
Test-driven coarray parallelization of a legacy Fortran

application

Hari Radhakrishnan
EXA High Performance

Computing, Nicosia, Cyprus
hari@exahpc.com

Damian W. I. Rouson
Center for

Computational Earth and
Environmental Sciences

Stanford University, Stanford,
California, USA

rouson@stanford.edu
Karla Morris

Combustion Research Facility
Sandia National Laboratories,

Livermore, California, USA
knmorris@sandia.gov

Sameer Shende
Performance Research

Laboratory
University of Oregon, Eugene,

Oregon, USA
sameer@cs.uoregon.edu

Stavros C. Kassinos
UCY-CompSci

University of Cyprus, Nicosia,
Cyprus

kassinos@ucy.ac.cy

ABSTRACT
This paper summarizes a strategy for parallelizing a legacy
Fortran 77 program using the object-oriented (OO) and coar-
ray features that entered Fortran in the 2003 and 2008 stan-
dards, respectively. OO programming (OOP) facilitates the
construction of an extensible suite of model-verification and
performance tests that drive the development. Coarray par-
allel programming facilitates a rapid evolution from a serial
application to a parallel application capable of running on
multi-core processors and many-core accelerators in shared
and distributed memory. We delineate 17 code moderniza-
tion steps used to refactor and parallize the program, and
study the resulting performance. Our scaling studies show
that the bottleneck in the performance was due to the im-
plementation of the collective sum procedure. Replacing the
sequential procedure with a binary tree procedure improved
the scaling performance of the program. This bottleneck
will be resolved in the future by new collective procedures
in Fortran 2015.

1. INTRODUCTION

1.1 Background
Legacy software is old software that serves a useful pur-

pose. In high-performance computing (HPC), a code be-
comes “old” when it no longer e�ectively exploits current
hardware. With the proliferation of multicore processors
and manycore accelerators, one might reasonably label any
serial code as “legacy software.” Software that has proved

(c) 2013 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States Gov-
ernment retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
SEHPCCSE’13 November 22, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2499-1/13/11 ...$15.00.

its utility over many years, however, typically has earned
the trust of its user community.

Any successful strategy for modernizing legacy codes must
honor that trust. This paper presents two strategies for par-
allelizing a legacy Fortran code while bolstering trust in the
result: (1) a test-driven approach that verifies the numeri-
cal results and the performance relative to the original code
and (2) an evolutionary approach that leaves much of the
original code intact while o�ering a clear path to execution
on multicore and manycore architectures in shared and dis-
tributed memory.

The published literature on modernizing legacy Fortran
codes focuses on programmability issues such as increasing
type safety and modularization while reducing data depen-
dancies via encapsulation and information hiding. Achee
and Carver [1] examined object extraction, which involves
identifying candidate objects by analyzing the data flow in
Fortran 77 code. They define a cohesion metric that they
use to group global variables and parameters. They then ex-
tracted methods from the source code. In a 1500-line code,
for example, they extract 26 candidate objects.

Norton and Decyk [6], for example, focused on wrapping
legacy Fortran with more modern interfaces. They then
wrap the modernized interfaces inside an object/abstraction
layer. They outline a step-by-step process that ensures stan-
dards compliance, eliminates undesirable features, creates
interfaces, adds new capabilities, and then groups related
abstractions into classes and components. Examples of un-
desirable features include common blocks, which potentially
facilitate global data-sharing and aliasing of variable names
and types. In Fortran, giving procedures explicit inter-
faces facilitates compiler checks on argument type, kind,
and rank. New capabilities they introduced included dy-
namic memory allocation.

Grenough and Worth [2] surveyed tools that enhance soft-
ware quality by helping to detect errors and to highlight
poor practices. The appendices of their report paper pro-
vide extensive summaries of the tools available from eight
vendors with a very wide range of capabilities. A sample
of these capabilities include memory leak detection; auto-

��

matic vectorization and parallelization; dependency analy-
sis; call-graph generation; and static (compile-time) as well
as dynamic (run-time) correctness checking.

Each of the aforementioned studies explored how to up-
date codes to the Fortran 90/95 standards. None of the
studies explored subsequent standards and most did not
emphasize performance improvement as a main goal. One
recent study, however, applied automated code transforma-
tions in preparation for possible shared-memory, loop-level
parallelization with OpenMP [8]. We are aware of no pub-
lished studies on employing the Fortran 2008 coarray paral-
lel programming to refactor a serial Fortran 77 application.
Such a refactoring for parallelization purposes is the central
aim of the current paper.

1.2 Case Study: PRM
Most commercial software models for turbulent flow in en-

gineering devices solve the Reynolds-Averaged Navier-Stokes
(RANS) partial di�erential equations. Deriving these equa-
tions involves decomposing the fluid velocity field, u, into a
mean part, u, and a fluctuating part, u

Õ:

u © u + u

Õ (1)

Substituting Equation 1 into a momentum balance and then
averaging over an ensemble of turbulent flows yields the
RANS equation:

fluj
ˆui

ˆxj
= flfi + ˆ

ˆxj

5
≠p”ij + µ

3
ˆui

ˆxj
+ ˆuj

ˆxi

4
≠ fluÕ

iu
Õ
j

6
,

(2)
where µ is the fluid’s dynamic viscosity; fl is the fluid’s den-
sity; t is the time coordinate; ui and uj are the ith and jth

cartesian components of u; and xi and xj are the ith and
jth cartesian components of the spatial coordinate x.

The term ≠fluÕ
iu

Õ
j in Equation 2 is called the Reynolds

stress tensor. Its presence poses the chief di�culty at the
heart of Reynolds-averaged turbulence modeling: closing the
RANS equations requires postulating relations between the
Reynolds stress and other terms appearing in the RANS
equations, typically the velocity gradient ˆuj/ˆxi. Doing
so in the most common ways works well for predicting turbu-
lent flows in which the statistics of u

Õ stay in near-equilibrium
with the flow deformations applied via gradients in u. Tra-
ditional RANS models work less well for flows undergoing
deformations so rapid that the fluctuating field responds
solely to the deformation without time for the nonlinear
interactions with itself that are the hallmark of fluid tur-
bulence. The Particle Representation Model (PRM) [3, 4]
addresses this shortcoming. Given su�cient computing re-
sources, PRM exactly predicts the response of the fluctuat-
ing velocity field to rapid deformations.

The PRM is implemented by distributing a set of hypo-
thetical particles over a unit hemisphere surface. The par-
ticles are distributed on each octant of the hemisphere in
bands, as shown in Figure 1 for ten bands. Each particle
has a set of assigned properties that describe the charac-
teristics of an idealized flow. Assigned particle properties
include vector quantities such as velocity and orientation
as well as scalar quantities such as pressure. Thus, each
particle can be thought of as representing the dynamics of
a hypothetical one-dimensional (1D), one-component (1C)
flow. Tracking a su�ciently large number of particles and
then averaging the properties of all the particles, i.e., all the

1

2

3

1

2

3

4

5

6

7

8

9

10

Band No.

Figure 1: Distribution of particles in bands in one octant.
Total number of particles is NP = 2 ◊ NB ◊ (NB + 1).

possible flows considered, yields a representation of the 3D
behavior in an actual flowing fluid.

Historically, a key disadvantage of the PRM has been
costly execution times. Parallelization reduces this cost.
Previous attempts to parallelize the PRM using MPI were
abandoned because the development, validation and verifi-
cation times did not justify the gains. Co-arrays allowed
us to parallelize the software with minimal invasiveness and
the OO test suite facilitated a continuous build-and-test cy-
cle that reduced the development time.

2. METHODOLOGY

2.1 Modernization Strategy
Test-Driven Development (TDD) grew out of the Extreme

Programming movement of the 1990s, although the basic
concepts date as far back as the NASA space program in
the 1960s. TDD iterates quickly toward software solutions
by first writing tests that specify what the working software
must do and then writing only a su�cient amount of appli-
cation code in order to pass the test. In the current context,
TDD serves the purpose of ensuring that our refactoring ex-
ercise preserves the expected results for representative pro-
duction runs.

Table 1 lists 17 steps employed in refactoring the PRM.
They have been broken down into groups that addressed
various facets of the refactoring process. The open-source
CTest framework that is part of CMake was used for build-
ing the tests. Our first step, therefore, was to construct
a CMake infrastructure that we used for automated build-
ing and testing, and to setup a code repository for version
control and coordination.

The next six steps address Fortran 77 features that have
been declared obsolete in more recent standards or have been
deprecated in the Fortran literature. We did not replace
CONTINUE statements with end do statements as these did
not a�ect the functionality of the code.

��

(a) Time = 0 seconds (b) Time = 2 seconds

(c) Time = 4 seconds (d) Time = 6 seconds

Figure 2: Results of a PRM computation. The particles are colored based on their initial location. The applied flow condition
— shear flow along the y-direction — causes the uniformly distributed particles to aggregate along that axis.

The next two steps were crucial in setting up the build
testing infrastructure. We automated the initialization by
replacing the keyboard inputs with default values. The next
step was to construct extensible tests based on these default
values, and which are described in Section 3.

The next three steps expose optimization opportunities
to the compiler. One exploits Fortran’s array syntax. Two
exploit Fortran’s facility for explicitly declaring a procedure
to be “pure,” i.e., free of side e�ects, including input/output,
modifying arguments, halting execution, or modifying non-
local state. Other steps address type safety and memory
management.

Array syntax gives the compiler a high-level view of op-
erations on arrays in ways the compiler can exploit with
various optimizations, including vectorization. The ability
to communicate functional purity to compilers also enables
numerous compiler optimizations, including parallelism.

The final steps directly address parallelism and optimiza-
tion. One unrolls a loop to provide for more fine-grained
data distribution. The other exploits the co_sum intrinsic
collective procedure that is expected to be part of Fortran
2015 and is already supported by the Cray Fortran compiler.
(With the Intel compiler, we write our own co_sum proce-
dure.) The final step involves performance analysis using
the Tuning and Analysis Utilities [7].

3. EXTENSIBLE OO TEST SUITE
At every step, we ran a suite of accuracy tests to verify

that the results of a representative simulation did not de-
viate from the serial PRM code’s results by more than 50
parts per million (ppm). We also ran a performance test to

Figure 3: Class diagram of the testing framework. The de-
ferred bindings are shown in italics, and the abstract class
is shown in bold italics.

ensure that the single-image runtime of the parallel code did
not exceed the serial code’s runtime by more than 20%. (We
allowed for some increase with the expectation that signifi-
cant speedup would result from running multiple images.)

Our accuracy tests examine tensor statistics that PRM
calculates. In order to establish a uniform protocol for run-
ning tests, we defined an abstract base tensor class. The
base class provided the bindings for comparing tensor statis-
tics, displaying test results to the user, and exception han-
dling. Specific tests take the form of child classes that ex-
tend the tensor class and thereby inherit a responsibility to
implement the tensor’s deferred bindings compute_results
and expected_results. The class diagram in shown in Fig-
ure 3. The tests then take the form

if (.not. stess_tensor%verify_result(when)) &

��

Step Details

1 Set up automated builds via CMakea and version control via Gitb.
2 Convert fixed- to free-source format via “convert.f90”by Metcalfc.
3 Replace GOTO with do while for main loop termination.
4 Enforce type/kind/rank consistency of arguments and return values by wrapping all procedures in a module.
5 Eliminate implicit typing.
6 Replace data statements with parameter statements.
7 Replace write-access to common blocks with module variables.
8 Replace keyboard input with default initializations.
9 Set up automated, extensible tests for accuracy and performance via OOP and CTestd.
10 Make all procedures outside of the main program pure
11 Eliminate actual/dummy array shape inconsistencies by passing array subsections to assumed-shape arrays.
12 Replace static memory allocation with dynamic allocation.
13 Replace loops with array assignments.
14 Expose greater parallelism by unrolling the nested loops in the particle set-up.
15 Balance the work distribution by spreading particles across images during set-up.
16 Exploit a Fortran 201x collective procedure to gather statistics.
17 Study and tune performance with TAUe.

Table 1: Modernization steps: Double horizontal lines indicate partial ordering.
ahttp://www.cmake.org
bhttp:/git-scm.com
cftp://ftp.numerical.rl.ac.uk/pub/MandR/convert.f90
dhttp://www.cmake.org
ehttp://tau.uoregon.edu

error stop ’Test failed.’
where & is Fortran’s line continuation character; stress_tensor
is an instance of a class that extends tensor; “error stop”
halts all images and prints the shown string to standard
error; and verify_result invokes two aforementioned de-
ferred bindings to compare the computed results to the ex-
pected results.

4. COARRAY PARALLELIZATION
Modern HPC software must execute on multicore pro-

cessors or manycore accelerators in shared or distributed
memory. Fortran provides for such flexibility by defining a
partitioned global address space (PGAS) without referenc-
ing how to map coarray code onto a particular architecture.
Coarray Fortran is based on the Single Program Multiple
Data (SPMD) model, and each replication of the program
is called an image [5]. The Fortran 2008 compilers then
map these images to an underlying transport network of the
compiler’s choice. For example, the Intel compiler uses MPI
for the transport network whereas the Cray compiler uses a
dedicated transport layer.

A coarray declaration of the form
real, allocatable :: a(:,:,:)[:]

facilitates indexing into the variable “a” along three regular
dimensions and one codimension so

a(1,1,1) = a(1,1,1)[2]
copies the first element of image 2 to the first element of
whatever image executes this line. The ability to omit the
coindex on the left-hand side (LHS) played a pivotal role
in refactoring the PRM with minimal work: although we
added codimensions to existing variables’ declarations, sub-
sequent accesses to those variables remained unmodified ex-
cept where it is desired communicate across images. When

necessary, adding coindices facilitated the construction of
collective procedures to compute statistics.

In the legacy version, the computations of the particle
properties were done using two nested loops, as shown be-
low.

l = 0 ! Global particle number
do k = 1, nb ! Loop over the bands

do m = 1,k ! Loop over the particles in band

! First octant
l = l + 1
! Do some computations

! Second octant
l = l + 1
! Do some computations

! Third octant
l = l + 1
! Do some computations

! Fourth octant
l = l + 1
! Do some computations

end do
end do

Distributing the particles across the images, and execut-
ing the computations inside these loops can speed up the
execution time. This can be achieved in two ways.

Method 1 works with the particles directly, splitting them
as evenly as possible across all the images, allowing image
boundaries to occur in the middle of a band. This distribu-

��

1

2

3

1

2

3

4

5

6

7

8

9

10

Band No.

(a) Partitioning of the particles to achieve even distri-

bution of particles.

1

2

3

1

2

3

4

5

6

7

8

9

10

Band No.

(b) Partitioning of the bands to achieve nearly even

distribution of particles.

Figure 4: Two di�erent partitioning schemes were tried for load balancing.

tion is shown in Figure 4a. To achieve this distribution, the
two nested do loops are replaced by one loop over the parti-
cles, and the indices for the two original loops are computed
from the global particle number, as shown below. However
in this case, the code becomes complex and sensitive to pre-
cision.

! Loop over the particles
do l = my_first_particle, my_last_particle, 4

k = nint(sqrt(real(l)*0.5))
m = (l - (1 + 2*k*(k-1) -4))/4

! First octant
! Do some computations

! Second octant
! Do some computations

! Third octant
! Do some computations

! Fourth octant
! Do some computations

end do

Method 2 works with the bands, splitting them across the
images to make the particle distribution as even as possible.
This partitioning is shown in Figure 4b. Method 2 requires
fewer changes to the original code but is sub-optimal in load
balancing.

! Loop over the bands
do k = my_first_band, my_last_band

! Global number of last particle in (k-1) band
l = k**2 + (k-1)**2 - 1
! Loop over the particles in band
do m = 1,k

! First octant
l = l + 1

! Do some computations

! Second octant
l = l + 1
! Do some computations

! Third octant
l = l + 1
! Do some computations

! Fourth octant
l = l + 1
! Do some computations

end do
end do

5. RESULTS
Source code impact: We applied our strategy to two

versions of PRM. For one version, the resulting code was
10% longer than the original: 639 lines versus 580 lines with
no test suite. In the second version, PRM expanded 40%
from 903 lines to 1260 lines, not including new input/output
(I/O) code and the code described in the Object-Oriented
Test Suite section of this paper. The test and I/O code
occupied an additional 569 lines.

Compare and Contrast with MPI: The ability to
drop the coindex from the notation was a big help in paral-
lelizing the program without making significant changes to
the source code. A lot of the book-keeping is handled be-
hind the scenes by the compiler making it possible to make
the parallelization more abstract but also more easier to fol-
low. For example, these are the code fragments necessary to
collect the local arrays into a single global array using the
coarray syntax:

integer :: my_first[*], my_last[*]

my_first = lbound(sn,2)
my_last = ubound(sn,2)

��

do l = 1, num_images()
cr_global(:, my_first[l]:my_last[l]) = cr(:,:)[l]
sn_global(:, my_first[l]:my_last[l]) = sn(:,:)[l]

end do

The equivalent code fragment in MPI:

integer :: my_rank, num_procs
integer, allocatable :: my_first(:), my_last(:), &

counts(:), displs(:)

call mpi_comm_size(MPI_COMM_WORLD, num_procs, ierr)
call mpi_comm_rank(MPI_COMM_WORLD, my_rank, ierr)
allocate(my_first(num_procs), my_last(num_procs), &

counts(num_procs), displs(num_procs))

my_first(my_rank+1) = lbound(sn, 2)
my_last(my_rank+1) = ubound(sn, 2)

call mpi_allgather(MPI_IN_PLACE, 1, MPI_INTEGER, &
my_first, 1, MPI_INTEGER, MPI_COMM_WORLD, ierr)

call mpi_allgather(MPI_IN_PLACE, 1, MPI_INTEGER, &
my_last, 1, MPI_INTEGER, MPI_COMM_WORLD, ierr)

do i = 1, num_procs
displs(i) = my_first(i) - 1
counts(i) = my_last(i) - my_first(i) + 1

end do

call mpi_allgatherv(sn, 5*counts(my_rank+1), &
MPI_DOUBLE_PRECISION, sn_global, 5*counts, &
5*displs, MPI_DOUBLE_PRECISION, &
MPI_COMM_WORLD, ierr)

call mpi_allgatherv(cr, 5*counts(my_rank+1), &
MPI_DOUBLE_PRECISION, cr_global, 5*counts, &
5*displs, MPI_DOUBLE_PRECISION, &
MPI_COMM_WORLD, ierr)

Reducing the complexity of the code also reduces the chances
of bugs in the code. In the legacy code, the arrays sn and cr
carried the information about the state of the particles. By
using the coarray syntax and dropping the coindex, we were
able to reuse all the original algorithms that implemented
the core PRM logic. This made it significantly easier to
ensure that the refactoring did not alter the results of the
model. The main changes that were implemented were to
define global arrays for sn and cr, and update them when
needed, as shown above.

Scalability: We intend for PRM to serve as an alterna-
tive to turbulence models used in routine engineering design
of fluid devices. Most designers run simulations on desktop
computers. As such, the upper bound on what is commonly
available is roughly 32 to 48 cores on two or four central pro-
cessing units (CPUs) plus additional cores on one or more
accelerators.

Figure 5 shows the speedup obtained for 200 and 400
bands with the Intel Fortran compiler using the two particle-
distribution schemes described in the Coarray Paralleliza-
tion section. The runs were done using up to 32 cores on
the “fat” nodes of ACISS1. Each node has four Intel X7560
2.27GHz 8-core CPUs and 384GB of DDR3 memory. We
1http://aciss.uoregon.edu

Number of images

Sp
ee

du
p

(t 1
im

ag
e/t

N
 im

ag
es

)

4 8 12 16 20 24 28 32

4

8

12

16

20

24

28

32 Split Bands 200
Split Particles 200
Split Bands 400
Split Particles 400

Figure 5: Speedup obtained with sequential co_sum imple-
mentation using multiple images on a single server with 384
GB of RAM and Intel X7560 2.27GHz 8-core CPUs.

Figure 6: TAU analysis of load balancing and bottlenecks.

��

N Im-

ages

N Particles N Particles

Per Image

Time

(secs)

1 8320 8320 44.279
4 33024 8256 44.953
16 131584 8224 49.400
2 131584 65792 355.835
8 525312 65664 364.091
32 2099200 65600 370.000

Table 2: Weak scaling performance of coarray version.

Number of images

Sp
ee

du
p

(t 1
im

ag
e/t

N
 im

ag
es

)

4 8 12 16 20 24 28 32 36 40 44 48

4

8

12

16

20

24

28

32

36

40

44

48 64 Bands
128 Bands
256 Bands
512 Bands
Ideal

Figure 7: Speedup obtained with parallel co_sum imple-
mentation using multiple images on a single server with 64
GB of RAM and four AMD Opteron 6238 Processors, each
with 12 cores.

see that the speedup was very poor when the number of
processors were increased.

We used TAU [7] to profile the parallel runs on the “basic”
nodes of the ACISS2 to understand the bottlenecks dur-
ing execution. Each node has two X5650 6-core CPUs at
2.67GHz, and 72GB DDR3 memory. Figure 6 shows the
TAU plot for the runtime share for the dominant procedures
using di�erent number of images. We identified the chief
bottlenecks to be the collective co_sum procedures which
sum values across a coarray by sequentially polling each im-
age for its portion of the coarray. The time required for
this procedure is O(Nimages). Designing an optimal co_sum
algorithm is a platform-dependent exercise best left to com-
pilers. The Fortran standards committee is working on a
co_sum intrinsic procedure that will likely become part of
Fortran 2015. But to improve the parallel performance of
the program, we rewrote the collective co_sum procedures
using a binomial tree algorithm that is O(logNimages) in
time.

Table 2 shows the weak scaling performance of the pro-
gram using the binomial tree collective sum procedures. The
number of particles as shown in Figure 1 scales as the square
of the number of bands. Therefore, when doubling the num-
2http://aciss.uoregon.edu

ber of bands, the number of processors must be quadrupled
to have the same execution time.

Figure 7 shows the speedup obtained for di�erent number
of bands using the parallel co_sum algorithms with the Intel
Fortran compiler using the first scheme (uniform distribu-
tion of the particles) described in the Coarray Parallelization
section. These tests were run on a single server that had four
AMD Opteron 6238 12-core CPUs and 64 GB of RAM. The
results show that eliminating the bottleneck has improved
the scaling performance of the program. Also the scaling ef-
ficiency increases when the problem size is increased which
shows that the poor scaling at smaller problem sizes is due
to communication and synchronization.

6. CONCLUSIONS AND FUTURE WORK
We demonstrated a strategy for parallelizing legacy For-

tran 77 codes using Fortran 2008 coarrays. The strategy
starts with constructing extensible tests using Fortran’s OOP
features. The tests check for regressions in accuracy and per-
formance. In the PRM case study, our strategy expanded
two Fortran 77 codes by 10% and 40%, exclusive of the test
and I/O infrastructure. The most significant code revision
involved unrolling two nested loops that distribute particles
across images. The resulting parallel code achieves even load
balancing. TAU identified the chief bottleneck as a sequen-
tial summation scheme.

Based on these preliminary results, we rewrote our co_sum
procedure, and the speedup showed marked improved. We
are currently benchmarking alternative summation algorithms,
including a co_sum implementation available in the Cray
compiler. However our work has been stalled due to some
compiler/runtime bugs when using distributed memory coar-
rays. We expect to complete this work soon, and present the
full set of benchmarking and optimization results.

Acknowledgements
This work used hardware resources from the ACISS cluster
at the University of Oregon acquired by a Major Research
Instrumentation grant from the National Science Founda-
tion, O�ce of Cyber Infrastructure, "MRI- R2: Acquisition
of an Applied Computational Instrument for Scientific Syn-
thesis (ACISS)," Grant #: OCI-0960354.

Sandia is a multi-program laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the National
Nuclear Security Administration under contract DE-AC04-
94-AL85000. Portions of the Sandia contribution to this
work were funded by the New Mexico Small Business Ad-
ministration and the O�ce of Naval Research.

The initial code refactoring was performed at the Univer-
sity of Cyprus with funding from the European Commission
Marie Curie ToK-DEV grant (Contract MTKD-CT-2004-
014199). Part of this work was also supported by the Cyprus
Research Promotion Foundation’s Framework Programme
for Research, Technological Development and Innovation
2009-2010 (DESMH 2009-2010) under Grant TPE/PLHRO
/0609(BE)/11.

References
[1] B. L. Achee and D. L. Carver. Creating object-oriented

designs from legacy fortran. Journal of Systems and Soft-
ware, 37:179–194, 1997.

��

[2] C. Greenough and D. J. Worth. The transformation of
legacy software: Some tools and processes. Technical Re-
port TR-2004-012, Council for the Central Laboratory of
the Research Councils, Rutherford Appleton Laborato-
ries, Chilton, Didcot, Oxfordshire, UK, 2004.

[3] S. Kassinos and E. Akylas. Advances in particle repre-
sentation modeling of homogeneous turbulence. from the
linear prm version to the interacting viscoelastic iprm. In
F. Nicolleau, C. Cambon, J.-M. Redondo, J. Vassilicos,
M. Reeks, and A. Nowakowski, editors, New Approaches
in Modeling Multiphase Flows and Dispersion in Tur-
bulence, Fractal Methods and Synthetic Turbulence, vol-
ume 18 of ERCOFTAC Series, pages 81–101. Springer
Netherlands, 2012.

[4] S. C. Kassinos and W. C. Reynolds. A particle represen-
tation model for the deformation of homogeneous turbu-
lence. In Annual Research Briefs, pages 31–61, Center
for Turbulence Research, Stanford University, Stanford,
CA, 1996.

[5] M. Metcalf, J. K. Reid, and M. Cohen. modern fortran
explained. Oxford University Press, 2011.

[6] C. D. Norton and V. K. Decyk. Modernizing fortran 77
legacy codes. NASA Tech Briefs, 27(9):72, 2003.

[7] S. Shende and A. D. Malony. Tau parallel perfor-
mance system. International Journal of High Perfor-
mance Computing Applications, 20(2):287–311, Summer
2006.

[8] F. G. Tinetti and M. Méndez. Fortran legacy software:
Source code update and possible parallelisation issues.
ACM Fortran Forum, 31(1), April 2012.

��

