
An IL Converter and Program Database for Analysis Tools 
Kathleen Lindlan, Janice Cuny, Allen D. Malony, Peter Beckman 

Sameer Shende Advanced Computing Laboratory 
Department of Computer and Information Science Los Alamos National Laboratory 

University of Oregon, Eugene, OR 97403 Los Alamos, NM 87545 

{klindlan, cuny, malony, sameer}@cs.uoregon.edu beckman @acl.lanl.gov 

1. ABSTRACT 
Developers of static and dynamic analysis tools 
for C++ programs need access to information 
on functions, classes, templates, and macros in 
parsed C++ code. Existing tools, such as the 
EDG display tool, provide that access, but in an 
unsuitable format. We built a converter that 
prunes and reorganizes the information into the 
appropriate format. The converter provides the 
information needed for our TAU (Tuning and 
Analysis Utilities) tools and, in more general 
terms, provides C++ developers considerable 
opportunities for automating software develop- 
ment. 

The EDG Front End parses a C++ source file 
and creates an intermediate language (IL) tree 
representing this file. The constructs of this tree 
correspond closely to the analogous constructs 
of the C++ language. The EDG display tool 
walks the IL tree and reports information on 
each IL entity that it encounters. 

Not needing the entire EDG intermediate lan- 
guage tree, we created a converter to report 
only the information typically needed by analy- 
sis tools, such as function call graphs and class 
hierarchies. Our initial strategy was passive: 
report on functions and their calls, and classes 
and their members, as the related structures 
are discovered during the traversal of the IL 
tree. We realized, however, that not all related 
information could be grouped as we wanted, 
e.g. function calls with the calling function. Our 
strategy, then, became more aggressive. When 
processing a function construct, we also 
traverse that part of the tree -- in another mem- 
ory region -- containing the IL for its execut- 
able code, and report the routine calls 
encountered there. The class hierarchy infor- 
mation is scattered in structures pertaining to 
base classes and their derivations: we follow the 

necessary pointers and compress the informa- 
tion given to just the direct parent classes. 

The IL converter processes the intermediate 
language file for a given source file and creates 
a human-readable file. This file contains all 
information on functions and classes, including 
template instantiations, as well as that for tem- 
plates and macros. The routine section lists 
source identification, parent class and access, 
signature, characteristics, and functions called 
for each routine. The class section specifies 
source information, characteristics, direct par- 
ent classes, member function IDS, and informa- 
tion on other members. The template and 
macro sections will report source information, 
type, and the complete text of each entity. 

The resulting program database is useful for a 
variety of analysis tools. We will use it for TAU, 
upgrading the class browser, call graph display, 
and tracing/profiling mechanism. Further, our 
converter will allow the developers of the ACTS 
toolkit to create tools that selectively query the 
database. Such tools can, e.g., automatically 
generate the HPC++ stubs that are required to 
interface directly to POOMA objects from perl. 
A template instantiation browser can be devel- 
oped that will enable scripting at run-time. 
These C++ developers now have new options to 
automate various aspects of the software devel- 
opment process. 

The prototype of the TAU IL converter will be 
available shortly. This version will provide 
information on functions, classes, templates, 
and macros. Future versions will offer 
improved efficiency, greater flexibility with 
command-line options, and perhaps a func- 
tional interface. 

153 


