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Abstract. The computational environment for estimation of unknown regional
electrical conductivities of the human head, based on realistic geometry from seg-
mented MRI up to2563 resolution, is described. A finite difference alternating di-
rection implicit (ADI) algorithm, parallelized using OpenMP, is used to solve the
forward problem describing the electrical field distribution throughout the head
given known electrical sources. A simplex search in the multi-dimensional para-
meter space of tissue conductivities is conducted in parallel using a distributed
system of heterogeneous computational resources. The theoretical and computa-
tional formulation of the problem is presented. Results from test studies are pro-
vided, comparing retrieved conductivities to known solutions from simulation.
Performance statistics are also given showing both the scaling of the forward
problem and the performance dynamics of the distributed search.

1 Introduction

Tomographic techniques determine unknown complex coefficients in PDEs govern-
ing the physics of the particular experimental modality. Such problems are typically
non-linear and ill-poised. The first step in solving such an inverse problem is to find a
numerical method to solve the direct (forward) problem. When the physical model is
three-dimensional and geometrically complex, the forwardsolution can be difficult to
construct and compute. The second stage involves a search across a multi-dimensional
parameter space of unknown model properties. The search employs the forward prob-
lem with chosen parameter estimates and a function that determines the error of the
forward calculation with an empirically measured result. As the error residuals of lo-
cal inverse searches are minimized, the global search determines convergence to final
property estimates based on the robustness of parameter space sampling.

Fundamental problems in neuroscience involving experimental modalities like elec-
troencephalography(EEG) and magnetoencephalograpy(MEG) are naturally expressed
as tomographic imaging problems. The difficult problems of source localization and im-
pedance imaging require modeling and simulating the associated bioelectric fields. For-
ward calculations are necessary in the computational formulation of these problems.
Until recently, most practical research in this field has opted for analytical or semi-
analytical models of a human head in the forward calculations [1, 2]. This is in contrast
to approaches that use realistic 3D head geometry for purposes of significantly improv-
ing the accuracy of the forward and inverse solutions. To do so, however, requires that



the geometric information be available from MRI or CT scans.With such image data,
the tissues of the head can be better segmented and more accurately represented in the
computational model. Unfortunately, these realistic modeling techniques have intrinsic
computational complexities that grow as the image resolution increases.

In source localization we are interested in finding the electrical source generators
for the potentials that might be measured by EEG electrodes on the scalp surface. Here,
the inverse search is looking for those sources (their position and amplitude) on the cor-
tex surface whose forward solution most accurately describes the electrical potentials
observed. The computational formulation of the source localization problem assumes
the forward calculation is without error. However, this assumption in turn assumes the
conductivity values of the modeled head tissues are known. In general, for any individ-
ual, they are not known. Thus, the impedance imaging problemis actually a predecessor
problem to source localization. In impedance imaging, the inverse search finds those tis-
sue impedance values whose forward solution best matches measured scalp potentials
when experimental stimuli are applied. In either problem, source localization or im-
pedance imaging, solving the inverse search usually involves the large number of runs
of the forward problem. Therefore, computational methods for the forward problem,
which are stable, fast and eligible for parallelization, aswell as intelligent strategies
and techniques for multi-parameter search, are of paramount importance.

To deal with complex geometries, PDE solvers use finite element (FE) or finite dif-
ference (FD) methods [3, 4]. Usually, for the geometry with the given complexity level,
the FE methods are more economical in terms of the number of unknowns (the size of
the stiffness matrix A, is smaller, as homogeneous segmentsdo not need a dense mesh)
and resulting computational cost. However, the FE mesh generation for a 3D, highly
heterogeneous subject with irregular boundaries (e.g., the human brain) is a difficult
task. At the same time, the FD method with a regular cubed gridis generally the eas-
iest method to code and implement. It is often chosen over FE methods for simplicity
and the fact that MRI/CT segmentation map is also based on a cubed lattice of nodes.
Many anatomical details (e.g., olfactory perforations andinternal auditory meatus) or
structural defects in case of trauma (e.g., skull cracks andpunctures) can be included
as the computational load is based on the number of elements and not on the specifics
of tissues differentiation. Thus, the model geometry accuracy can be the same as the
resolution of MRI scans (e.g.,1 × 1 × 1mm).

In the present study we adopt a model based on FD methods and construct a distrib-
uted and parallel simulation environment for conductivityoptimization through inverse
simplex search. FE simulation is used to solve for relatively simple phantom geometries
that we then apply as "gold standards" for validation.

2 Mathematical Description of the Problem

The relevant frequency spectrum in EEG and MEG is typically below 1kHz, and
most studies deal with frequencies between0.1 and 100Hz. Therefore, the physics
of EEG/MEG can be well described by the quasi-static approximation of Maxwell’s
equations, the Poisson equation. The electrical forward problem can be stated as fol-
lows: given the positions and magnitudes of current sources, as well as geometry and



electrical conductivity of the head volumeΩ calculate the distribution of the electrical
potential on the surface of the head (scalp)ΓΩ. Mathematically, it means solving the
linear Poisson equation [1]:

∇ · σ(x, y, z)∇φ(x, y, z) = S, (1)

in Ω with no-flux Neumann boundary conditions on the scalp:

σ(∇φ) · n = 0, (2)

on ΓΩ . Hereσ = σij(x, y, z) is an inhomogeneous tensor of the head tissues conduc-
tivity and S is the source current. Having computed potentialsφ(x, y, z) and current
densitiesJ = −σ(∇φ), the magnetic fieldB can be found through the Biot-Savart law.
We do not consider anisotropy or capacitance effects (the latter because the frequencies
of interest are too small), but they can be included in a straightforward manner. (Eq.(1)
becomes complex-valued, and complex admittivity should beused.)

We have built a finite difference forward problem solver for Eq. (1) and (2) based
on the multi-component alternating directions implicit (ADI) algorithm [7, 8]. It is a
generalization of the classic ADI algorithm as described byHielscher et al [6], but
with improved stability in 3D (the multi-component FD ADI scheme is uncondition-
ally stable in 3D for any value of the time step [8]). The algorithm has been extended to
accommodate anisotropic tissues parameters and sources. To describe the electrical con-
ductivity in the heterogeneous biological media within arbitrary geometry, the method
of the embedded boundaries has been used. Here an object of interest is embedded into
a cubic computational domain with extremely low conductivity values in the external
complimentary regions. This effectively guarantees thereare no current flows out of the
physical area (the Neuman boundary conditions, Eq.(2), is naturally satisfied). The idea
of the iterative ADI method is to find the solution of Eq. (1) and (2) as a steady state
of the appropriate evolution problem. At every iteration step the spatial operator is split
into the sum of three 1D operators, which are evaluated alternatively at each sub-step.
For example, the difference equations inx direction is given as [8]
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whereτ is a time step andδx,y,z is a notation for the appropriate1D spatial difference
operator (for the problems with variable coefficients it is approximated on a “staggered”
mesh). Such a scheme is accurate toO(τ2)+O(∆x2). In contrast with the classic ADI
method, the multi-component ADI uses the regularization (averaging) for evaluation of
the variable at the previous instant of time.

Parallelization of the ADI algorithm is straightforward, as it consists of nests of
independent loops over “bars” of voxels for solving the effective 1D problem (Eq. (3))
at each iteration. These loops can be easily unrolled in a shared memory multiprocessor
environment. It is worth noting, that the ADI algorithm can be also easily adapted for
solving PDEs describing other tomographic modalities. In particular, we have used it in
other related studies, for example , in simulation of photonmigration (diffusion ) in a
human head in near-infrared spectroscopy of brain injuriesand hematomas.



The inverse problem for the electrical imaging modality hasthe general tomo-
graphic structure. From the assumed distribution of the head tissue conductivities,σij ,
and the given injection current configuration,S, it is possible to predict the set of poten-
tial measurement values,φp , given a forward modelF (Eq. (1), (2)), as the nonlinear
functional [5, 6]:

φp = F (σij(x, y, z)). (4)

Then an appropriate objective function is defined, which describes the difference
between the measured,V , and predicted data,φp, and a search for the global minimum
is undertaken using advanced nonlinear optimization algorithms. In this paper, we used
the simple least square error norm:

E =

(

N
∑

i=1

(φp
i − Vi)

2

)1/2

, (5)

whereN is a total number of the measuring electrodes. To solve the nonlinear opti-
mization problem in Eq.(5) , we employed the downhill simplex method of Nelder and
Mead as implemented by Press et al[3]. In the strictest sense, this means finding the
conductivity at each node of the discrete mesh. In simplifiedmodels with the constrains
imposed by the segmented MRI data, one needs to know only the average regional
conductivities of a few tissues, for example, scalp, skull,cerebrospinal fluid (CSF) and
brain, which significantly reduces the demensionality of the parameter space in the in-
verse search, as well as the number of iterations in converging to a local minimum. To
avoid the local minima, we used a statistical approach. The inverse procedure was re-
peated for hundreds sets of conductivity guesses from appropriate fisiological intervals,
and then the solutions closest to the global minimum solutions were selected using the
simple critireaE < Ethreshold.

3 Computational Design

The solution approach maps to a hierarchical computationaldesign that can benefit
both from parallel parametric search and parallel forward calculations. Fig. 1 gives
a schematic view of the approach we applied in a distributed environment of paral-
lel computing clusters. The master controller is responsible for launching new inverse
problems with guesses of conductivity values. Upon completion, the inverse solvers
return conductivity solutions and error results to the master. Each inverse solver runs
on a compute server. GivenN compute servers,N inverse solves can be simultane-
ously active, each generating forward problems that can runin parallel, depending on
the number of processors available. The system design allows the number of compute
servers and the number of processors per server to be decidedprior to execution, thus
trading off inverse search parallelism versus forward problem speedup.

At the University of Oregon, we have access to a computational systems environ-
ment consisting of four multiprocessor clusters. ClustersClust1, Clust2, andClust3 are
8-processor IBM p655 machines and clusterClust4 is a 16-processor IBM p690 ma-
chine. All machines are shared-memory multiprocessors running the Linux operating



Fig. 1. Schematic view of the parallel computational system

Table 1. Tissues parameters in 4-shell modes[2]

Tissue typeσ(Ω−1
m

−1) Radius(cm)Reference
Brain 0.25 8 Geddes(1967)
Csf 1.79 8.2 Daumann(1997)
Skull 0.018 8.7 Law(1993)
Scalp 0.44 9.2 Burger(1943)

system. The clusters are connected by a high-speed gigabit Ethernet network. In our
experiments below, we treated each machine as a separate compute server running one
inverse solver. The forward problem was parallelized usingOpenMP and run on eight
(Clust1-3) and sixteen (Clust4) processors. The master controller can run on any net-
worked machine in the environment. In our study, the master controller ran on Clust2.

4 Computational Results

The forward solver was tested and validated against a 4-shell spherical phantom, and
low (64× 64× 44) and high(256× 256× 176) resolution human MRI data. For com-
parison purposes, the MRI data where segmented into only four tissue types their values
were set to those in the spherical model (cl. Table 1). When wecomputed potentials at
standard locations for the129 electrodes configuration montage on the spherical phan-
tom and compared the results with the analytical solution [2] available for a 4-shell
spherical phantom we observed good agreement, save for someminor discrepancies
(average error is no more than a few percents) caused by the mesh orientation effects
(the cubic versa spherical symmetry).

Similarly, we found the good agreement for spherical phantoms between our results
and the solution of the Poisson equation using the standard FEM packages such as
FEMLAB. Also, we have performed a series of computations forelectric potentials
and currents inside a human head with surgical or traumatic openings in the skull. We
found that generally low resolution (64 × 64 × 44 voxels) is not enough for accurate
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Fig. 2. Speed-up of the forward solver for different problem sizes at an 8-processor (left) and a
16-processor (right) IBM machines

description of the current and potentials distribution through the head, as the coarse
discretization creates artificial shunts for currents (mainly in the skull). With increased
resolution (128 × 128 × 88 or 256 × 256 × 176 voxels) our model has been shown
to be capable to capture the fine details of current/potential redistribution caused by
the structural perturbation. However, the computational requirements of the forward
calculation increase significantly.

The forward solver was parallelized using OpenMP. The performance speedups for
64× 64× 44,128× 128× 88and256× 256× 176 sized problems on the IBM p655 (8
processors) and p690 (16 processors) machines are shown in Fig. 2. The performance is
reasonable at present, but we believe there are still optimizations that can be made. The
importance of understanding the speedup performance on thecluster compute servers
is to allow flexible allocation of resources between inverseand forward processing.

In the inverse search the initial simplex was constructed randomly based upon the
mean conductivity values (cl. Table 1) and their standard deviations as it is reported
in the related biomedical literature. In the present test study we did not use the real
experimental human data, instead , we simulated the experimental set of the reference
potentialsV in Eq. 5 using our forward solver with the mean conductivity values from
Table 1 , which had been assumed to be true, but not known a priory for a user running
the inverse procedure. The search was stopped when one or twocriteria were met. The
first is when the decrease in the error function is fractionally smaller than some toler-
ance parameter. The second is when the number of steps of the simplex exceeds some
maximum value. During the search, the conductivities were constrained to stay within
their pre-defined plausible ranges. If the simplex algorithm attempted to step outside of
the acceptable range, then the offending conductivity was reset to the nearest allowed
value. Our procedure had the desired effect of guiding the search based on prior knowl-
edge. Some number of solution sets included conductivitiesthat were separated from
the bulk of the distribution. These were rejected as outliers, based on the significant
larger square error norm in Eq. (5) (i.e., the solution sets were filtered according to the
criteriaE < Ethreshold). We have found empirically that settingEthreshold = 1µV in
most of our runs produced a fair percentage of solutions close to the global minimum.

The distribution of the retrieved conductivities is shown in Fig. 3 (right). The fact
that the retrieved conductivities for the intracranial tissues (CSF and brain) have wider
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Fig. 3. Results of the inverse search. Dynamics of the individual search (left) and statistics of the
retrieved conductivities for about 200 initial random guesses. The actual number of the solutions
shown is 71, their error function is less than 1 microvolt

distributions is consistent with the intuitive physical explanation that the skull, as having
the lowest conductivity, shields the currents injected by the scalp electrodes from the
deep penetration into the head. Thus, the deep intracranialtissues are interrogated less
in comparison with the skull and scalp. The dynamics of an individual inverse search
convergence for a random initial guesses is shown in Fig. 3 (left). One can see the
conductivities for the extra cranial tissue and skull converging faster than the brain
tissues, due to the better interrogation by the injected current.

After filtering data according to the error norm magnitude, we fitted the individual
conductivities to the normal distribution. The mean retrieved conductivitiesσ(Ω−1m−1)
and their standard deviations∆σ(Ω−1m−1) are: Brain (0.24 / .01), CSF (1.79 / .03),
Skull (0.0180 / .0002), and Scalp (0.4400 / .0002) It is interesting to compare these
values to the "true" conductivities from Table 1. We can see excellent estimates for the
scalp and skull conductivities and a little bit less accurate estimates for the intracranial
tissues. Although we have not yet done runs with the realistic noise included, the simi-
lar investigation in Ref. 2 for a spherical phantom suggeststhat noise will lead to some
deterioration of the distributions and more uncertainty inthe results. In general, it still
will allow the retrieval of the unknown tissue parameters.

Finally, in Fig. 4 we present the dynamics of the performanceof the inverse search
in our distributed multi-cluster computational environment. Four curves with different
markers show the dynamics of the inverse solution flux at the master controller. One can
see that Clust4 on average returns the inverse solution twice as fast as the other clusters,
as would be expected. Note, however, the time to inverse solution also depends on both
forward speed and convergence rate. The markers seated at the "zero" error function
line represent solutions that contribute to the final solution distribution, with the rest of
the solutions rejected as outliers. In average, the throughput was 12 minutes per one
inverse solution for128 × 128 × 88 MRI resolution. More intelligent schemes of the
search with intermediate learning from the guiding processwith smaller resolution to
control (narrow) the range of the initial guesses in simulation with the higher resolution
are under investigation.
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Fig. 4. Solution flow at the master controller. Inverse solution arrival to the controller are marked

5 Conclusion

We have built an accurate and robust 3D Poisson solver based on a FDM ADI algo-
rithm for modeling electrical and optical problems in heterogeneous biological tissues.
We focus in particular on modeling the conductivity properties of the human head. The
computational formulation utilizes realistic head geometry obtained from segmented
MRI datasets. The results presented here validate our FDM approach for impedance
imaging and provide a performance assessment of the parallel and distributed compu-
tation.

In the future, we will enhance the computational framework with additional cluster
resources that the naturally scalable inverse search can use. Our intent is to evolve
the present interprocess communication (IPC) socket-based code to one that uses grid
middleware support, allowing the impedance imaging program to more easily access
available resources and integrate with neuroimaging workflows.

The authors wish to thank Dr. V.M. Volkov, of Institute of Mathematics, Belarus
Academy of Sciences, for providing many ideas and fruitful discussions on the multi-
component ADI algorithm.
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