rep., August 2002.

[11] J. Jorba, T. Margalef, and E. Luque, “Performance analysis of paral(@®]
applications with kappapi2,Parallel Computing: Current & Future
Issues of High-End Computing, Proceedings of the International Con-
ference ParCo 20Q5vol. 33, pp. 155-162, 2006.

[12] L. Liand A. D. Malony, “Knowledge engineering for automatic parallel
performance diagnosisConcurrrency and Computation: Practice and[30]
Experience 2006.

[13] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zhen{1]
“OpenUH: An optimizing, portable OpenMP compiler,” 2th Work-
shop on Compilers for Parallel Computerg006.

A. Malony and R. Helm, “A Theory and Architecture for Automating
Performance DiagnosisfPuture Generation Computer Systenael. 18,

no. 1, pp. 189-200, Sep. 2001, (Special issue on Performance Data-
mining in Parallel and Distributed Computing).

J. Marathe and F. Mueller, “Hardware profile-guided automatic page
placement for ccnuma systems,” PPoPP '06: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming New York, NY, USA: ACM, 2006, pp. 90—

99

G. D. Riley, J. M. Bull, and J. R. Gurd, “Performance improvement
through overhead analysis: A case study in molecular dynamics,” in
International Conference on Supercomputii®97, pp. 36-43.

J. S. Seng and D. M. Tullsen, “The effect of compiler optimizations
on pentium 4 power consumption,” iINTERACT '03: Proceedings of
the Seventh Workshop on Interaction between Compilers and Computer
Architectures Washington, DC, USA: IEEE Computer Society, 2003,
p. 51.

S. Shende and A. D. Malony, “The TAU parallel performance
system,” The International Journal of High Performance Computing
Applications vol. 20, no. 2, pp. 287-331, Summer 2006. [Online].
Available: http://www.cs.uoregon.edu/research/tau

F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore, “An
algebra for cross-experiment performance analysis,"Piceedings

of 2004 International Conference on Parallel Processing (ICPP’'04)
Montreal, Quebec, Canada, 2004, pp. 63-72. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ICPP.2004.1327905

D. K. Tafti, “Genidlest - a scalable parallel computational tool for
simulating complex turbulent flows,” iRroceedings of the ASME Fluids
Engineering Division November 2001.

J. Thompson, D. Higgins, and T. Gibson, “CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice,”
Nucl. Acids Reswvol. 22, pp. 4673-4680, 1994.

M. Valluri and L. John, “Is compiling for performance == compiling for
power,” 2001. [Online]. Available: citeseer.ist.psu.edu/valluriOlis.html
V.Bui, B. Norris, L. Mclnnes, K. Huck, O. Hernandez, L. Li, and
B. Chapman, “A component infrastructure for performance and power
modeling of parallel scientific applications,” @omponent-Based High
Performance Computing2008.

V. Venkatachalam and M. Franz, “Power reduction techniques for
microprocessor systems&CM Comput. Suryvol. 37, no. 3, pp. 195—
237, 2005.

J. S. Vetter and P. H. Worley, “Asserting performance expectations,”
in Supercomputing '02: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing Los Alamitos, CA, USA: |EEE
Computer Society Press, 2002, pp. 1-13. [Online]. Avail-
able: http://portal.acm.org/fgateway.cfm?id=762809&type=pdf&coll=
ACM&dI=ACM%&CFID=52735087&CFTOKEN=45432917

M. J. Voss and R. Eigemann, “High-level adaptive program optimization
with ADAPT,” ACM SIGPLAN Noticesol. 36, no. 7, pp. 93-102, 2001.
G. Wang and D. K. Tafti, “Uniprocessor performance enhancement with
additive schwarz preconditioners on origin 2008\dv. Eng. Softw.
vol. 29, no. 3-6, pp. 425-431, 1998.

F. Wolf and B. Mohr, “Automatic performance analysis of SMP cluster
applications,” Research Centre Julich, Tech. Rep. 05, 2001.

M. E. Wolf, D. E. Maydan, and D.-K. Chen, “Combining loop transfor-
mations considering caches and schedulingMI€RO 29: Proceedings

of the 29th annual ACM/IEEE international symposium on Microarchi-
tecture Washington, DC, USA: IEEE Computer Society, 1996, pp.
274-286.

Y. Zhang and M. Voss, “Runtime empirical selection of loop schedulers
on hyperthreaded smps.” iIPDPS 2005.

A. Zomaya, Ed.,Parallel Computing for Bioinformatics and Compu-
tational Biology: Models, Enabling Technologies, and Case Studies
1st ed., ser. Wiley Series on Parallel and Distributed Computing. Wiley
Interscience, 2006.

