
Knowledge Support and Automation

for Performance Analysis

with PerfExplorer 2.0

Kevin A. Huck∗, Allen D. Malony,
Sameer Shende and Alan Morris

Performance Research Laboratory
Computer and Information Science Department

University of Oregon
1201 University of Oregon, Eugene, OR, 97413 USA

khuck@cs.uoregon.edu

Phone: (541)346-4409, Fax: (541) 346-5373

Abstract

The integration of scalable performance analysis in parallel develop-

ment tools is difficult. The potential size of data sets and the need to

compare results from multiple experiments presents a challenge to man-

age and process the information. Simply to characterize the performance

of parallel applications running on potentially hundreds of thousands of

processor cores requires new scalable analysis techniques. Furthermore,

many exploratory analysis processes are repeatable and could be auto-

mated, but are now implemented as manual procedures. In this paper, we

will discuss the current version of PerfExplorer, a performance analysis

framework which provides dimension reduction, clustering and correlation

analysis of individual trails of large dimensions, and can perform relative

performance analysis between multiple application executions. PerfEx-

plorer analysis processes can be captured in the form of Python scripts,

automating what would otherwise be time-consuming tasks. We will give

examples of large-scale analysis results, and discuss the future develop-

ment of the framework, including the encoding and processing of expert

performance rules, and the increasing use of performance metadata.

Keywords: parallel performance analysis, data mining, scalability, scripting,
metadata, knowledge supported analysis

∗Corresponding author

1

1 Introduction

Parallel applications running on high-end computer systems manifest a complex

combination of performance phenomena, such as communication patterns, work

distributions, and parametric study results. Tools that analyze parallel perfor-

mance attempt to observe these phenomena in measurement datasets captured

by instrumentation of the source code with timers, or by periodically sampling

the program counter during runtime. The resulting datasets are rich with in-

formation, potentially relating multiple performance metrics to performance

variations and parameters specific to the application-system experiment.

One common representation of performance data is as performance profiles.

Each profile represents an aggregation of one metric as measured in one region

of code on one thread of execution, such as how many floating point operations

were executed, or how many cache misses occurred. Analysis tools use this data

to identify behavior such as performance hot spots and irregular work distribu-

tion across threads of execution. They can also calculate and display summary

statistics, such as average time (across threads) spent in one function, or corre-

late between the time spent in two or more functions. While the results from

current performance tools are useful to trained analysis experts, next generation

tools need to go beyond the display of summary statistics and provide in-depth

analysis and explanation of performance results to the user.

The TAU Performance System [25] is a portable profiling and tracing toolkit

for performance analysis of parallel programs written in Fortran, C, C++, Java,

and Python. Instrumentation and measurement tools such as TAU can collect

very detailed performance data from parallel applications. The potential sizes

of datasets and the need to assimilate results from multiple experiments makes

it a challenge to both process the information and discover and understand

new insights about performance. In order to perform analysis on these large

2

collections of performance experiment data, we developed PerfExplorer [9], a

framework for parallel performance data mining and knowledge discovery. The

framework architecture enables the development and integration of data mining

operations that can be applied to parallel performance profiles. PerfExplorer is

built on a performance data management framework called PerfDMF [8], which

provides a library to access the parallel profiles and save analysis results in a

relational database. PerfDMF includes support for nearly a dozen performance

profile formats, including TAU profiles. The application is integrated with exist-

ing analysis toolkits (R [29], Weka [32]), and provides for extensions using those

toolkits. Both PerfDMF and PerfExplorer are free, open-source tools included

in the TAU distribution.

A performance data mining framework should support both advanced analy-

sis techniques as well as extensible meta analysis of performance results. The use

of process control for analysis scripting (see Section 2.1), persistence and prove-

nance mechanisms for retaining analysis results and history (see Section 2.4),

metadata for encoding experiment context (see Section 2.2), and support for

reasoning about relationships between performance characteristics and behav-

ior (see Section 2.3) all are important for productive performance analytics.

The framework must also be concerned about how to interface with applica-

tion developers in the performance discovery process. The ability to engage in

process programming (the ability to capture analysis workflows), knowledge en-

gineering (including the performance context and inference rules which explain

performance results), and results management opens the framework tool set for

creating data mining environments specific to the developer’s concerns.

We have redesigned our integrated framework for performing meta analy-

sis to incorporate parallel performance data, performance context metadata,

expert knowledge, and intermediate analysis results. Methods were required

3

for correlating context metadata with the performance data and the analysis

results in order to provide the capability to generate desired empirical perfor-

mance results from accurate suggestions on how to improve performance. Con-

structing this framework also required methods for encoding expert knowledge

to be included in the analysis of performance data from parametric experi-

ments. Knowledge about subjects such as hardware configurations, libraries,

components, input data, algorithmic choices, runtime configurations, compiler

choices, and code changes will augment direct performance measurements to

make additional analysis combinations possible.

The remainder of the article is as follows. We discuss our analysis approach

for the framework and our implementation in Section 2. We will present some

recent analysis examples which demonstrate some new PerfExplorer features

in Section 3, discuss related work in Section 4 and present future work and

concluding remarks in Section 5.

2 PerfExplorer Design

PerfExplorer[8] was originally designed as a Java application for data mining

multi-experiment parallel performance profiles. Its capabilities included general

statistical analysis of performance data, dimension reduction, clustering, and

correlation of performance data, and multi-experiment data query and manage-

ment. These functions were provided by existing analysis toolkits (R[29] and

Weka[32]), and our profile database system PerfDMF[8].

While PerfExplorer was a step forward in the ability to automatically pro-

cess complex statistical functions on large amounts of multi-dimensional parallel

performance data, its functionality was limited in two respects. First, the tool

only allowed a user to select from a limited number of analysis operations via a

graphical user interface. Reliably repeatable and user configurable analysis pro-

4

cesses were not possible. Second, PerfExplorer only provided new visualizations

and descriptions of the data – it did not explain the performance characteristics

or behavior observed (i.e., meta analysis). Scripting and support for retaining

intermediate results helped to address the first shortcoming. The second was

more challenging.

For example, an analyst can determine that in a test using 16 processors,

application X spent 30% of its total execution time in function foo(), and

that when the number of processors is increased to 32, the percentage of time

may go up, down, or stay the same, depending on the purpose of the function.

However, PerfExplorer did not have the capability to explain why the change

happened. The explanation may be as simple as the fact that the input problem

also doubled in size, but without that contextual knowledge, no analysis tool

could be expected to come to any conclusions about the cause of the performance

change without resulting to speculation.

As we discuss our enhancements to PerfExplorer, we will consider two anal-

ysis cases: 1) we have collected parallel performance data from multiple ex-

periments, and we wish to compare their performance, or 2) we have collected

performance data from one experiment, and would like to compare the per-

formance between processes or threads of execution. Like other tools, PerfEx-

plorer could provide the means for an analyst to determine which execution is

the “best” and which is the “worst”, and can even help the analyst investigate

further into which regions of code are most affected, and due to which metrics.

However, there was no explicit process control, which is required in order to

perform repeated analysis procedures or non-interactive analysis automation,

nor was there higher-level reasoning or analysis of the performance result in

order to explain what may have caused the performance differences. In order to

perform these types of meta-analysis, several components are necessary to meet

5

the desired goals.

Figure 1 shows the redesigned PerfExplorer components, and Figure 2 shows

the interaction between components in the new PerfExplorer design. The per-

formance data and accompanying metadata, discussed in Section 2.2, are stored

in the PerfDMF database. Performance data is used as input for statistical

analysis and data mining operations, as was the case in the original version of

PerfExplorer. The new design adds the ability to make all intermediate anal-

ysis data and final results persistent. Expert knowledge is incorporated into

the analysis, and these new inputs allow for higher-level analysis. The expert

knowledge can be application specific, machine specific, or just general parallel

computing knowledge. An inference engine is added to combine the perfor-

mance data, analysis results, expert knowledge and execution metadata into a

performance characterization. The provenance of the analysis result is stored

with the result, along with all intermediary data, using object persistence. The

whole process is contained within a process control framework, which provides

user control over the performance characterization process.

2.1 Process Control

One of the key aspects of the new PerfExplorer design is the requirement for

process control. While user interfaces and data visualization are useful for

interactive data exploration, the user will need the ability to control the analysis

process as a discrete set of operations.

There are several types of parametric study commonly seen in the parallel

performance literature: application benchmarking, machine benchmarking, ap-

plication performance testing and workload characterization. For each of these

studies, application performance data is collected while varying one or more

configuration parameters. Usually, the data collection process is automated, to

6

prevent errors or omissions. In each of these studies, the analysis process can

and should be automated in order to prevent analysis mistakes and to streamline

the analysis processing.

In order to chain analysis operations together in a repeatable framework,

PerfExplorer required an extension mechanism for creating higher-order analysis

procedures. One way of doing this is through a scripting interface, such as

Jython[20], a full Python interpreter written in Java. Because PerfExplorer

is a Java application, all of the application objects are available to the script

interface, but we limit the access to a smaller subset API. With the interface,

it is straightforward to derive new metrics, perform analysis, and automate the

processing of performance data. An example script is shown in Figure 3. This

simple example loads some general purpose inference rules, loads a trial from

PerfDMF, derives floating point operations per second, and then compares each

event’s exclusive value with the inclusive value of main before processing the

rules, where an event is defined as any instrumented code region.

2.2 Collecting and Integrating Metadata

Performance instrumentation and measurement tools such as TAU[25] collect

context metadata along with the application performance data. This metadata

contains potentially useful information about the build environment, runtime

environment, configuration settings, input and output data, and hardware con-

figuration. Metadata examples which are automatically collected by the pro-

filing provided by TAU include fields such as processor speed, node hostname,

and cache size. By integrating these fields into the analysis process, the analysis

framework can reason about potential causes for performance failures.

The TAU instrumentation and measurement toolkit provides three ways to

acquire metadata for analysis:

7

• The default behavior for the TAU measurement toolkit is to collect com-

mon hardware and software metadata from the runtime environment, such

as processor speed, memory size, cache size, operating system version, etc.

Table 1 shows examples of metadata fields which are automatically col-

lected by the profiling provided by TAU. It should be easy to see how

fields such as CPU MHz, Cache Size or Memory Size would be useful in

explaining the differences between executions. In addition, on specialized

hardware such as the IBM BlueGene/L or BlueGene/P systems, there are

additional system calls which can provide detailed information about the

hardware and the logical mapping of the processes to physical nodes.

• The TAU instrumentation API has a method, TAU METADATA(), which the

application analyst can insert into the code. This is the primary way for

an end user to collect metadata about their application. The method takes

two parameters, a name and a value. Any data of interest can be inserted

into the metadata to be used later in the analysis. Input variables, runtime

configuration settings, application arguments, and domain decompositions

can be specified by the user.

• The PerfDMF data importer can take an optional XML file with metadata

fields which contain name/value pairs to be included in the performance

metadata. The schema is very simple, and does not require special XML

processing libraries to generate. Information relating to the build environ-

ment, compiler options, input files, batch system, allocated hardware, or

anything else that might assist the performance analysis can be included

in this XML file.

8

2.3 Inference Engine

In order to provide the type of higher-level reasoning and meta-analysis we re-

quire in our design, we have integrated a JSR-94 [27] compliant rule engine,

JBoss Rules[21]. The selection of an inference engine and processing rules al-

lows another method of flexible control of the process, and also provides the

possibility of developing a domain specific language to express the analysis.

As mentioned in Section 2.1, there are several types of parametric study

commonly seen in the parallel performance literature. In the example of a

scalability study, the number of processors used and the input problem size is

varied, and empirical performance results are compared with expected results,

based on baseline comparisons. In each of these parametric studies, we have

identified eight common categories of parameters, listed in Table 2, along with

example parameters for each category and an example of a known assumption,

or expert knowledge, about a parameter in that category that could be helpful

in analyzing the performance of an experiment.

As an example, the first category includes differences between architectures,

such as when porting an application, or performing an application benchmark-

ing study on more than one architecture. Parameters such as CPU type and

speed, the amount of cores per CPU, the number of CPUs per node, etc. all

represent useful information when comparing two or more architectures. In or-

der to utilize this information, performance assumptions can be made in the

analysis process which will help guide the analysis. For example, consider an

application executed with the same configuration on two different machines. If

the metadata shows that the only difference between the two machines is the

speed of the CPU, then the analysis should correlate the performance differences

between the two executions to the differences in speed. As another example,

suppose that we can identify a region of code as inherently sequential. Any scal-

9

ability analysis of this region could then assume that there will be no expected

improvement by increasing the number of processors, and will not flag this sec-

tion as a performance bottleneck. While these are overly simplified examples,

they illustrate the potential utility that expert knowledge about an execution

can provide to the performance analysis. Some expert knowledge would be spe-

cific to the analysis task at hand, while other examples would be reusable across

many if not all parametric studies.

An example rule is shown in Figure 4. This example rule will fire for any and

all events which have a lower than average L2 cache hit rate, and also account

for at least 10% of the total run time. In this example, the conclusion is output

to the user, but the rules can also fire other scripts, or request operations from

the PerfExplorer API directly. Facts which result in the execution of rules can

be asserted in PerfExplorer operations directly, or facts can be asserted by the

scripts.

2.4 Provenance and Data Persistence

In order to rationalize analysis decisions, any explanation needs to include the

data provenance, or the full chain of evidence and handling from raw data to

synthesized analysis result. The new PerfExplorer design will include the ability

to make all intermediate analysis data persistent, not just the final summariza-

tion. The provenance of the analysis result is stored with the results and all

intermediary data, using object persistence[22]. Any scientific endeavor is con-

sidered to be of “good provenance” when it is adequately documented in order

to allow reproducibility. For parallel performance analysis, this includes all

raw data, analysis methods and parameters, intermediate results, and inferred

conclusions.

10

3 Analysis Examples

3.1 S3D

S3D[2] is a multi-institution collaborative effort with the goal of creating a

terascale parallel implementation of a turbulent reacting flow solver. S3D uses

direct numerical simulation (DNS) to model combustion science which produces

high-fidelity observations of the micro-physics found in turbulent reacting flows

as well as the reduced model descriptions needed in macro-scale simulations of

engineering-level systems. The examples described here were run on Jaguar[19],

the hybrid Cray XT3/XT4 system at Oak Ridge National Laboratory (ORNL).

During scalability tests (from 1 to 12,000 processors) of S3D instrumented

with TAU, it was observed that as the number of processors exceeded 1728,

the amount of time spent in communication began to grow significantly, and

MPI Wait() in particular composed a significant portion of the overall run time

(approximately 20%). By clustering the performance data in PerfExplorer, it

was observed that there were two natural clusters in the data. The first cluster

consisted of a majority of the processes, and these nodes spent less time in

main computation loops, but a long time in MPI Wait(). The other cluster of

processes spent slightly more time in main computation loops, and far less time

in MPI Wait().

By automatically collecting the MPI host names with the TAU metadata

collection, we were able to determine, at runtime, the names of the nodes on

which the processes ran. The node IDs were stored in the metadata with the

performance data. In the case of a 6400 process run, as shown in Figure 5,

there were again two clusters, with 228 processes in one cluster having very

low MPI Wait() times (about 40 seconds), and the remainder of the processes

in one cluster having very high MPI Wait() times (over 400 seconds). The

metadata was then manually correlated with information about the hardware

11

characteristics of each node, identified the slower nodes as XT3 nodes, and the

faster nodes as XT4 nodes. There are two primary differences between the

XT3 and XT4 partitions. The XT3 nodes have slower DDR-400 memory (5986

MB/s) than the XT4 nodes’ DDR2-667 memory (7147 MB/s), and the XT3

partition has a slower interconnection network (1109 MB/s v. 2022 MB/s).

Because the application is memory intensive, the slower memory modules have

a greater effect on the overall runtime, causing the XT3 nodes to take longer

to process, and subsequently causing the XT4 nodes to spend more time in

MPI Wait().

In order to remove this last manual step to correlating application perfor-

mance with hardware characteristics, we needed more information about the

nodes than was available from the metadata. By using the nodeinfo utility

available from the batch system, we were able to collect information about each

node in the allocation, including the memory speed and interconnect speed,

which directly identify the XT3 and XT4 nodes in the full machine. Using a

python script, the nodeinfo data was formatted as XML, and loaded with the

performance data using the third method outlined in Section 2.2. A PerfEx-

plorer script was written which loaded the trial data, extracted the five most

time consuming code regions and correlated the event performance with the

metadata fields for each thread of execution. An inference rule was used to

identify the code regions which had an effectively inverse correlation between

run time and both memory speed and interconnect speed.

Running S3D on an XT4-only configuration yielded roughly a 12% time to

solution reduction over the hybrid configuration, primarily by reducing MPI -

Wait() times from an average of 390 seconds down to 104 seconds. If this

application is to be run on a heterogeneous configuration of this machine or

any other, load balancing should be integrated which takes into consideration

12

the computational capacity of each respective processor. The use of metadata

would also be important for this optimization.

3.2 GTC

The Gyrokinetic Toroidal Code (GTC)[5] is a particle-in-cell physics simulation

which has the primary goal of modeling the turbulence between particles in the

high energy plasma of a fusion reactor. Scalability studies of the original large-

scale parallel implementation of GTC (there are now a small number of parallel

implementations, as the development has fragmented) show that the applica-

tion scales very well - in fact, it scales at a better than linear rate. However,

discussions with the application developers revealed that it had been observed

that the application gradually slows down as it executes[31] - each successive

iteration of the simulation takes more time than the previous iteration.

In order to measure this behavior, the application was auto-instrumented

with TAU, and manual instrumentation was added to the main iteration loop

to capture dynamic phase information. The application was executed on 64

processors of the Cray XT3/XT4 system at ORNL for 100 iterations, and the

performance data was loaded into PerfDMF. A simple analysis script was con-

structed in order to examine the dynamic phases in the execution. The script

was used to load the performance data, extract the dynamic phases from the

profile, calculate derived metrics (L1 and L2 cache hit ratios, FLOPs), calculate

basic statistics for each phase, and graph the resulting data as a time series

showing average, minimum and maximum values for each iteration.

As shown in Figure 6, during a 100 iteration simulation, each successive

iteration takes slightly more time than the previous iteration. Over the course

of the test simulation, the last iteration takes nearly one second longer than

the first iteration. As a minor observation, every fourth iteration results in

13

a significant increase in execution time. Hardware counters revealed that the

L2 cache hit-to-access ratio decreases from 0.92 to 0.86 (L1 cache hit-to-access

ratios also decrease, but to a lesser extent). Subsequently, the GFLOPs per

processor rate decreases from 1.120 to 0.979. Further analysis of the routines

called from the main loop show that the decrease in execution is limited to

two routines, CHARGEI and PUSHI. In the CHARGEI routine, each particle in a

region of the physical subdomain applies a charge to up to four cells, and in the

PUSHI routines, the particle locations are updated by the respective cells after

the forces are calculated. The increase in time every fourth iteration is due

to a diagnostic call, which happens every ndiag iterations, an input parameter

captured as metadata.

A second script for this problem was also developed, which loaded the per-

formance data, extracted the top ten time consuming code regions, derived the

L1, L2 and FLOPs metrics, and then compared each code region to the over-

all performance of the application. An inference rule was constructed which

identified code regions which had lower than average cache hit ratios. The com-

bination of this script and rule identified the same code functions, CHARGEI and

PUSHI, as having poor cache behavior. Another script possibility, which was

not explored, would be to correlate the iteration number with the performance

of each code region. We would expect to see that the reduced cache hit ratios

would be identified as correlated with the iteration number.

Discussions with other performance analysis experts on the project revealed

that the CHARGEI and PUSHI routines have good spatial locality when referenc-

ing the particles, however over time, they have poor temporal locality when

referencing the grid cells. As a result, access to the grid cells becomes random

over time. Further analysis is necessary to determine whether the expense of

re-ordering the particles at the beginning of an iteration could be amortized

14

over a number of iterations, and whether this added cost would yield a benefit

in the execution time. While it appears that the performance degradation lev-

els out after roughly 30 iterations, it should be pointed out that a full run of

this simulation is at least 10,000 iterations, and as the 5,000 iteration execution

shows in Figure 6 (d), the performance continues to degrade. Assuming a 10,000

iteration execution would take an estimated 20 hours to complete on the Cray

XT3/XT4, potentially 2.5 hours of computation time per processor could be

saved by improving the cache hit ratios.

4 Related Work

Hercule[15, 14, 13] is a parallel performance diagnosis tool which uses the expert

system CLIPS to process computational model-centric rules which can diag-

nose common performance problems. Hercule’s rules define symptoms of known

parallel application problems, such as load imbalance, insufficient paralleliza-

tion, etc., and encodes possible solutions for correcting these known problems.

Hercule takes as input the application’s parallel model, and diagnoses known

problems from the input data and the application model assumptions. Hercule

analyzes event trace files, not profiles.

EXPERT[26], from the KOJAK[12] project, is an automatic event-trace

analysis tool for MPI and OpenMP applications. It searches the traces for

execution patterns indicating low performance and quantifies them according

to their severity. The patterns target both problems resulting from inefficient

communication and synchronization as well as from low CPU and memory per-

formance. Unlike our proposed approach, EXPERT searches for known prob-

lems, rather than focusing on characterization and new problem discovery. Also,

the performance data analyzed is trace data. CUBE[33] is a graphical browser

suitable for displaying a wide variety of performance measurements for par-

15

allel programs including MPI and OpenMP applications, and is the primary

analysis viewer for SCALASCA[7], a parallel implementation of the EXPERT

trace analysis methods. CUBE implements Performance Algebra[11], a tech-

nique for performing difference, merge and aggregation operations on parallel

performance profile data. While CUBE provides a powerful interface for visu-

alization and exploratory analysis of the differences between two performance

data sets, there is no mechanism for linking the performance behavior to the

performance context, and providing the user with a meaningful explanation of

why the performance differs between the two profiles.

Paradyn[18] utilizes the Performance Consultant[11] and Distributed Perfor-

mance Consultant[23] for run-time and offline discovery of known performance

problems. The latest version of the Performance Consultant uses historical

performance data to help guide bottleneck detection. While the Performance

Consultant does include contextual information about the runtime environment

to help explain performance differences, there doesn’t appear to be a mechanism

for including additional expert knowledge about the application, such as data or

event relationships. And like the aforementioned tools, the Performance Con-

sultant’s strength is in diagnosing known performance problems, rather than

general performance characterization.

KappaPi[3, 4] (Knowledge-based Automatic Parallel Program Analyzer for

Performance Improvement) and KappaPI2[10] are tools which use trace files

from PVM and MPI applications, detect known performance bottlenecks, and

determine causes by applying inference rules. The causes are then related back

to the source code and suggest recommendations to the user.

Performance Assertions[30] have been developed to confirm that the empir-

ical performance data of an application or code region meets or exceeds that

of the expected performance. By using the Assertions, the programmer can re-

16

late expected performance results to variables in the application, the execution

configuration (i.e. number of processors), and pre-evaluated variables (i.e. peak

FLOPS for this machine). This technique allows users to encode their perfor-

mance expectations for regions of code, confirm these expectations with empiri-

cal data, and even make runtime decisions about component selection based on

this data. The use of performance assertions requires extensive annotation of

source code, and requires the application developer’s experience and intuition

in knowing where to insert the assertions, and what kind of performance result

to expect.

JavaPSL[6] is a Java Performance Specification Language, designed to be

used to specify techniques for searching for known performance problems such

as poor scaling, load imbalance, and communication overhead. The specification

language could be useful in the application of search heuristics in a particular

diagnosis process, and represents a good example of the type of low-level analysis

whose results could be used in conjunction with expert knowledge and context

metadata to suggest the causes of performance phenomena.

Directly relevant to PerfDMF are the projects that utilize a performance

database as a component of a performance analysis system, particularly for

multi-experiment performance analysis. The SIEVE (Spreadsheet-base Interac-

tive Event Visualization Environment) system [24] showed the benefit of a sim-

ple table-based structuring of performance data coupled with a programmable

analysis engine. More sophisticated performance data models, such as found in

Paradyn [18] and CUBE [26], allow a richer analysis algebra to be applied to

multi-experiment performance information.

HPCToolkit [16] is able to merge data from multiple performance experi-

ments in a database that is correlated with the program source and hyperlinked

for analysis and viewing with the HPCView [17] tool. Performance data ma-

17

nipulated by HPCView can come from any source, as long as the profile data

can be translated or saved directly to a standard, profile-like input format. The

toolkit provides a interactive interface that allows the user to define expressions

to compute derived metrics as functions of the measured data and of previously-

computed derived metrics.

The Prophesy system [28] successfully applies a performance database to

manage multi-dimensional performance information for parallel analysis and

modeling. The database is a core component of the system, implemented using

relational DBMS technology and storing detailed information from the Prophesy

measurement system and performance modeling processes. Prophesy also uses

some statistical analysis methods to do application performance analysis and

prediction.

The primary inspiration for the data mining aspect of PerfExplorer is the

research by Ahn and Vetter[1]. Those authors chose to use several multivariate

statistical analysis techniques to analyze parallel performance behavior. The

types of analysis they performed included cluster analysis and F-ratio, fac-

tor analysis, and principal component analysis. They showed how hardware

counters could be used to analyze the performance of multiprocessor parallel

machines.

5 Future Work and Concluding Remarks

In this paper, we have discussed the new design and implementation of Perf-

Explorer, including components for scripting, metadata encoding, expert rules,

provenance and data persistence. In our examples, we have discussed how fea-

tures such as metadata encoding and scripting aid in the analysis process. De-

velopment of general purpose, application and machine specific inference rules

is ongoing. In the future, we hope that PerfExplorer will be distributed with an

18

extensive library of analysis scripts, and accompanying inference rules. However,

the real strength of the framework is the ability for users to customize the anal-

ysis to fit the task at hand. While the metadata support in PerfExplorer allows

for some manual correlation between contextual information and performance

results, more extensive analysis rules to interpret the results with respect to the

contextual information would aid us in our long term goal of a performance tool

which would summarize performance results and link them back to the actual

causes, which are essentially the context metadata relating to the application,

platform, algorithm, and known related parallel performance problems. Encod-

ing this knowledge form that our performance tool can use is instrumental in

developing new analysis techniques that capture more information about the

experiment than simply the raw performance data.

6 Acknowledgments

Research at the University of Oregon is sponsored by contracts (DE-FG02-

07ER25826 and DE-FG02-05ER25680) from the MICS program of the U.S.

Dept. of Energy, Office of Science and the NSF (grant #CCF0444475). The

authors would like to thank PERI, SciDAC, ORNL, NERSC and RENCI for

including us in the PERI SciDAC project, and a special thanks to John Mellor-

Crummey for a better understanding of the locality issues in GTC.

References

[1] D. Ahn and J. Vetter. Scalable analysis techniques for microprocessor

performance counter metrics. In Proceedings of Supercomputing, 2002.

[2] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes,

S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummy, N. Podhorski,

19

R. Sankaran, S. Shende, and C. S. Yoo. Terascale direct numerical simula-

tions of turbulent combustion using S3D. (to appear) Institute of Physics

(IOP) Journal, 2007.

[3] A. Espinosa, T. Margalef, and E. Luque. Automatic performance evaluation

of parallel programs. In IEEE Proceedings of the 6th Euromicro Workshop

on Parallel and Distributed Processing, January 1998.

[4] A. Espinosa, T. Margalef, and E. Luque. Automatic performance analysis

of PVM applications. In EuroPVM/MPI, volume LNCS 1908, pages 47–55,

2000.

[5] S. Ethier, W.M. Tang, and Z. Lin. Gyrokinetic particle-in-cell simulations

of plasma microturbulence on advanced computing platforms. Journal of

Physics: Conference Series, 16:1–15, 2005.

[6] Thomas Fahringer and Clóvis Seragiotto Júnior. Modeling and detecting

performance problems for distributed and parallel programs with JavaPSL.

In Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference on

Supercomputing (CDROM), pages 35–35, New York, NY, USA, 2001. ACM

Press.

[7] Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scal-

able parallel trace-based performance analysis. In Proc. 13th European

PVM/MPI Users’ Group Meeting, volume 4192 of LNCS, pages 303–312,

Bonn, Germany, September 2006. Springer.

[8] K. Huck, A. Malony, R. Bell, and A. Morris. Design and implementation of

a parallel performance data management framework. In Proceedings of the

International Conference on Parallel Computing, 2005 (ICPP2005), pages

473–482, 2005.

20

[9] Kevin A. Huck and Allen D. Malony. PerfExplorer: A performance data

mining framework for large-scale parallel computing. In Conference on

High Performance Networking and Computing (SC’05), Washington, DC,

USA, 2005. IEEE Computer Society.

[10] J. Jorba, T. Margalef, and E. Luque. Performance analysis of parallel ap-

plications with kappapi2. Parallel Computing: Current & Future Issues of

High-End Computing, Proceedings of the International Conference ParCo

2005, 33:155–162, 2006.

[11] K. Karavanic and B. Miller. On-Line Monitoring Systems and Computer

Tool Interoperability, chapter A Framework for Multi-Execution Perfor-

mance Timing. Nova Science Publishers, New York, USA, 2003.

[12] KOJAK. Kojak. http://www.fz-jeulick.de/zam/kojak/, 2006.

[13] L. Li and A. D. Malony. Model-based performance diagnosis of master-

worker parallel computations. In Europar 2006, 2006.

[14] Li Li and Allen D. Malony. Knowledge engineering for automatic paral-

lel performance diagnosis. Concurrrency and Computation: Practice and

Experience to appear, 2006.

[15] Li Li, Allen D. Malony, and Kevin Huck. Model-based relative performance

diagnosis of wavefront parallel computations. In HPCC, Munich, Germany,

2006.

[16] J. Mellor-Crummey. Hpctoolkit: Multi-platform tools for profile-based per-

formance analysis. In 5th International Workshop on Automatic Perfor-

mance Analysis (APART), November 2003.

21

http://www.fz-jeulick.de/zam/kojak/

[17] J. Mellor-Crummey, R. Fowler, and G. Marin. Hpcview: A tool for top-

down analysis of node performance. The Journal of Supercomputing, 23:81–

101, 2002.

[18] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Kara-

vanic, K. Kunchithapadam, and T. Newhall. The Paradyn parallel perfor-

mance measurement tool. Computer, 28(11):37–46, 1995.

[19] National Center for Computational Sciences. Resources - National Center

for Computational Sciences (NCCS). http://info.nccs.gov/resources/

jaguar, September 2007.

[20] Python Software Foundation. The Jython Project. http://www.jython.

org/.

[21] Red Hat Middleware, LLC. Jboss.com - jboss rules. http://www.jboss.

com/products/rules.

[22] Red Hat Middleware, LLC. Relational Persistence for Java and .NET.

http://www.hibernate.org/, 2007.

[23] P. Roth. Towards automatic performance diagnosis on thousands of nodes.

5th International APART Workshop, SC2003 Conference, November 2003.

[24] S. Sarukkai and D. Gannon. Sieve: A performance debugging environment

for parallel programs. J. Parallel Distrib. Comput., 18(2):147–168, 1993.

[25] Sameer Shende and Allen D. Malony. The TAU parallel performance sys-

tem. The International Journal of High Performance Computing Applica-

tions, 20(2):287–331, Summer 2006.

[26] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An algebra for

cross-experiment performance analysis. In Proceedings of 2004 Interna-

22

http://info.nccs.gov/resources/jaguar
http://info.nccs.gov/resources/jaguar
http://www.jython.org/
http://www.jython.org/
http://www.jboss.com/products/rules
http://www.jboss.com/products/rules
http://www.hibernate.org/

tional Conference on Parallel Processing (ICPP’04), pages 63–72, Mon-

treal, Quebec, Canada, 2004.

[27] Sun Microsystems. The Java Community Process(SM) Program - JSRs:

Java Specification Requests - detail JSR#94. http://jcp.org/en/jsr/

detail?id=94, 2008.

[28] V. Taylor, X. Wu, and R. Stevens. Prophesy: An infrastructure for perfor-

mance analysis and modeling of parallel and grid applications. SIGMET-

RICS Perform. Eval. Rev., 30(4):13–18, 2003.

[29] The R Foundation for Statistical Computing. R project for statistical com-

puting. http://www.r-project.org, 2007.

[30] Jeffrey S. Vetter and Patrick H. Worley. Asserting performance expecta-

tions. In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE confer-

ence on Supercomputing, pages 1–13, Los Alamitos, CA, USA, 2002. IEEE

Computer Society Press.

[31] Nathan Wichmann, Mark Adams, and Stephane Ethier. New advances in

the gyrokinetic toroidal code and their impact on performance on the Cray

XT series. In Cray Users Group, 2007.

[32] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann, San Francisco, 2nd edition,

2005. http://www.cs.waikato.ac.nz/~ml/weka/.

[33] F. Wolf and B. Mohr. Automatic performance analysis of SMP cluster

applications. Technical Report 05, Research Centre Julich, 2001.

23

http://jcp.org/en/jsr/detail?id=94
http://jcp.org/en/jsr/detail?id=94
http://www.r-project.org
http://www.cs.waikato.ac.nz/~ml/weka/

Field Example
CPU Cores 4
CPU MHz 2660.006
CPU Type Intel(R) Xeon(R) CPU X5355 @ 2.66GHz
CPU Vendor GenuineIntel
CWD /home/joeuser/tau2/examples/NPB2.3/bin
Cache Size 4096 KB
Executable /home/joeuser/tau2/examples/NPB2.3/bin/lu.C.16
Hostname garuda.cs.uoregon.edu
Local Time 2007-03-29T16:06:08-07:00
Memory Size 8155912 kB
Node Name garuda.cs.uoregon.edu
OS Machine x86 64
OS Name Linux
OS Release 2.6.18.1 ktau 1.7.9 pctr
OS Version #2 SMP Mon Mar 26 17:36:14 PDT 2007
TAU Architecture x86 64
TAU Config -fortran=intel -cc=icc -c++=icpc -mpi . . .
UTC Time 2007-03-29T23:06:08Z
username joeuser

Table 1: Default TAU metadata field examples.

24

Category Parameter Examples Possible Assumptions
Machines processor speed/type, memory

size, number of cores
CPU A faster than CPU B

Components MPI implementation, linear al-
gebra library, runtime compo-
nent

component A faster than B

Input problem size, input data, prob-
lem decomposition

smaller problem means faster
execution, vice-versa

Algorithms FFT vs. DFT algorithm A faster than B for
problem > X

Configurations number of processors, runtime
parameters, number of itera-
tions

more processors means faster
execution, vice-versa

Compiler compiler choice, compiler op-
tions, pre-compiler usage, code
transformations

execution time: -O0 ≥ -O1 ≥
-O2 ≥ -O3 ≥ -fast

Code
Relationships

call order, send-receive part-
ners, concurrency, functionality

code region has expected con-
currency of X

Code Changes code change between revisions newer code expected to be faster

Table 2: Parametric categories and corresponding example assumptions in those
categories.

25

List of Figures

1 The redesigned PerfExplorer components. 27

2 PerfExplorer components and their interactions. 28

3 Sample Jython script. 29

4 Sample JBoss Rules rule. 30

5 S3D cluster analysis. The figure on the left shows the difference in

(averaged mean) execution behavior between the two clusters of

processes. The figure on the right shows a virtual topology of the

MPI processes, showing the locations of the clustered processes.

the red processes ran on XT3 nodes, and the blue processes ran

on XT4 nodes. 31

6 GTC phase analysis. (a) shows the increase in runtime for each

successive iteration, over 100 iterations. (b) shows the decrease

in L2 hit ratio, from 0.92 to 0.86, and (c) shows the decrease in

GFLOPs from 1.120 to 0.979. (d) shows the larger trend when

GTC is run for 5000 iterations, each data point representing an

aggregation of 100 iterations. 32

26

Sc
rip

tin
g

G
UI

Pe
rfE

xp
lo

re
r C

om
po

ne
nt

 In
te

rfa
ce

s

R
W

ek
a

Pe
rfD

M
F

An
al

ys
is

Re
su

lts
Ex

pe
rt

Ru
le

s

M
et

ad
at

a

Pr
ov

en
an

ce
Da

ta
 M

in
in

g
In

fe
re

nc
e

En
gi

ne

Pe
rfo

rm
an

ce

Da
ta

Le
ge

nd
:

An
al

ys
is

Co
m

po
ne

nt
s

Da
ta

 C
om

po
ne

nt
s

Us
er

 In
te

rfa
ce

s
ne

w

F
ig

ur
e

1:
T

he
re

de
si

gn
ed

P
er

fE
xp

lo
re

r
co

m
po

ne
nt

s.

27

Da
ta

 C
om

po
ne

nt
s

An
al

ys
is

Co
m

po
ne

nt
s

DB
M

S
(P

er
fD

M
F)

Da
ta

Pe
rs

ist
en

ce

In
fe

re
nc

e
En

gi
ne

St
at

ist
ica

l A
na

lys
is

Pr
ov

en
an

ce

Ex
pe

rt
Kn

ow
le

dg
e

M
et

ad
at

a

Pe
rfo

rm
an

ce
Da

ta

Da
ta

 M
in

in
g

An
al

ys
is

Re
su

lts

F
ig

ur
e

2:
P
er

fE
xp

lo
re

r
co

m
po

ne
nt

s
an

d
th

ei
r

in
te

ra
ct

io
ns

.

28

#
c
r
e
a
t
e

a
r
u
l
e
b
a
s
e

f
o
r

p
r
o
c
e
s
s
i
n
g

r
u
l
e
H
a
r
n
e
s
s

=
R
u
l
e
H
a
r
n
e
s
s
.
u
s
e
G
l
o
b
a
l
R
u
l
e
s
(
"
r
u
l
e
s
/
G
e
n
e
r
a
l
R
u
l
e
s
.
d
r
l
"
)

#
l
o
a
d

a
t
r
i
a
l

t
r
i
a
l

=
T
r
i
a
l
M
e
a
n
R
e
s
u
l
t
(
U
t
i
l
i
t
i
e
s
.
g
e
t
T
r
i
a
l
(
"
g
t
c
"
,

"
j
a
g
u
a
r
"
,

"
5
1
2
"
)
)

#
c
a
l
c
u
l
a
t
e

t
h
e

d
e
r
i
v
e
d

m
e
t
r
i
c

f
p
O
p
s

=
"
P
A
P
I
_
F
P
_
I
N
S
"

t
i
m
e

=
"
P
_
W
A
L
L
_
C
L
O
C
K
_
T
I
M
E
"

o
p
e
r

=
D
e
r
i
v
e
M
e
t
r
i
c
O
p
e
r
a
t
i
o
n
.
D
I
V
I
D
E

o
p
e
r
a
t
o
r

=
D
e
r
i
v
e
M
e
t
r
i
c
O
p
e
r
a
t
i
o
n
(
t
r
i
a
l
,

f
p
O
p
s
,

t
i
m
e
,

o
p
e
r
)

d
e
r
i
v
e
d

=
o
p
e
r
a
t
o
r
.
p
r
o
c
e
s
s
D
a
t
a
(
)
.
g
e
t
(
0
)

#
c
o
m
p
a
r
e

v
a
l
u
e
s

t
o

a
v
e
r
a
g
e

f
o
r

a
p
p
l
i
c
a
t
i
o
n

m
a
i
n
E
v
e
n
t

=
t
r
i
a
l
.
g
e
t
M
a
i
n
E
v
e
n
t
(
)

f
o
r

e
v
e
n
t

i
n

d
e
r
i
v
e
d
.
g
e
t
E
v
e
n
t
s
(
)
:

M
e
a
n
E
v
e
n
t
F
a
c
t
.
c
o
m
p
a
r
e
E
v
e
n
t
T
o
M
a
i
n
(
d
e
r
i
v
e
d
,

m
a
i
n
E
v
e
n
t
,

d
e
r
i
v
e
d
,

e
v
e
n
t
)

#
p
r
o
c
e
s
s

t
h
e

r
u
l
e
s

r
u
l
e
H
a
r
n
e
s
s
.
p
r
o
c
e
s
s
R
u
l
e
s
(
)

F
ig

ur
e

3:
Sa

m
pl

e
Jy

th
on

sc
ri

pt
.

29

r
u
l
e

"
P
o
o
r

L
2

H
i
t

r
a
t
e
"

w
h
e
n
/
/

t
h
e
r
e

i
s

a
L
2

C
a
c
h
e

h
i
t

r
a
t
e

l
o
w
e
r

t
h
a
n

t
h
e

a
v
e
r
a
g
e

L
2

C
a
c
h
e
H
i
t

r
a
t
e

f
:

M
e
a
n
E
v
e
n
t
F
a
c
t

(
m

:
m
e
t
r
i
c

=
=

"
(
(
P
A
P
I
_
L
1
_
T
C
M
-
P
A
P
I
_
L
2
_
T
C
M
)
/
P
A
P
I
_
L
1
_
T
C
M
)
"
,

b
:

b
e
t
t
e
r
W
o
r
s
e

=
=

M
e
a
n
E
v
e
n
t
F
a
c
t
.
W
O
R
S
E
,

s
:

s
e
v
e
r
i
t
y

>
0
.
1
0
,

e
:

e
v
e
n
t
N
a
m
e
,

a
:

m
a
i
n
V
a
l
u
e
,

v
:

e
v
e
n
t
V
a
l
u
e

)
t
h
e
n
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
h
e

e
v
e
n
t

"
+

e
+

"
h
a
s

a
l
o
w
e
r

t
h
a
n

a
v
e
r
a
g
e
L
2

h
i
t

r
a
t
e
.
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
t
A
v
e
r
a
g
e

L
2

h
i
t

r
a
t
e
:

"
+

a
+

"
,

E
v
e
n
t

L
2

h
i
t

r
a
t
e
:

"
+

v
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
t
P
e
r
c
e
n
t
a
g
e

o
f

t
o
t
a
l

r
u
n
t
i
m
e
:

"
+

f
.
g
e
t
P
e
r
c
e
n
t
a
g
e
(
s
)
)
;

e
n
d

F
ig

ur
e

4:
Sa

m
pl

e
JB

os
s

R
ul

es
ru

le
.

30

ra
n

k
s

0
-1

1
3

ra
n

k
s

3
2

0
0

-3
3

1
3

M
P

I_
W

a
it
()

F
ig

ur
e

5:
S3

D
cl

us
te

r
an

al
ys

is
.

T
he

fig
ur

e
on

th
e

le
ft

sh
ow

s
th

e
di

ffe
re

nc
e

in
(a

ve
ra

ge
d

m
ea

n)
ex

ec
ut

io
n

be
ha

vi
or

be
tw

ee
n

th
e

tw
o

cl
us

te
rs

of
pr

oc
es

se
s.

T
he

fig
ur

e
on

th
e

ri
gh

t
sh

ow
s

a
vi

rt
ua

l
to

po
lo

gy
of

th
e

M
P

I
pr

oc
es

se
s,

sh
ow

in
g

th
e

lo
ca

ti
on

s
of

th
e

cl
us

te
re

d
pr

oc
es

se
s.

th
e

re
d

pr
oc

es
se

s
ra

n
on

X
T

3
no

de
s,

an
d

th
e

bl
ue

pr
oc

es
se

s
ra

n
on

X
T

4
no

de
s.

31

(a
)

(b
)

(c
)

(d
)

F
ig

ur
e

6:
G

T
C

ph
as

e
an

al
ys

is
.

(a
)

sh
ow

s
th

e
in

cr
ea

se
in

ru
nt

im
e

fo
r

ea
ch

su
cc

es
si

ve
it

er
at

io
n,

ov
er

10
0

it
er

at
io

ns
.

(b
)

sh
ow

s
th

e
de

cr
ea

se
in

L
2

hi
t

ra
ti

o,
fr

om
0.

92
to

0.
86

,a
nd

(c
)

sh
ow

s
th

e
de

cr
ea

se
in

G
F
L
O

P
s

fr
om

1.
12

0
to

0.
97

9.
(d

)
sh

ow
s

th
e

la
rg

er
tr

en
d

w
he

n
G

T
C

is
ru

n
fo

r
50

00
it

er
at

io
ns

,
ea

ch
da

ta
po

in
t

re
pr

es
en

ti
ng

an
ag

gr
eg

at
io

n
of

10
0

it
er

at
io

ns
.

32

	Introduction
	PerfExplorer Design
	Process Control
	Collecting and Integrating Metadata
	Inference Engine
	Provenance and Data Persistence

	Analysis Examples
	S3D
	GTC

	Related Work
	Future Work and Concluding Remarks
	Acknowledgments

